default search action
Daniel P. Robinson
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j37]Frank E. Curtis, Michael O'Neill, Daniel P. Robinson:
Worst-case complexity of an SQP method for nonlinear equality constrained stochastic optimization. Math. Program. 205(1): 431-483 (2024) - [j36]Frank E. Curtis, Suyun Liu, Daniel P. Robinson:
Fair machine learning through constrained stochastic optimization and an ε-constraint method. Optim. Lett. 18(9): 1975-1991 (2024) - [i15]Chia-Yuan Wu, Frank E. Curtis, Daniel P. Robinson:
Using Synthetic Data to Mitigate Unfairness and Preserve Privacy through Single-Shot Federated Learning. CoRR abs/2409.09532 (2024) - 2023
- [j35]Guilherme França, Daniel P. Robinson, René Vidal:
A Nonsmooth Dynamical Systems Perspective on Accelerated Extensions of ADMM. IEEE Trans. Autom. Control. 68(5): 2966-2978 (2023) - [j34]Yutong Dai, Tianyi Chen, Guanyi Wang, Daniel P. Robinson:
An Adaptive Half-Space Projection Method for Stochastic Optimization Problems with Group Sparse Regularization. Trans. Mach. Learn. Res. 2023 (2023) - [c19]Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson:
A Variance-Reduced and Stabilized Proximal Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization. AISTATS 2023: 5107-5133 - [i14]Frank E. Curtis, Vyacheslav Kungurtsev, Daniel P. Robinson, Qi Wang:
A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems. CoRR abs/2304.14907 (2023) - 2022
- [j33]Chong You, Chi Li, Daniel P. Robinson, René Vidal:
Self-Representation Based Unsupervised Exemplar Selection in a Union of Subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 44(5): 2698-2711 (2022) - [j32]Frank E. Curtis, Yutong Dai, Daniel P. Robinson:
A Subspace Acceleration Method for Minimization Involving a Group Sparsity-Inducing Regularizer. SIAM J. Optim. 32(2): 545-572 (2022) - 2021
- [j31]Frank E. Curtis, Daniel P. Robinson:
Regional complexity analysis of algorithms for nonconvex smooth optimization. Math. Program. 187(1): 579-615 (2021) - [j30]Frank E. Curtis, Daniel P. Robinson, Clément W. Royer, Stephen J. Wright:
Trust-Region Newton-CG with Strong Second-Order Complexity Guarantees for Nonconvex Optimization. SIAM J. Optim. 31(1): 518-544 (2021) - [j29]Albert S. Berahas, Frank E. Curtis, Daniel P. Robinson, Baoyu Zhou:
Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization. SIAM J. Optim. 31(2): 1352-1379 (2021) - [j28]Mustafa Devrim Kaba, Mengnan Zhao, René Vidal, Daniel P. Robinson, Enrique Mallada:
What is the Largest Sparsity Pattern That Can Be Recovered by 1-Norm Minimization? IEEE Trans. Inf. Theory 67(5): 3060-3074 (2021) - [c18]Tianyu Ding, Zhihui Zhu, Manolis C. Tsakiris, René Vidal, Daniel P. Robinson:
Dual Principal Component Pursuit for Learning a Union of Hyperplanes: Theory and Algorithms. AISTATS 2021: 2944-2952 - [c17]Tianyu Ding, Zhihui Zhu, René Vidal, Daniel P. Robinson:
Dual Principal Component Pursuit for Robust Subspace Learning: Theory and Algorithms for a Holistic Approach. ICML 2021: 2739-2748 - [c16]Mustafa Devrim Kaba, Chong You, Daniel P. Robinson, Enrique Mallada, René Vidal:
A Nullspace Property for Subspace-Preserving Recovery. ICML 2021: 5180-5188 - [i13]Yunchen Yang, Xinyue Zhang, Tianjiao Ding, Daniel P. Robinson, René Vidal, Manolis C. Tsakiris:
Boosting RANSAC via Dual Principal Component Pursuit. CoRR abs/2110.02918 (2021) - 2020
- [j27]Philip E. Gill, Vyacheslav Kungurtsev, Daniel P. Robinson:
A Shifted Primal-Dual Penalty-Barrier Method for Nonlinear Optimization. SIAM J. Optim. 30(2): 1067-1093 (2020) - [c15]Tianjiao Ding, Yunchen Yang, Zhihui Zhu, Daniel P. Robinson, René Vidal, Laurent Kneip, Manolis C. Tsakiris:
Robust Homography Estimation via Dual Principal Component Pursuit. CVPR 2020: 6079-6088 - [c14]Guilherme França, Jeremias Sulam, Daniel P. Robinson, René Vidal:
Conformal Symplectic and Relativistic Optimization. NeurIPS 2020 - [i12]Chong You, Chun-Guang Li, Daniel P. Robinson, René Vidal:
Is an Affine Constraint Needed for Affine Subspace Clustering? CoRR abs/2005.03888 (2020) - [i11]Chong You, Chi Li, Daniel P. Robinson, René Vidal:
Self-Representation Based Unsupervised Exemplar Selection in a Union of Subspaces. CoRR abs/2006.04246 (2020) - [i10]Albert S. Berahas, Frank E. Curtis, Daniel P. Robinson, Baoyu Zhou:
Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization. CoRR abs/2007.10525 (2020)
2010 – 2019
- 2019
- [j26]Frank E. Curtis, Daniel P. Robinson:
Exploiting negative curvature in deterministic and stochastic optimization. Math. Program. 176(1-2): 69-94 (2019) - [c13]Chong You, Chun-Guang Li, Daniel P. Robinson, René Vidal:
Is an Affine Constraint Needed for Affine Subspace Clustering? ICCV 2019: 9914-9923 - [c12]Tianyu Ding, Zhihui Zhu, Tianjiao Ding, Yunchen Yang, Daniel P. Robinson, Manolis C. Tsakiris, René Vidal:
Noisy Dual Principal Component Pursuit. ICML 2019: 1617-1625 - [c11]Zhihui Zhu, Tianyu Ding, Daniel P. Robinson, Manolis C. Tsakiris, René Vidal:
A Linearly Convergent Method for Non-Smooth Non-Convex Optimization on the Grassmannian with Applications to Robust Subspace and Dictionary Learning. NeurIPS 2019: 9437-9447 - [i9]Guilherme França, Daniel P. Robinson, René Vidal:
Gradient Flows and Accelerated Proximal Splitting Methods. CoRR abs/1908.00865 (2019) - [i8]Mustafa Devrim Kaba, Mengnan Zhao, René Vidal, Daniel P. Robinson, Enrique Mallada:
Generalized Nullspace Property for Structurally Sparse Signals. CoRR abs/1910.05652 (2019) - [i7]Daniel P. Robinson, René Vidal, Chong You:
Basis Pursuit and Orthogonal Matching Pursuit for Subspace-preserving Recovery: Theoretical Analysis. CoRR abs/1912.13091 (2019) - 2018
- [j25]Hao Jiang, Daniel P. Robinson, René Vidal, Chong You:
A nonconvex formulation for low rank subspace clustering: algorithms and convergence analysis. Comput. Optim. Appl. 70(2): 395-418 (2018) - [j24]Frank E. Curtis, Zachary Lubberts, Daniel P. Robinson:
Concise complexity analyses for trust region methods. Optim. Lett. 12(8): 1713-1724 (2018) - [j23]Tianyi Chen, Frank E. Curtis, Daniel P. Robinson:
FaRSA for ℓ1-regularized convex optimization: local convergence and numerical experience. Optim. Methods Softw. 33(2): 396-415 (2018) - [j22]Frank E. Curtis, Daniel P. Robinson, Mohammadreza Samadi:
Complexity Analysis of a Trust Funnel Algorithm for Equality Constrained Optimization. SIAM J. Optim. 28(2): 1533-1563 (2018) - [c10]Mengnan Zhao, M. Devrim Kaba, René Vidal, Daniel P. Robinson, Enrique Mallada:
Sparse Recovery over Graph Incidence Matrices. CDC 2018: 364-371 - [c9]Chong You, Chi Li, Daniel P. Robinson, René Vidal:
A Scalable Exemplar-Based Subspace Clustering Algorithm for Class-Imbalanced Data. ECCV (9) 2018: 68-85 - [c8]Guilherme França, Daniel P. Robinson, René Vidal:
ADMM and Accelerated ADMM as Continuous Dynamical Systems. ICML 2018: 1554-1562 - [c7]Zhihui Zhu, Yifan Wang, Daniel P. Robinson, Daniel Q. Naiman, René Vidal, Manolis C. Tsakiris:
Dual Principal Component Pursuit: Improved Analysis and Efficient Algorithms. NeurIPS 2018: 2175-2185 - [i6]Mengnan Zhao, M. Devrim Kaba, René Vidal, Daniel P. Robinson, Enrique Mallada:
Sparse Recovery over Graph Incidence Matrices: Polynomial Time Guarantees and Location Dependent Performance. CoRR abs/1803.09631 (2018) - [i5]Zhihui Zhu, Yifan Wang, Daniel P. Robinson, Daniel Q. Naiman, René Vidal, Manolis C. Tsakiris:
Dual Principal Component Pursuit: Probability Analysis and Efficient Algorithms. CoRR abs/1812.09924 (2018) - 2017
- [j21]Nicholas I. M. Gould, Daniel P. Robinson:
A dual gradient-projection method for large-scale strictly convex quadratic problems. Comput. Optim. Appl. 67(1): 1-38 (2017) - [j20]Daniel P. Robinson, Rachael Tappenden:
A Flexible ADMM Algorithm for Big Data Applications. J. Sci. Comput. 71(1): 435-467 (2017) - [j19]Frank E. Curtis, Nicholas I. M. Gould, Daniel P. Robinson, Philippe L. Toint:
An interior-point trust-funnel algorithm for nonlinear optimization. Math. Program. 161(1-2): 73-134 (2017) - [j18]Frank E. Curtis, Daniel P. Robinson, Mohammadreza Samadi:
A trust region algorithm with a worst-case iteration complexity of O(ϵ -3/2) for nonconvex optimization. Math. Program. 162(1-2): 1-32 (2017) - [j17]Philip E. Gill, Vyacheslav Kungurtsev, Daniel P. Robinson:
A stabilized SQP method: superlinear convergence. Math. Program. 163(1-2): 369-410 (2017) - [j16]Tianyi Chen, Frank E. Curtis, Daniel P. Robinson:
A Reduced-Space Algorithm for Minimizing ℓ1-Regularized Convex Functions. SIAM J. Optim. 27(3): 1583-1610 (2017) - [c6]Chong You, Daniel P. Robinson, René Vidal:
Provable Self-Representation Based Outlier Detection in a Union of Subspaces. CVPR 2017: 4323-4332 - [i4]Chong You, Daniel P. Robinson, René Vidal:
Provable Self-Representation Based Outlier Detection in a Union of Subspaces. CoRR abs/1704.03925 (2017) - [i3]Frank E. Curtis, Daniel P. Robinson, Mohammadreza Samadi:
Complexity Analysis of a Trust Funnel Algorithm for Equality Constrained Optimization. CoRR abs/1707.00337 (2017) - 2016
- [j15]Frank E. Curtis, Nicholas I. M. Gould, Hao Jiang, Daniel P. Robinson:
Adaptive augmented Lagrangian methods: algorithms and practical numerical experience. Optim. Methods Softw. 31(1): 157-186 (2016) - [c5]Chong You, Claire Donnat, Daniel P. Robinson, René Vidal:
A divide-and-conquer framework for large-scale subspace clustering. ACSSC 2016: 1014-1018 - [c4]Chong You, Daniel P. Robinson, René Vidal:
Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit. CVPR 2016: 3918-3927 - [c3]Chong You, Chun-Guang Li, Daniel P. Robinson, René Vidal:
Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering. CVPR 2016: 3928-3937 - [c2]Daniel P. Robinson, Suchi Saria:
Trading-Off Cost of Deployment Versus Accuracy in Learning Predictive Models. IJCAI 2016: 1974-1982 - [i2]Daniel P. Robinson, Suchi Saria:
Trading-Off Cost of Deployment Versus Accuracy in Learning Predictive Models. CoRR abs/1604.05819 (2016) - [i1]Chong You, Chun-Guang Li, Daniel P. Robinson, René Vidal:
Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering. CoRR abs/1605.02633 (2016) - 2015
- [j14]Frank E. Curtis, Zheng Han, Daniel P. Robinson:
A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization. Comput. Optim. Appl. 60(2): 311-341 (2015) - [j13]Daniel P. Robinson:
Primal-Dual Active-Set Methods for Large-Scale Optimization. J. Optim. Theory Appl. 166(1): 137-171 (2015) - [j12]Frank E. Curtis, Hao Jiang, Daniel P. Robinson:
An adaptive augmented Lagrangian method for large-scale constrained optimization. Math. Program. 152(1-2): 201-245 (2015) - [j11]Nicholas I. M. Gould, Yueling Loh, Daniel P. Robinson:
A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results. SIAM J. Optim. 25(3): 1885-1911 (2015) - [j10]Hassan Mohy-ud-Din, Daniel P. Robinson:
A Solver for Nonconvex Bound-Constrained Quadratic Optimization. SIAM J. Optim. 25(4): 2385-2407 (2015) - [c1]Congyuan Yang, Daniel P. Robinson, René Vidal:
Sparse Subspace Clustering with Missing Entries. ICML 2015: 2463-2472 - 2014
- [j9]Nicholas I. M. Gould, Yueling Loh, Daniel P. Robinson:
A Filter Method with Unified Step Computation for Nonlinear Optimization. SIAM J. Optim. 24(1): 175-209 (2014) - [j8]Frank E. Curtis, Travis C. Johnson, Daniel P. Robinson, Andreas Wächter:
An Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization. SIAM J. Optim. 24(3): 1041-1074 (2014) - 2013
- [j7]Nicholas I. M. Gould, Dominique Orban, Daniel P. Robinson:
Trajectory-following methods for large-scale degenerate convex quadratic programming. Math. Program. Comput. 5(2): 113-142 (2013) - [j6]Daniel P. Robinson, Liming Feng, Jorge Nocedal, Jong-Shi Pang:
Subspace Accelerated Matrix Splitting Algorithms for Asymmetric and Symmetric Linear Complementarity Problems. SIAM J. Optim. 23(3): 1371-1397 (2013) - [j5]Philip E. Gill, Daniel P. Robinson:
A Globally Convergent Stabilized SQP Method. SIAM J. Optim. 23(4): 1983-2010 (2013) - 2012
- [j4]Philip E. Gill, Daniel P. Robinson:
A primal-dual augmented Lagrangian. Comput. Optim. Appl. 51(1): 1-25 (2012) - 2010
- [j3]Nicholas I. M. Gould, Daniel P. Robinson, H. Sue Thorne:
On solving trust-region and other regularised subproblems in optimization. Math. Program. Comput. 2(1): 21-57 (2010) - [j2]Nicholas I. M. Gould, Daniel P. Robinson:
A Second Derivative SQP Method: Global Convergence. SIAM J. Optim. 20(4): 2023-2048 (2010) - [j1]Nicholas I. M. Gould, Daniel P. Robinson:
A Second Derivative SQP Method: Local Convergence and Practical Issues. SIAM J. Optim. 20(4): 2049-2079 (2010)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint