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In this paper, we consider augmented Lagrangian (AL) algorithms for solving large-scale nonlinear
optimization problems that execute adaptive strategies for updating the penalty parameter. Our
work is motivated by the recently proposed adaptive AL trust region method by Curtis, Jiang, and
Robinson [Math. Prog., DOI: 10.1007/s10107-014-0784-y, 2013]. The first focal point of this paper
is a new variant of the approach that employs a line search rather than a trust region strategy,
where a critical algorithmic feature for the line search strategy is the use of convexified piecewise
quadratic models of the AL function for computing the search directions. We prove global convergence
guarantees for our line search algorithm that are on par with those for the previously proposed trust
region method. A second focal point of this paper is the practical performance of the line search and
trust region algorithm variants in Matlab software, as well as that of an adaptive penalty parameter
updating strategy incorporated into the Lancelot software. We test these methods on problems
from the CUTEst and COPS collections, as well as on challenging test problems related to optimal
power flow. Our numerical experience suggests that the adaptive algorithms outperform traditional
AL methods in terms of efficiency and reliability. As with traditional AL algorithms, the adaptive
methods are matrix-free and thus represent a viable option for solving extreme-scale problems.
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1. Introduction

Augmented Lagrangian (AL) methods [25, 33] have recently regained popularity due to
growing interests in solving extreme-scale nonlinear optimization problems. These meth-
ods are attractive in such settings as they can be implemented matrix-free [2, 3, 11, 28]
and have global and local convergence guarantees under relatively weak assump-
tions [18, 26]. Furthermore, certain variants of AL methods [20, 21] have proved to
be very efficient for solving certain structured problems [6, 34, 36].

A new AL trust region method was recently proposed and analyzed in [15]. The novel
feature of that algorithm is an adaptive strategy for updating the penalty parameter in-
spired by techniques for performing such updates in the context of exact penalty methods
[7, 8, 29]. This feature is designed to overcome a potentially serious drawback of tradi-
tional AL methods, which is that they may be ineffective during some (early) iterations
due to poor choices of the penalty parameter and/or Lagrange multiplier estimates. In
such situations, the poor choices of these quantities may lead to little or no improvement
in the primal space and, in fact, the iterates may diverge from even a well-chosen initial
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iterate. The key idea for avoiding this behavior in the algorithm proposed in [15] is to
adaptively update the penalty parameter during the step computation in order to ensure
that the trial step yields a sufficiently large reduction in linearized constraint violation,
thus steering the optimization process steadily toward constraint satisfaction.

The contributions of this paper are two-fold. First, we present an AL line search method
based on the same framework employed for the trust region method in [15]. The main
difference between our new approach and that in [15], besides the differences inherent
in using line searches instead of a trust region strategy, is that we utilize a convexified
piecewise quadratic model of the AL function to compute the search direction in each
iteration. With this modification, we prove that our line search method achieves global
convergence guarantees on par with those proved for the trust region method in [15]. The
second contribution of this paper is that we perform extensive numerical experiments
with a Matlab implementation of the adaptive algorithms (i.e., both line search and
trust region variants) and an implementation of an adaptive penalty parameter updating
strategy in the Lancelot software [12]. We test these implementations on problems
from the CUTEst [22] and COPS [5] collections, as well as on test problems related to
optimal power flow [37]. Our results indicate that our adaptive algorithms outperform
traditional AL methods in terms of efficiency and reliability.

The remainder of the paper is organized as follows. In §2, we present our adaptive
AL line search method and state convergence results. Details and proofs of these results,
which draw from those in [15], can be found in Appendices A and B. We then provide nu-
merical results in §3 to illustrate the effectiveness of our implementations of our adaptive
AL algorithms. We give conclusions in §4.

Notation. We often drop function arguments once a function is defined. We also use a
subscript on a function name to denote its value corresponding to algorithmic quantities
using the same subscript. For example, for a function f : Rn → R, if xk is the value for
the variable x during iteration k of an algorithm, then fk := f(xk). We also often use
subscripts for constants to indicate the algorithmic quantity to which they correspond.
For example, γµ denotes a parameter corresponding to the algorithmic quantity µ.

2. An Adaptive Augmented Lagrangian Line Search Algorithm

2.1 Preliminaries

We assume that all problems under our consideration are formulated as

minimize
x∈Rn

f(x) subject to c(x) = 0, l ≤ x ≤ u. (1)

Here, we assume that the objective function f : Rn → R and constraint function c :
Rn → Rm are twice continuously differentiable, and that the variable lower bound vector
l ∈ Rn and upper bound vector u ∈ Rn satisfy l ≤ u. Our goal is to design an algorithm
that will compute a first-order primal-dual stationary point for problem (1). However,
in order for the algorithm to be suitable as a general-purpose approach, it should have
mechanisms for terminating and providing useful information when an instance of (1) is
(locally) infeasible. In such cases, we have designed our algorithm so that it transitions
to finding an infeasible first-order stationary point for the nonlinear feasibility problem

minimize
x∈Rn

v(x) subject to l ≤ x ≤ u, (2)

where v : Rn → R is defined as v(x) = 1
2‖c(x)‖22.
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As implied by the previous paragraph, our algorithm requires first-order stationar-
ity conditions for problems (1) and (2), which can be stated in the following manner.
First, introducing a Lagrange multiplier vector y ∈ Rm, we define the Lagrangian for
problem (1), call it ` : Rn × Rm → R, by

`(x, y) = f(x)− c(x)Ty.

Then, defining the gradient of the objective function g : Rn → Rn by g(x) = ∇f(x), the
Jacobian of the constraint functions J : Rn → Rm×n by J(x) = ∇c(x), and the projection
operator onto the bounds P : Rn → Rn, component-wise for i ∈ {1, . . . , n}, by

[P (x)]i =


li if xi ≤ li
ui if xi ≥ ui
xi otherwise

we may introduce the primal-dual stationarity measure FL : Rn × Rm → Rn given by

FL(x, y) = P (x−∇x`(x, y))− x = P (x− (g(x)− J(x)Ty))− x.

First-order primal-dual stationary points for (1) can then be characterized as zeros of
the primal-dual stationarity measure FOPT : Rn × Rm → Rn+m defined by stacking the
stationarity measure FL and the constraint function −c, i.e., a first-order primal-dual
stationary point for (1) is any pair (x, y) with l ≤ x ≤ u satisfying

0 = FOPT(x, y) =

(
FL(x, y)
−c(x)

)
=

(
P (x−∇x`(x, y))− x

∇y`(x, y)

)
. (3)

Similarly, a first-order primal stationary point for (2) is any x with l ≤ x ≤ u satisfying

0 = FFEAS(x), (4)

where FFEAS : Rn → Rn is defined by

FFEAS(x) = P (x−∇xv(x))− x = P (x− J(x)Tc(x))− x.

In particular, if l ≤ x ≤ u, v(x) > 0, and (4) holds, then x is an infeasible stationary
point for problem (1).

Over the past decades, a variety of effective numerical methods have been proposed for
solving large-scale bound-constrained optimization problems. Hence, the critical issue in
solving problem (1) is how to handle the presence of the equality constraints. As in the
wide variety of penalty methods that have been proposed, the strategy adopted by AL
methods is to remove these constraints, but push the algorithm to satisfy them through
the addition of influential terms in the objective. In this manner, problem (1) (or at
least (2)) can be solved via a sequence of bound-constrained subproblems—thus allowing
AL methods to exploit the methods that are available for subproblems of this type.
Specifically, AL methods consider a sequence of subproblems in which the objective is a
weighted sum of the Lagrangian ` and the constraint violation measure v. By scaling `
by a penalty parameter µ ≥ 0, each subproblem involves the minimization of a function
L : Rn × Rm × R→ R, called the augmented Lagrangian (AL), defined by

L(x, y, µ) = µ`(x, y) + v(x) = µ(f(x)− c(x)Ty) + 1
2‖c(x)‖22.
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Observe that the gradient of the AL with respect to x, evaluated at (x, y, µ), is given by

∇xL(x, y, µ) = µ
(
g(x)− J(x)Tπ(x, y, µ)

)
,

where we define the function π : Rn × Rm × R→ Rm by

π(x, y, µ) = y − 1
µc(x). (5)

Hence, each subproblem to be solved in an AL method has the form

minimize
x∈Rn

L(x, y, µ) subject to l ≤ x ≤ u. (6)

Given a pair (y, µ), a first-order stationary point for problem (6) is any zero of the primal-
dual stationarity measure FAL : Rn × Rm × R → Rn, defined similarly to FL but with
the Lagrangian replaced by the augmented Lagrangian; i.e., given (y, µ), a first-order
stationary point for (6) is any x satisfying

0 = FAL(x, y, µ) = P (x−∇xL(x, y, µ))− x. (7)

Given a pair (y, µ) with µ > 0, a traditional AL method proceeds by (approximately)
solving (6), which is to say that it finds a point, call it x(y, µ), that (approximately) sat-
isfies (7). If the resulting pair (x(y, µ), y) is not a first-order primal-dual stationary point
for (1), then the method would modify the Lagrange multiplier y or penalty parameter
µ so that, hopefully, the solution of the subsequent subproblem (of the form (6)) yields
a better primal-dual solution estimate for (1). The function π plays a critical role in this
procedure. In particular, observe that if c(x(y, µ)) = 0, then π(x(y, µ), y, µ) = y and
(7) would imply FOPT(x(y, µ), y) = 0, i.e., that (x(y, µ), y) is a first-order primal-dual
stationary point for (1). Hence, if the constraint violation at x(y, µ) is sufficiently small,
then a traditional AL method would set the new value of y as π(x, y, µ). Otherwise, if
the constraint violation is not sufficiently small, then the penalty parameter is decreased
to place a higher priority on reducing it during subsequent iterations.

2.2 Algorithm Description

Our AL line search algorithm is similar to the AL trust region method proposed in [15],
except for two key differences: it executes line searches rather than using a trust region
framework, and it employs a convexified piecewise quadratic model of the AL function
for computing the search direction in each iteration. The main motivation for utilizing a
convexified model is to ensure that each computed search direction is a direction of strict
descent for the AL function from the current iterate, which is necessary to ensure the well-
posedness of the line search. However, it should be noted that, practically speaking, the
convexification of the model does not necessarily add any computational difficulties when
computing each direction; see §3.1.1. Similar to the trust region method proposed in [15],
a critical component of our algorithm is the adaptive strategy for updating the penalty
parameter µ during the search direction computation. This is used to ensure steady
progress—i.e., steer the algorithm—toward solving (1) (or at least (2)) by monitoring
predicted improvements in linearized feasibility.

The central component of each iteration of our algorithm is the search direction com-
putation. In our approach, this computation is performed based on local models of the
constraint violation measure v and the AL function L at the current iterate, which at
iteration k is given by (xk, yk, µk). The local models that we employ for these functions
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are, respectively, qv : Rn → R and q̃ : Rn → R, defined as follows:

qv(s;x) = 1
2‖c(x) + J(x)s‖22

q̃(s;x, y, µ) = L(x, y) +∇xL(x, y)Ts+ max{1
2s
T(µ∇2

xx`(x, y) + J(x)TJ(x))s, 0}.

We note that qv is a typical Gauss-Newton model of the constraint violation measure v,
and q̃ is a convexification of a second-order approximation of the augmented Lagrangian.
(We use the notation q̃ rather than simply q to distinguish between the model above and
the second-order model—without the max—that appears extensively in [15].)

Our algorithm computes two types of steps during each iteration. The purpose of
the first step, which we refer to as the steering step, is to gauge the progress towards
linearized feasibility that may be achieved (locally) from the current iterate. This is done
by (approximately) minimizing our model qv of the constraint violation measure v within
the bound constraints and a trust region. Then, a step of the second type is computed
by (approximately) minimizing our model q̃ of the AL function L within the bound
constraints and a trust region. If the reduction in the model qv yielded by the latter step is
sufficiently large—say, compared to that yielded by the steering step—then the algorithm
proceeds using this step as the search direction. Otherwise, the penalty parameter may
be reduced, in which case a step of the latter type is recomputed. This process repeats
iteratively until a search direction is computed that yields a sufficiently large (or at least
not too negative) reduction in qv. As such, the iterate sequence is intended to make steady
progress toward (or at least approximately maintain) constraint satisfaction throughout
the optimization process, regardless of the initial penalty parameter value.

We now describe this process in more detail. During iteration k, the steering step rk
is computed via the optimization subproblem given by

minimize
r∈Rn

qv(r;xk) subject to l ≤ xk + r ≤ u, ‖r‖2 ≤ θk, (8)

where, for some constant δ > 0, the trust region radius is defined to be

θk := δ‖FFEAS(xk)‖2 ≥ 0. (9)

A consequence of this choice of trust region radius is that it forces the steering step
to be smaller in norm as the iterates of the algorithm approach any stationary point
of the constraint violation measure [35]. This prevents the steering step from being too
large relative to the progress that can be made toward minimizing v. While (8) is a
convex optimization problem for which there are efficient methods, in order to reduce
computational expense our algorithm only requires rk to be an approximate solution
of (8). In particular, we merely require that rk yields a reduction in qv that is proportional
to that yielded by the associated Cauchy step (see (16a) later on), which is defined to be

rk := r(xk, θk) := P (xk − βkJTk ck)− xk (10)

for βk := β(xk, θk) such that, for some εr ∈ (0, 1), the step rk satisfies

∆qv(rk;xk) := qv(0;xk)− qv(rk;xk) ≥ −εrrTkJTk ck and ‖rk‖2 ≤ θk. (11)

Appropriate values for βk and rk—along with auxiliary nonnegative scalar quantities
εk and Γk to be used in subsequent calculations in our method—are computed by Al-
gorithm 1. The quantity ∆qv(rk;xk) representing the predicted reduction in constraint
violation yielded by rk is guaranteed to be positive at any xk that is not a first-order
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stationary point for v subject to the bound constraints; see part (i) of Lemma A.4. We
define a similar reduction ∆qv(rk;xk) for the steering step rk.

Algorithm 1 Cauchy step computation for the feasibility subproblem (8)

1: procedure Cauchy feasibility(xk, θk)
2: restrictions : θk ≥ 0.
3: available constants : {εr, γ} ⊂ (0, 1).
4: Compute the smallest integer lk ≥ 0 satisfying ‖P (xk − γlkJTk ck)− xk‖2 ≤ θk.
5: if lk > 0 then
6: Set Γk ← min{2, 1

2(1 + ‖P (xk − γlk−1JTk ck)− xk‖2/θk)}.
7: else
8: Set Γk ← 2.
9: end if

10: Set βk ← γlk , rk ← P (xk − βkJTk ck)− xk, and εk ← 0.
11: while rk does not satisfy (11) do
12: Set εk ← max(εk,−∆qv(rk;xk)/rTkJTk ck).
13: Set βk ← γβk and rk ← P (xk − βkJTk ck)− xk.
14: end while
15: return : (βk, rk, εk,Γk)
16: end procedure

After computing a steering step rk, we proceed to compute a trial step sk via

minimize
s∈Rn

q̃(s;xk, yk, µk) subject to l ≤ xk + s ≤ u, ‖s‖2 ≤ Θk, (12)

where, given Γk > 1 from the output of Algorithm 1, we define the trust region radius

Θk := Θ(xk, yk, µk,Γk) = Γkδ‖FAL(xk, yk, µk)‖2 ≥ 0. (13)

As for the steering step, we allow inexactness in the solution of (12) by only requiring
the step sk to satisfy a Cauchy decrease condition (see (16b) later on), where the Cauchy
step for problem (12) is

sk := s(xk, yk, µk,Θk, εk) := P (xk − αk∇xL(xk, yk, µk))− xk (14)

for αk = α(xk, yk, µk,Θk, εk) such that, for εk ≥ 0 returned from Algorithm 1, sk yields

∆q̃(sk;xk, yk, µk) := q̃(0;xk, yk, µk)− q̃(sk;xk, yk, µk)

≥ − (εk + εr)

2
sTk∇xL(xk, yk, µk) and ‖sk‖2 ≤ Θk.

(15)

Algorithm 2 describes our procedure for computing αk and sk. (The importance of
incorporating Γk in (13) and εk in (15) is revealed in the proofs of Lemmas A.2 and A.3.)
The quantity∆q̃(sk;xk, yk, µk) representing the predicted reduction in L(·, yk, µk) yielded
by sk is guaranteed to be positive at any xk that is not a first-order stationary point
for L(·, yk, µk) subject to the bound constraints; see part (ii) of Lemma A.4. A similar
quantity ∆q̃(sk;xk, yk, µk) is also used for the search direction sk.

Our complete algorithm is given as Algorithm 3 on page 8. In particular, the kth
iteration proceeds as follows. Given the kth iterate tuple (xk, yk, µk), the algorithm first
determines whether the first-order primal-dual stationarity conditions for (1) or the first-
order stationarity condition for (2) are satisfied. If either is the case, then the algorithm
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Algorithm 2 Cauchy step computation for the Augmented Lagrangian subproblem (12).

1: procedure Cauchy AL(xk, yk, µk,Θk, εk)
2: restrictions : µk > 0, Θk > 0, and εk ≥ 0.
3: available constant : γ ∈ (0, 1).
4: Set αk ← 1 and sk ← P (xk − αk∇xL(xk, yk, µk))− xk.
5: while (15) is not satisfied do
6: Set αk ← γαk and sk ← P (xk − αk∇xL(xk, yk, µk))− xk.
7: end while
8: return : (αk, sk)
9: end procedure

terminates, but otherwise the method enters the while loop in line 11 to check for
stationarity with respect to the AL function. This loop is guaranteed to terminate finitely;
see Lemma A.1. Next, after computing appropriate trust region radii and Cauchy steps,
the method enters a block for computing the steering step rk and trial step sk. Through
the while loop on line 19, the overall goal of this block is to compute (approximate)
solutions of subproblems (8) and (12) satisfying

∆q̃(sk;xk, yk, µk) ≥ κ1∆q̃(sk;xk, yk, µk) > 0, l ≤ xk + sk ≤ u, ‖sk‖2 ≤ Θk, (16a)

∆qv(rk;xk) ≥ κ2∆qv(rk;xk) ≥ 0, l ≤ xk + rk ≤ u, ‖rk‖2 ≤ θk, (16b)

and ∆qv(sk;xk) ≥ min{κ3∆qv(rk;xk), vk − 1
2(κttj)

2}. (16c)

In these conditions, the method employs user-provided constants {κ1, κ2, κ3, κt} ⊂ (0, 1)
and the algorithmic quantity tj > 0 representing the jth constraint violation target. It
should be noted that, for sufficiently small µ > 0, many approximate solutions to (8)
and (12) satisfy (16), but for our purposes (see Theorem 2.2) it is sufficient that, for
sufficiently small µ > 0, they are at least satisfied by rk = rk and sk = sk. A complete
description of the motivations underlying conditions (16) can be found in [15, Section 3].
In short, (16a) and (16b) are Cauchy decrease conditions while (16c) ensures that the
trial step predicts progress toward constraint satisfaction, or at least predicts that any
increase in constraint violation is limited (when the right-hand side is negative).

With the search direction sk in hand, the method proceeds to perform a backtracking
line search along the strict descent direction sk for L(·, yk, µk) at xk. Specifically, for a
given γα ∈ (0, 1), the method computes the smallest integer l ≥ 0 such that

L(xk + γlαsk, yk, µk) ≤ L(xk, yk, µk)− ηsγlα∆q̃(sk;xk, yk, µk), (17)

and then sets αk ← γlα and xk+1 ← xk + αksk. The remainder of the iteration is then
composed of potential modifications of the Lagrange multiplier vector and target values
for the accuracies in minimizing the constraint violation measure and AL function subject
to the bound constraints. First, the method checks whether the constraint violation at
the next primal iterate xk+1 is sufficiently small compared to the target tj > 0. If this
requirement is met, then a multiplier vector ŷk+1 that satisfies

‖FL(xk+1, ŷk+1)‖2 ≤ min {‖FL(xk+1, yk)‖2, ‖FL(xk+1, π(xk+1, yk, µk))‖2} (18)

is computed. Two obvious potential choices for ŷk+1 are yk and π(xk+1, yk, µk), but an-
other viable candidate would be an approximate least-squares multiplier estimate (which
may be computed via a linearly constrained optimization subproblem). The method then
checks if either ‖FL(xk+1, ŷk+1)‖2 or ‖FAL(xk+1, yk, µk)‖2 is sufficiently small with respect

7



Algorithm 3 Adaptive Augmented Lagrangian Line Search Algorithm

1: Choose {γ, γµ, γα, γt, γT , κ1, κ2, κ3, εr, κt, ηs, ηvs} ⊂ (0, 1) and {δ, ε, Y } ⊂ (0,∞) such
that ηvs ≥ ηs.

2: Choose initial primal-dual pair (x0, y0) and initialize {µ0, δ0, t0, t1, T1, Y1} ⊂ (0,∞)
such that Y1 ≥ Y and ‖y0‖2 ≤ Y1.

3: Set k ← 0, k0 ← 0, and j ← 1.
4: loop
5: if FOPT(xk, yk) = 0, then
6: return the first-order stationary solution (xk, yk).
7: end if
8: if ‖ck‖2 > 0 and FFEAS(xk) = 0, then
9: return the infeasible stationary point xk.

10: end if
11: while FAL(xk, yk, µk) = 0, do
12: Set µk ← γµµk.
13: end while
14: Define θk by (9).
15: Use Algorithm 1 to compute (βk, rk, εk,Γk) = Cauchy feasibility(xk, θk).
16: Define Θk by (13).
17: Use Algorithm 2 to compute (αk, sk) = Cauchy AL(xk, yk, µk,Θk, εk).
18: Compute approximate solutions rk to (8) and sk to (12) that satisfy (16a)–(16b).
19: while (16c) is not satisfied or FAL(xk, yk, µk) = 0, do
20: Set µk ← γµµk and define Θk by (13).
21: Use Algorithm 2 to compute (αk, sk) = Cauchy AL(xk, yk, µk,Θk, εk).
22: Compute an approximate solution sk to (12) satisfying (16a).
23: end while
24: Set αk ← γlα where l ≥ 0 is the smallest integer satisfying (17).
25: Set xk+1 ← xk + αksk.
26: if ‖ck+1‖2 ≤ tj , then
27: Compute any ŷk+1 satisfying (18).
28: if min{‖FL(xk+1, ŷk+1)‖2, ‖FAL(xk+1, yk, µk)‖2} ≤ Tj , then
29: Set kj ← k + 1 and Yj+1 ← max{Y, t−εj−1}.
30: Set tj+1 ← min{γttj , t1+ε

j } and Tj+1 ← γTTj .

31: Set yk+1 from (19) where αy satisfies (20).
32: Set j ← j + 1.
33: else
34: Set yk+1 ← yk.
35: end if
36: else
37: Set yk+1 ← yk.
38: end if
39: Set µk+1 ← µk.
40: Set k ← k + 1.
41: end loop

to the target value Tj > 0. If so, then new target values tj+1 < tj and Tj+1 < Tj are set,
Yj+1 ≥ Yj is chosen, and a new Lagrange multiplier vector is set as

yk+1 ← (1− αy)yk + αyŷk+1, (19)
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where αy is the largest value in [0, 1] such that

‖(1− αy)yk + αyŷk+1‖2 ≤ Yj+1. (20)

This updating procedure is well-defined since the choice αy ← 0 results in yk+1 ← yk, for
which (20) is satisfied since ‖yk‖2 ≤ Yj ≤ Yj+1. If either line 26 or line 28 in Algorithm 3
tests false, then the method simply sets yk+1 ← yk. We note that unlike more traditional
augmented Lagrangian approaches [2, 11], the penalty parameter is not adjusted on the
basis of a test like that on line 26, but instead relies on our steering procedure. Moreover,
in our approach we decrease the target values at a linear rate for simplicity, but more
sophisticated approaches may be used [11].

2.3 Well-posedness and global convergence

In this section, we state two vital results, namely that Algorithm 3 is well posed, and that
limit points of the iterate sequence have desirable properties. Proofs of these results,
which are similar to those in [15], are given in Appendices A and B. In order to show
well-posedness of the algorithm, we make the following formal assumption.

Assumption 2.1 At each given xk, the objective function f and constraint function c
are both twice-continuously differentiable.

Under this assumption, we have the following theorem.

Theorem 2.2 Suppose that Assumption 2.1 holds. Then the kth iteration of Algorithm 3
is well posed. That is, either the algorithm will terminate in line 6 or 9, or it will compute
µk > 0 such that FAL(xk, yk, µk) 6= 0 and for the steps sk = sk and rk = rk the conditions
in (16) will be satisfied, in which case (xk+1, yk+1, µk+1) will be computed.

According to Theorem 2.2, we have that Algorithm 3 will either terminate finitely or
produce an infinite sequence of iterates. If it terminates finitely—which can only occur if
line 6 or 9 is executed—then the algorithm has computed a first-order stationary solution
or an infeasible stationary point and there is nothing else to prove about the algorithm’s
performance in such cases. Therefore, it remains to focus on the global convergence prop-
erties of Algorithm 3 under the assumption that the sequence {(xk, yk, µk)} is infinite.
For such cases, we make the following additional assumption.

Assumption 2.3 The primal sequences {xk} and {xk + sk} are contained in a convex
compact set over which the objective function f and constraint function c are both twice-
continuously differentiable.

Our main global convergence result for Algorithm 3 is as follows.

Theorem 2.4 Suppose that Assumptions 2.2 and 2.3 hold. Then one of the following
must hold:

(i) every limit point x∗ of {xk} is an infeasible stationary point;
(ii) µk 9 0 and there exists an infinite ordered set K ⊆ N such that every limit point of
{(xk, ŷk)}k∈K is first-order stationary for (1); or

(iii) µk → 0, every limit point of {xk} is feasible, and if there exists a positive integer p such
that µkj−1 ≥ γpµµkj−1−1 for all sufficiently large j, then there exists an infinite ordered
set J ⊆ N such that any limit point of either {(xkj , ŷkj )}j∈J or {(xkj , ykj−1)}j∈J is
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first-order stationary for (1).

Observe that the conclusions are exactly the same as in [15, Theorem 3.14]. We also call
the readers attention to the comments following [15, Theorem 3.14], which discuss the
consequences of these results. In particular, these comments suggest how Algorithm 3 may
be modified to guarantee convergence to first-order stationary points, even in case (iii)
of the theorem. However, as mentioned in [15], we do not consider these modifications to
the algorithm to have practical benefits. This perspective is supported by the numerical
tests presented in the following section.

3. Numerical Experiments

In this section, we provide evidence that steering can have a positive effect on the per-
formance of AL algorithms. To best illustrate the influence of steering, we implemented
and tested algorithms in two pieces of software. First, in Matlab, we implemented our
adaptive AL line search algorithm, i.e., Algorithm 3, and the adaptive AL trust region
method given as [15, Algorithm 4]. Since these methods were implemented from scratch,
we had control over every aspect of the code, which allowed us to implement all features
described in this paper and in [15]. Second, we implemented a simple modification of the
AL trust region algorithm in the Lancelot software package [12]. Our only modifica-
tion to Lancelot was to incorporate a basic form of steering; i.e., we did not change
other aspects of Lancelot, such as the mechanisms for triggering a multiplier update.
In this manner, we were also able to isolate the effect that steering had on numerical
performance, though it should be noted that there were differences between Algorithm 3
and our implemented algorithm in Lancelot in terms of, e.g., the multiplier updates.

While we provide an extensive amount of information about the results of our experi-
ments in this section, further information can be found in Appendix C.

3.1 Matlab implementation

3.1.1 Implementation details

Our Matlab software was comprised of six algorithm variants. The algorithms were
implemented as part of the same package so that most of the algorithmic components
were exactly the same; the primary differences related to the step acceptance mecha-
nisms and the manner in which the Lagrange multiplier estimates and penalty param-
eter were updated. First, for comparison against algorithms that utilized our steering
mechanism, we implemented line search and trust region variants of a basic augmented
Lagrangian method, given as [15, Algorithm 1]. We refer to these algorithms as BAL-LS

(basic augmented Lagrangian, line search) and BAL-TR (trust region), respectively. These
algorithms clearly differed in that one used a line search and the other used a trust region
strategy for step acceptance, but the other difference was that, like Algorithm 3 in this
paper, BAL-LS employed a convexified model of the AL function. (We discuss more details
about the use of this convexified model below.) The other algorithms implemented in
our software included two variants of Algorithm 3 and two variants of [15, Algorithm 4].
The first variants of each, which we refer to as AAL-LS and AAL-TR (adaptive, as opposed
to basic), were straightforward implementations of these algorithms, whereas the latter
variants, which we refer to as AAL-LS-safe and AAL-TR-safe, included an implementa-
tion of a safeguarding procedure for the steering mechanism. The safeguarding procedure
will be described in detail shortly.

The main per-iteration computational expense for each algorithm variant can be at-
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tributed to the search direction computations. For computing a search direction via an
approximate solve of (12) or [15, Prob. (3.8)], all algorithms essentially used the same
procedure. For simplicity, all algorithms considered variants of these subproblems in
which the `2-norm trust region was replaced by an `∞-norm trust region so that the sub-
problems were bound-constrained. (The same modification was used in the Cauchy step
calculations.) Then, starting with the Cauchy step as the initial solution estimate and
defining the initial working set by the bounds identified as active by the Cauchy step, a
projected conjugate gradient (PCG) method was used to compute an improved solution.
During the PCG routine, if a new trial solution violated a bound constraint that was not
already part of the working set, then this bound was added to the working set and the
PCG routine was reinitialized. By contrast, if the reduced subproblem (corresponding to
the current working set) was solved sufficiently accurately, then a check for termination
was performed. In particular, multiplier estimates were computed for the working set el-
ements. If these multiplier estimates were all nonnegative (or at least larger than a small
negative number), then the subproblem was deemed to be solved and the routine termi-
nated. Otherwise, an element corresponding to the most negative multiplier estimate was
removed from the working set and the PCG routine was reinitialized. We do not claim
that the precise manner in which we implemented this approach guaranteed convergence
to an exact solution of the subproblem. However, the approach just described was based
on well-established methods for solving bound-constrained quadratic optimization prob-
lems (QPs), and we found that it worked very well in our experiments. It should be
noted that if, at any time, negative curvature was encountered in the PCG routine, then
the solver terminated with the current PCG iterate. In this manner, the solutions were
generally less accurate when negative curvature was encountered, but we claim that this
did not have too adverse an effect on the performance of any of the algorithms.

A few additional comments are necessary to describe our search direction computation
procedures. First, it should be noted that for the line search algorithms, the Cauchy
step calculation in Algorithm 2 was performed with (15) as stated (i.e., with q̃), but
the above PCG routine to compute the search direction was applied to (12) without
the convexification for the quadratic term. However, we claim that this choice remains
consistent with the stated algorithms since, for all algorithm variants, we performed a
sanity check after the computation of the search direction. In particular, the reduction
in the model of the AL function yielded by the search direction was compared against
that yielded by the corresponding Cauchy step. If the Cauchy step actually provided a
better reduction in the model, then the computed search direction was replaced by the
Cauchy step. In this sanity check for the line search algorithms, we computed the model
reductions with the convexification of the quadratic term (i.e., with q̃), which implies that,
overall, our implemented algorithm guaranteed Cauchy decrease in the appropriate model
for all algorithms. Second, we remark that for the algorithms that employed a steering
mechanism, we did not employ the same procedure to approximately solve (8) or [15,
Prob. (3.4)]. Instead, we simply used the Cauchy steps as approximate solutions of these
subproblems. Finally, we note that in the steering mechanism, we checked condition (16c)
with the Cauchy steps for each subproblem, despite the fact that the search direction was
computed as a more accurate solution of (12) or [15, Prob. (3.8)]. This had the effect that
the algorithms were able to modify the penalty parameter via the steering mechanism
prior to computing the search direction; only Cauchy steps for the subproblems were
needed for steering.

Most of the other algorithmic components were implemented similarly to the algorithm
in [15]. As an example, for the computation of the estimates {ŷk+1} (which are required
to satisfy (18)), we checked whether ‖FL(xk+1, π(xk+1, yk, µk))‖2 ≤ ‖FL(xk+1, yk)‖2; if
so, then we set ŷk+1 ← π(xk+1, yk, µk), and otherwise we set ŷk+1 ← yk. Furthermore,
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for prescribed tolerances {κopt, κfeas, µmin} ⊂ (0,∞), we terminated an algorithm with a
declaration that a stationary point was found if

‖FL(xk, yk)‖∞ ≤ κopt and ‖ck‖∞ ≤ κfeas, (21)

and terminated with a declaration that an infeasible stationary point was found if

‖FFEAS(xk)‖∞ ≤ κopt, ‖ck‖∞ > κfeas, and µk ≤ µmin. (22)

As in [15], this latter set of conditions shows that we did not declare that an infeasible
stationary point was found unless the penalty parameter had already been reduced below
a prescribed tolerance. This helps in avoiding premature termination when the algorithm
could otherwise continue and potentially find a point satisfying (21), which was always
the preferred outcome. Each algorithm terminated with a message of failure if neither (21)
nor (22) was satisfied within kmax iterations. It should also be noted that the problems
were pre-scaled so that the `∞-norms of the gradients of the problem functions at the
initial point would be less than or equal to a prescribed constant G > 0. The values
for all of these parameters, as well as other input parameter required in the code, are
summarized in Table 1. (Values for parameters related to updating the trust region radii
required by [15, Algorithm 4] were set as in [15].)

Table 1. Input parameter values used in our Matlab software.

Parameter Value Parameter Value Parameter Value Parameter Value

γ 0.5 κ2 1 ηvs 0.9 µmin 10−8

γµ 0.1 κ3 10−4 ε 0.5 kmax 104

γt 0.1 εr 10−4 µ0 1 G 102

γT 0.1 κt 0.9 κopt 10−5

κ1 1 ηs 10−4 κfeas 10−5

We close this subsection with a discussion of some additional differences between the
algorithms as stated in this paper and in [15] and those implemented in our software. We
claim that none of these differences represents a significant departure from the stated
algorithms; we merely made some adjustments to simplify the implementation and to
incorporate features that we found to work well in our experiments. First, while all algo-
rithms use the input parameter γµ given in Table 1 for decreasing the penalty parameter,
we decrease the penalty parameter less significantly in the steering mechanism. In par-
ticular, in line 20 of Algorithm 3 and line 20 of [15, Algorithm 4], we replace γµ with 0.7.
Second, in the line search algorithms, rather than set the trust region radii as in (9) and
(13) where δ appears as a constant value, we defined a dynamic sequence, call it {δk},
that depended on the step-size sequence {αk}. In this manner, δk replaced δ in (9) and
(13) for all k. We initialized δ0 ← 1. Then, for all k, if αk = 1, then we set δk+1 ← 5

3δk,

and if αk < 1, then we set δk+1 ← 1
2δk. Third, to simplify our implementation, we effec-

tively ignored the imposed bounds on the multiplier estimates by setting Y ← ∞ and
Y1 ←∞. This choice implies that we always chose αy ← 1 in (19). Fourth, we initialized
the target values as

t1 ← max{102,min{104, ‖ck‖∞}} (23)

and T1 ← max{100,min{102, ‖FL(xk, yk)‖∞}}. (24)
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Finally, in AAL-LS-safe and AAL-TR-safe, we safeguard the steering procedure by shut-
ting it off whenever the penalty parameter was smaller than a prescribed tolerance.
Specifically, we considered the while condition in line 19 of Algorithm 3 and line 19 of
[15, Algorithm 4] to be satisfied whenever µk ≤ 10−4.

3.1.2 Results on CUTEst test problems

We tested our Matlab algorithms on the subset of problems from the CUTEst [24]
collection that have at least one general constraint and at most 1000 variables and 1000
constraints. This set contains 383 test problems. However, the results that we present in
this section are only for those problems for which at least one of our six solvers obtained
a successful result, i.e., where (21) or (22) was satisfied. This led to a set of 323 problems
that are represented in the numerical results in this section.

To illustrate the performance of our Matlab software, we use performance profiles as
introduced by Dolan and Moré [17] to provide a visual comparison of different measures
of performance. Consider a performance profile that measures performance in terms of
required iterations until termination. For such a profile, if the graph associated with an
algorithm passes through the point (α, 0.β), then, on β% of the problems, the number
of iterations required by the algorithm was less than 2α times the number of iterations
required by the algorithm that required the fewest number of iterations. At the extremes
of the graph, an algorithm with a higher value on the vertical axis may be considered a
more efficient algorithm, whereas an algorithm on top at the far right of the graph may be
considered more reliable. Since, for most problems, comparing values in the performance
profiles for large values of α is not enlightening, we truncated the horizontal axis at 16
and simply remark on the numbers of failures for each algorithm.

Figures 1 and 2 show the results for the three line search variants, namely BAL-LS,
AAL-LS, and AAL-LS-safe. The numbers of failures for these algorithms were 25, 3, and
16, respectively. The same conclusion may be drawn from both profiles: the steering
variants (with and without safeguarding) were both more efficient and more reliable
than the basic algorithm, where efficiency is measured by either the number of iterations
(Figure 1) or the number of function evaluations (Figure 2) required. We display the
profile for the number of function evaluations required since, for a line search algorithm,
this value is always at least as large as the number of iterations, and will be strictly greater
whenever backtracking is required to satisfy (17) (yielding αk < 1). From these profiles,
one may observe that unrestricted steering (in AAL-LS) yielded superior performance
to restricted steering (in AAL-LS-safe) in terms of both efficiency and reliability; this
suggests that safeguarding the steering mechanism may diminish its potential benefits.
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Figure 1. Performance profile for iterations: line
search algorithms on the CUTEst set.
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Figure 2. Performance profile for function evalua-
tions: line search algorithms on the CUTEst set.

Figures 3 and 4 show the results for the three trust region variants, namely BAL-TR,

13



AAL-TR, and AAL-TR-safe, the numbers of failures for which were 30, 12, and 20, re-
spectively. Again, as for the line search algorithms, the same conclusion may be drawn
from both profiles: the steering variants (with and without safeguarding) are both more
efficient and more reliable than the basic algorithm, where now we measure efficiency by
either the number of iterations (Figure 3) or the number of gradient evaluations (Fig-
ure 4) required before termination. We observe the number of gradient evaluations here
(as opposed to the number of function evaluations) since, for a trust region algorithm, this
value is never larger than the number of iterations, and will be strictly smaller whenever
a step is rejected and the trust-region radius is decreased because of insufficient decrease
in the AL function. These profiles also support the other observation that was made by
the results for our line search algorithms, i.e., that unrestricted steering may be superior
to restricted steering in terms of efficiency and reliability.
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Figure 3. Performance profile for iterations: trust

region algorithms on the CUTEst set.
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Figure 4. Performance profile for gradient evalua-

tions: trust region algorithms on the CUTEst set.

The performance profiles in Figures 1–4 suggest that steering has practical benefits,
and that safeguarding the procedure may limit its potential benefits. However, to be
more confident in these claims, one should observe the final penalty parameter values
typically produced by the algorithms. These observations are important since one may
be concerned whether the algorithms that employ steering yield final penalty parameter
values that are often significantly smaller than those yielded by basic AL algorithms. To
investigate this possibility in our experiments, we collected the final penalty parameter
values produced by all six algorithms; the results are in Table 2. The column titled µfinal

gives a range for the final value of the penalty parameter. (For example, the value 27
in the BAL-LS column indicates that the final penalty parameter value computed by our
basic line search AL algorithm fell in the range [10−2, 10−1) for 27 of the problems.)

Table 2. Numbers of CUTEst problems for which the final penalty parameter values were in the given ranges.

µfinal BAL-LS AAL-LS AAL-LS-safe BAL-TR AAL-TR AAL-TR-safe

1 139 87 87 156 90 90

[10−1, 1) 43 33 33 35 46 46

[10−2, 10−1) 27 37 37 28 29 29

[10−3, 10−2) 17 42 42 19 49 49

[10−4, 10−3) 22 36 36 18 29 29

[10−5, 10−4) 19 28 42 19 25 39

[10−6, 10−5) 15 19 11 9 11 9

(0, 10−6) 46 46 40 44 49 37

We remark on two observations about the data in Table 2. First, as may be expected,
the algorithms that employ steering typically reduce the penalty parameter below its ini-
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tial value on some problems on which the other algorithms do not reduce it at all. This, in
itself, is not a major concern, since a reasonable reduction in the penalty parameter may
cause an algorithm to locate a stationary point more quickly. Second, we remark that the
number of problems for which the final penalty parameter was very small (say, less than
10−4) was similar for all algorithms, even those that employed steering. This suggests
that while steering was able to aid in guiding the algorithms toward constraint satisfac-
tion, the algorithms did not reduce the value to such a small value that feasibility became
the only priority. Overall, our conclusion from Table 2 is that steering typically decreases
the penalty parameter more than does a traditonal updating scheme, but one should not
expect that the final penalty parameter value will be reduced unnecessarily small due
to steering; rather, steering can have the intended benefit of improving efficiency and
reliability by guiding a method toward constraint satisfaction more quickly.

3.1.3 Results on COPS test problems

We also tested our Matlab software on the large-scale constrained problems available
in the COPS [5] collection. This test set was designed to provide difficult test cases
for nonlinear optimization software; the problems include examples from fluid dynamics,
population dynamics, optimal design, mesh smoothing, and optimal control. For our
purposes, we solved the smallest versions of the AMPL models [1, 19] provided in the
collection. All of our solvers failed to solve the problems named chain, dirichlet, henon,
lane emden, and robot1, so these problems were excluded. The remaining set consisted of
the following 17 problems: bearing, camshape, catmix, channel, elec, gasoil, glider, marine,
methanol, minsurf, pinene, polygon, rocket, steering, tetra, torsion, and triangle. Since the
size of this test set is relatively small, we have decided to display pair-wise comparisons
of algorithms in the manner suggested in [30]. That is, for a performance measure of
interest (e.g., number of iterations required until termination), we compare solvers, call
them A and B, on problem j with the logarithmic outperforming factor

rjAB := − log2(mj
A/m

j
B), where

{
mj
A is the measure for A on problem j

mj
B is the measure for B on problem j.

(25)

Therefore, if the measure of interest is iterations required, then rjAB = p would indicate
that solver A required 2−p the iterations required by solver B. For all plots, we focus our
attention on the range p ∈ [−2, 2].

The results of our experiments are given in Figures 5–8. For the same reasons as
discussed in §3.1.2, we display results for iterations and function evaluations for the
line search algorithms, and display results for iterations and gradient evaluations for the
trust region algorithms. In addition, here we ignore the results for AAL-LS-safe and
AAL-TR-safe since, as in the results in §3.1.2, we did not see benefits in safeguarding the
steering mechanism. In each figure, a positive (negative) bar indicates that the algorithm
whose name appears above (below) the horizontal axis yielded a better value for the
measure on a particular problem. The results are displayed according to the order of
the problems listed in the previous paragraph. In Figures 5 and 6 for the line search
algorithms, the red bars for problems catmix and polygon indicate that AAL-LS failed on
the former and BAL-LS failed on the latter; similarly, in Figures 7 and 8 for the trust
region algorithms, the red bar for catmix indicates that AAL-TR failed on it.

The results in Figures 5 and 6 indicate that AAL-LS more often outperforms BAL-LS in
terms of iterations and functions evaluations, though the advantage is not overwhelming.
On the other hand, it is clear from Figures 7 and 8 that, despite the one failure, AAL-TR is
generally superior to BAL-TR. We conclude from these results that steering was beneficial
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on this test set, especially in terms of the trust region methods.
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Figure 5. Outperforming factors for iterations: line

search algorithms on the COPS set.
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Figure 6. Outperforming factors for function eval-

uations: line search algorithms on the COPS set.
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Figure 7. Outperforming factors for iterations:

trust region algorithms on the COPS set.
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Figure 8. Outperforming factors for gradient eval-

uations: trust region algorithms on the COPS set.

3.1.4 Results on optimal power flow (OPF) test problems

As a third and final set of experiments for our Matlab software, we tested our algo-
rithms on a collection of optimal power flow (OPF) problems modeled in AMPL using
data sets obtained from MATPOWER [37]. OPF problems represent a challenging set
of nonconvex problems. The active and reactive power flow and the network balance
equations give rise to equality constraints involving nonconvex functions while the in-
equality constraints are linear and result from placing operating limits on quantities such
as flows, voltages, and various control variables. The control variables include the volt-
ages at generator buses and the active-power output of the generating units. The state
variables consist of the voltage magnitudes and angles at each node as well as reactive
and active flows in each link. Our test set was comprised of 28 problems modeled on sys-
tems having 14 to 662 nodes from the IEEE test set. In particular, there are seven IEEE
systems, each modeled in four different ways: (i) in Cartesian coordinates; (ii) in polar
coordinates; (iii) with basic approximations to the sin and cos functions in the problem
functions; and (iv) with linearized constraints based on DC power flow equations (in
place of AC power flow). It should be noted that while linearizing the constraints in
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formulation (iv) led to a set of linear optimization problems, we still find it interesting
to investigate the possible effect that steering may have in this context. All of the test
problems were solved by all of our algorithm variants.

We provide outperforming factors in the same manner as in §3.1.3. Figures 9 and 10
reveal that AAL-LS typically outperforms BAL-LS in terms of both iterations and function
evaluations, and Figures 11 and 12 reveal that AAL-TR more often than not outperforms
BAL-TR in terms of iterations and gradient evaluations. Interestingly, these results suggest
more benefits for steering in the line search algorithm than in the trust region algorithm,
which is the opposite of that suggested by the results in §3.1.3. However, in any case, we
believe that we have presented convincing numerical evidence that steering often has an
overall beneficial effect on the performance of our Matlab solvers.
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Figure 9. Outperforming factors for iterations: line
search algorithms on OPF tests.
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Figure 10. Outperforming factors for function
evaluations: line search algorithms on OPF tests.
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Figure 11. Outperforming factors for iterations:
trust region algorithms on OPF tests.
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Figure 12. Outperforming factors for gradient
evaluations: trust region algorithms on OPF tests.

3.2 An implementation of Lancelot that uses steering

3.2.1 Implementation details

The results for our Matlab software in the previous section illustrate that our adaptive
line search AL algorithm and the adaptive trust region AL algorithm from [15] are often
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more efficient and reliable than basic AL algorithms that employ traditional penalty pa-
rameter and Lagrange multiplier updates. Recall, however, that our adaptive methods are
different from their basic counterparts in two key ways. First, the steering conditions (16)
are used to dynamically decrease the penalty parameter during the optimization process
for the AL function. Second, our mechanisms for updating the Lagrange multiplier es-
timate are different than the basic algorithm outlined in [15, Algorithm 1] since they
use optimality measures for both the Lagrangian and the AL functions (see line 28 of
Algorithm 3) rather than only that for the AL function. We believe this strategy is more
adaptive since it allows for updates to the Lagrange multipliers when the primal estimate
is still far from a first-order stationary point for the AL function subject to the bounds.

In this section, we isolate the effect of the first of these differences by incorporating
a steering strategy in the Lancelot [12, 13] package that is available in the Galahad
library [23]. Specifically, we made three principle enhancements in Lancelot. First,
along the lines of the model q in [15] and the convexified model q̃ defined in this paper,
we defined the model q̂ : Rn → R of the AL function given by

q̂(s;x, y, µ) = sT∇x`
(
x, y + c(x)/µ

)
+ 1

2s
T
(
∇xx`(x, y) + J(x)TJ(x)/µ

)
s

as an alternative to the Newton model qN : Rn → R, originally used in Lancelot,

qN(s;x, y, µ) = sT∇x`(x, y + c(x)/µ) + 1
2s
T (∇xx`(x, y + c(x)/µ) + J(x)TJ(x)/µ)s.

As in our adaptive algorithms, the purpose of employing such a model was to ensure that
q̂ → qv (pointwise) as µ → 0, which was required to ensure that our steering procedure
was well-defined; see (A1a). Second, we added routines to compute generalized Cauchy
points [9] for both the constraint violation measure model qv and q̂ during the loop in
which µ was decreased until the steering test (16c) was satisfied; recall the while loop
starting on line 19 of Algorithm 3. Third, we used the value for µ determined in the steer-
ing procedure to compute a generalized Cauchy point for the Newton model qN, which
was the model employed to compute the search direction. For each of the models just
discussed, the generalized Cauchy point was computed using either an efficient sequential
search along the piece-wise Cauchy arc [10] or via a backtracking Armijo search along
the same arc [31]. We remark that this third enhancement would not have been needed
if the model q̂ were used to compute the search directions. However, in our experiments,
it was revealed that using the Newton model typically led to better performance, so the
results in this section were obtained using this third enhancement. In our implementa-
tion, the user was allowed to control which model was used via control parameters. We
also added control parameters that allowed the user to restrict the number of times that
the penalty parameter may be reduced in the steering procedure in a given iteration, and
that disabled steering once the penalty parameter was reduced below a given tolerance
(as in the safeguarding procedure implemented in our Matlab software).

The new package was tested with three different control parameter settings. We refer
to algorithm with the first setting, which did not allow any steering to occur, simply
as lancelot. The second setting allowed steering to be used initially, but turned it off
whenever µ ≤ 10−4 (as in our safeguarded Matlab algorithms). We refer to this variant
as lancelot-steering-safe. The third setting allowed for steering to be used without
any safeguards or restrictions; we refer to this variant as lancelot-steering. As in
our Matlab software, the penalty parameter was decreased by a factor of 0.7 until the
steering test (16c) was satisfied. All other control parameters were set to their default
lancelot values. The new package will be re-branded as Lancelot in the next official
release, Galahad 2.6.
Galahad was compiled with gfortran-4.7 with optimization -O and using Intel MKL
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BLAS. The code was executed on a single core of an Intel Xeon E5620 (2.4GHz) CPU
with 23.5 GiB of RAM.

3.2.2 Results on CUTEst test problems

We tested lancelot, lancelot-steering, and lancelot-steering-safe on the subset
of CUTEst problems that have at least one general constraint and at most 10,000
variables and 10,000 constraints. This amounted to 457 test problems. The results are
displayed as performance profiles in Figures 13 and 14, which were created from the 364
of these problems that were solved by at least one of the algorithms. As in the previous
sections, since the algorithms are trust region methods, we use the number of iterations
and gradient evaluations required as the performance measures of interest.

We can make two important observations from these profiles. First, it is clear
that lancelot-steering and lancelot-steering-safe yielded similar performance
in terms of iterations and gradient evaluations, which suggests that safeguarding the
steering mechanism is not necessary in practice. Second, lancelot-steering and
lancelot-steering-safe were both more efficient and reliable than lancelot on these
tests, thus showing the positive influence that steering can have on performance.
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Figure 13. Performance profile for iterations:
Lancelot algorithms on the CUTEst set.
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Figure 14. Performance profile for gradient evalu-
ations: Lancelot algorithms on the CUTEst set.

As in §3.1.2, it is important to observe the final penalty parameter values yielded
by lancelot-steering and lancelot-steering-safe as opposed to those yielded by
lancelot. For these experiments, we collected this information; see Table 3.

Table 3. Numbers of CUTEst problems for which the final penalty parameter values were in the given ranges.

µfinal lancelot lancelot-steering lancelot-steering-safe

1 14 1 1

[10−1, 1) 77 1 1

[10−2, 10−1) 47 93 93

[10−3, 10−2) 27 45 45

[10−4, 10−3) 18 28 28

[10−5, 10−4) 15 22 22

[10−6, 10−5) 12 21 14

(0, 10−6) 19 18 25

We make a few remarks about the results in Table 3. First, as may have been expected,
the lancelot-steering and lancelot-steering-safe algorithms typically reduced the
penalty parameter below its initial value, even when lancelot did not reduce it at all
throughout an entire run. Second, the number of problems for which the final penalty
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parameter was less than 10−4 was 171 for lancelot and 168 for lancelot-steering.
Combining this fact with the previous observation leads us to conclude that steering
tended to reduce the penalty parameter from its initial value of 1, but, overall, it did not
decrease it much more aggressively than lancelot. Third, it is interesting to compare the
final penalty parameter values for lancelot-steering and lancelot-steering-safe.
Of course, these values were equal in any run in which the final penalty parameter was
greater than or equal to 10−4, since this was the threshold value below which safeguard-
ing was activated. Interestingly, however, lancelot-steering-safe actually produced
smaller values of the penalty parameter compared to lancelot-steering when the fi-
nal penalty parameter was smaller than 10−4. We initially found this observation to be
somewhat counterintuitive, but we believe that it can be explained by observing the
penalty parameter updating strategy used by lancelot. (Recall that once safeguard-
ing was activated in lancelot-steering-safe, the updating strategy became the same
used in lancelot.) In particular, the decrease factor for the penalty parameter used
in lancelot is 0.1, whereas the decrease factor used in steering the penalty parameter
was 0.7. Thus, we believe that lancelot-steering reduced the penalty parameter more
gradually once it was reduced below 10−4 while lancelot-steering-safe could only
reduce it in the typical aggressive manner. (We remark that to (potentially) circum-
vent this inefficiency in lancelot, one could implement a different strategy in which the
penalty parameter decrease factor is increased as the penalty parameter decreases, but in
a manner that still ensures that the penalty parameter converges to zero when infinitely
many decreases occur.) Overall, our conclusion from Table 3 is that steering typically
decreases the penalty parameter more than a traditional updating scheme, but the dif-
ference is relatively small and we have implemented steering in a way that improves the
overall efficiency and reliability of the method.

4. Conclusion

In this paper, we explored the numerical performance of adaptive updates to the La-
grange multiplier vector and penalty parameter in AL methods. Specific to the penalty
parameter updating scheme is the use of steering conditions that guide the iterates toward
the feasible region and toward dual feasibility in a balanced manner. Similar conditions
were first introduced in [8] for exact penalty functions, but have been adapted in [15]
and this paper to be appropriate for AL-based methods. Specifically, since AL methods
are not exact (in that, in general, the trial steps do not satisfy linearized feasibility for
any positive value of the penalty parameter), we allowed for a relaxation of the linearized
constraints. This relaxation was based on obtaining a target level of infeasibility that is
driven to zero at a modest, but acceptable, rate. This approach is in the spirit of AL
algorithms since feasibility and linearized feasibility are only obtained in the limit. It
should be noted that, like other AL algorithms, our adaptive methods can be imple-
mented matrix-free, i.e., they only require matrix-vector products. This is of particular
importance when solving large problems that have sparse derivative matrices.

As with steering strategies designed for exact penalty functions, our steering conditions
proved to yield more efficient and reliable algorithms than a traditional updating strategy.
This conclusion was made by performing a variety of numerical tests that involved our
own Matlab implementations and a simple modification of the well-known AL software
Lancelot. To test the potential for the penalty parameter to be reduced too quickly,
we also implemented safeguarded variants of our steering algorithms. Across the board,
our results indicate that safeguarding was not necessary and would typically degrade
performance when compared to the unrestricted steering approach. We feel confident
that these tests clearly show that although our theoretical global convergence guarantee
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is weaker than some algorithms (i.e., we cannot prove that the penalty parameter will
remain bounded under a suitable constraint qualification), this should not be a concern
in practice. Finally, we suspect that the steering strategies described in this paper would
also likely improve the performance of other AL-based methods such as [4, 27].

Acknowledgments. We would like to thank Sven Leyffer and Victor Zavala from the
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test the optimal power flow problems described in §3.1.4.
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[17] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Mathe-
matical Programming 91 (2002), pp. 201–213.

[18] D. Fernández and M.V. Solodov, Local convergence of exact and inexact augmented Lagrangian
methods under the second-order sufficiency condition, SIAM Journal on Optimization 22 (2012), pp.
384–407.

[19] R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Pro-
gramming, Brooks/Cole—Thomson Learning, Pacific Grove, USA, 2003.

21

http://www.ampl.com
http://dx.doi.org/10.1007/s10107-006-0077-1
http://dx.doi.org/10.1007/s10589-011-9396-0
http://dx.doi.org/10.1080/10556780701394169
http://dx.doi.org/10.1080/10556780701394169
http://dx.doi.org/10.1007/s10107-014-0784-y
http://dx.doi.org/10.1007/s10107-014-0784-y
http://dx.doi.org/10.1007/978-0-387-98098-0


[20] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via
finite element approximations, Computers and Mathematics with Applications 2 (1976), pp. 17–40.

[21] R. Glowinski and A. Marroco, Sur l’Approximation, par Elements Finis d’Ordre Un, el la Resolu-
tion, par Penalisation-Dualité, d’une Classe de Problèmes de Dirichlet Nonlineares, Revue Française
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Appendix A. Well-posedness

Our goal in this appendix is to prove that Algorithm 3 is well-posed under Assump-
tion 2.1. Since this assumption is assumed to hold throughout the remainder of this
appendix, we do not refer to it explicitly in the statement of each lemma and proof.

A.1 Preliminary results

Our proof of the well-posedness of Algorithm 3 relies on showing that it will either
terminate finitely or will produce an infinite sequence of iterates {(xk, yk, µk)}. In order
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to show this, we first require that the while loop that begins at line 11 of Algorithm 3
terminates finitely. Since the same loop appears in the AL trust region method in [15] and
the proof of the result in the case of that algorithm is the same as that for Algorithm 3, we
need only refer to the result in [15] in order to state the following lemma for Algorithm 3.

Lemma A.1 ([15, Lemma 3.2]) If line 11 is reached, then FAL(xk, yk, µ) 6= 0 for all
sufficiently small µ > 0.

Next, since the Cauchy steps employed in Algorithm 3 are similar to those employed in
the method in [15], we may state the following lemma showing that Algorithms 1 and 2
are well defined when called in lines 15, 17, and 21 of Algorithm 3. It should be noted
that a slight difference between Algorithm 2 and the similar procedure in [15] is the use
of the convexified model q̃ in (15). However, we claim that this difference does not affect
the veracity of the result.

Lemma A.2 ([15, Lemma 3.3]) The following hold true:

(i) The computation of (βk, rk, εk,Γk) in line 15 is well defined and yields Γk ∈ (1, 2] and
εk ∈ [0, εr).

(ii) The computation of (αk, sk) in lines 17 and 21 is well defined.

The next result, similar to [15, Lemma 3.4], highlights critical relationships between
qv and q̃ as µ → 0. Indeed, much of the proof follows exactly the same logic as [15,
Lemma 3.4], but we provide a complete proof to account for our present use of the con-
vexified model q̃ and the differences in the trust region radii for the subproblems employed
in the algorithms. This result is crucial for showing that the steering condition (16c) is
satisfied for all sufficient small µ (see Lemma A.5).

Lemma A.3 Let (βk, rk, εk,Γk) ← Cauchy feasibility(xk, θk) with θk defined by (9)
and, as quantities dependent on the penalty parameter µ > 0, let (αk(µ), sk(µ)) ←
Cauchy AL(xk, yk, µ,Θk(µ), εk) with Θk(µ) := Γkδ‖FAL(xk, yk, µ)‖2 (see (13)). Then,
the following hold true:

lim
µ→0

(
max
‖s‖2≤2θk

|q̃(s;xk, yk, µ)− qv(s;xk)|
)

= 0, (A1a)

lim
µ→0
∇xL(xk, yk, µ) = JTk ck, (A1b)

lim
µ→0

sk(µ) = rk, (A1c)

and lim
µ→0

∆qv(sk(µ);xk) = ∆qv(rk;xk). (A1d)

Proof. Since xk and yk are fixed during iteration k, for ease of exposition we often
drop these quantities from function dependencies for the purposes of this proof. From
the definitions of qv and q̃, it follows that for some constants M1 > 0 and M2 > 0
independent of µ we have

max
‖s‖2≤2θk

|q̃(s;µ)− qv(s)| = max
‖s‖2≤2θk

|µ`k + µ∇x`Tks+ max{µ2 s
T∇xx`ks,−1

2‖Jks‖
2
2}|

≤ µM1 + max{µM2,−1
2‖Jks‖

2
2}.
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Since the right-hand side of this expression vanishes as µ→ 0, we have (A1a). Further,

∇xL(xk, yk, µ)− JTk ck = µ(gk − JTk yk),

which implies that (A1b) holds.
We now show that (A1c) holds. Our proof considers two cases depending on the value

FFEAS(xk). Throughout consideration of these cases, it should be observed that all quan-
tities in Algorithm 1 are unaffected by µ, so they can be considered as fixed quantities.

Case 1: If FFEAS(xk) = 0, then θk = δ‖FFEAS(xk)‖2 = 0, from which it follows that rk = 0
and ∆qv(rk) = 0. Furthermore, from (A1b), we have Θk(µ) → 0 as µ → 0, which
means sk(µ)→ 0 = rk, as desired.

Case 2: Now suppose that FFEAS(xk) 6= 0. In the following arguments, we define the following
functions of a nonnegative integer l and positive scalar µ:

rk(l) = P (xk − γlJTk ck)− xk and sk(l, µ) = P (xk − γl∇xL(µ))− xk.

We also define lβ ≥ 0 to be the integer such that βk = γlβ (see Algorithm 1), which
implies that

rk = rk(lβ). (A2)

We have as a consequence of (A1b) that

lim
µ→0

sk(l, µ) = rk(l) for any l ≥ 0.

In particular, this implies with (A2) that

lim
µ→0

sk(lβ, µ) = rk(lβ) = rk. (A3)

Thus, (A1c) follows as long as

sk(µ) = sk(lβ, µ) for all sufficiently small µ > 0. (A4)

Since the computation of sk(µ) (via the Cauchy AL routine stated as Algorithm 2)
computes a nonnegative integer lα,µ such that

sk(µ) = P (xk − γlα,µ∇xL(µ))− xk,

it follows that (A4) can be proved by showing that lα,µ = lβ for all sufficiently small
µ > 0. As a preliminary result in the proof of this fact, we first show that for lk
computed in Algorithm 1 we have

min{lβ, lα,µ} ≥ lk for all sufficiently small µ > 0. (A5)

Indeed, if lk = 0, then (A5) holds trivially. Thus, let us suppose that lk > 0. According
to the procedures in Algorithm 1, it is clear that lβ ≥ lk. Hence, we may turn our
attention to lα,µ. From the definition of Θk(µ) (in the statement of this lemma),
(A1b), the manner in which Γk is set in Algorithm 1, the fact that θk > 0, and since
‖P (xk−γlk−1JTk ck)−xk‖2 > θk due to the manner in which lk is set in Algorithm 1,
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we have that

lim
µ→0

Θk(µ) = lim
µ→0

Γkδ‖FAL(xk, yk, µ)‖2 = Γkδ‖FFEAS(xk)‖2 = Γkθk

= min

{
2, 1

2

(
1 +
‖P (xk − γlk−1JTk ck)− xk‖2

θk

)}
θk

= min
{

2θk,
1
2

(
θk + ‖P (xk − γlk−1JTk ck)− xk‖2

)}
∈
(
θk, ‖P (xk − γlk−1JTk ck)− xk‖2

)
.

Along with (A1b), this implies that for all sufficiently small µ > 0 we have

lim
µ→0
‖P (xk − γlk−1∇xL(µ))− xk‖2 = ‖P (xk − γlk−1JTk ck)− xk‖2 > Θk(µ).

This shows that lα,µ ≥ lk holds for all sufficiently small µ > 0. Consequently, we
have (A5).

Having ensured that (A5) holds, we proceed to prove that lα,µ = lβ for all suf-
ficiently small µ > 0. It follows from the definition of lβ, (A2), the procedures of
Algorithm 1 (e.g., the manner in which εk is set), and part (i) of Lemma A.2 that

−∆qv(rk)
rTkJ

T
k ck

= −
∆qv

(
rk(lβ)

)
rk(lβ)TJTk ck

≥ εr

and −
∆qv

(
rk(l)

)
rk(l)TJ

T
k ck
≤ εk < εr for all integers lk ≤ l < lβ.

(A6)

(Here, it is important to note that [14, Theorem 12.1.4] can be invoked to ensure that
all denominators in (A6) are negative.) It follows from (A1b), (A3), (A1a), (A6), and
part (i) of Lemma A.2 that

lim
µ→0
−

∆q̃
(
sk(lβ, µ)

)
sk(lβ, µ)T∇xL(µ)

= −∆qv(rk)
rTkJ

T
k ck

≥ εr >
εk + εr

2
(A7)

and

lim
µ→0
−

∆q̃
(
sk(l, µ)

)
sk(l, µ)T∇xL(µ)

= −
∆qv

(
rk(l)

)
rk(l)TJ

T
k ck
≤ εk <

εk + εr
2

for all integers lk ≤ l < lβ.

(A8)
It now follows from (A5), (A7), (A8), and (15) that lα,µ = lβ for all sufficiently small
µ > 0. As previously mentioned, this proves (A1c).

Finally, we notice that (A1d) follows from (A1c) and continuity of the model qv. �

We also need the following lemma related to Cauchy decreases in the models qv and
q̃. The conclusions of the lemma are similar to [15, Lemma 3.5], but here we account
for the convexified model q̃ and other differences in the subproblems employed here as
opposed to those in [15].

Lemma A.4 Let Ω be any scalar value such that

Ω ≥ max{‖µk∇2
xx`(xk, yk) + JTkJk‖2, ‖JTkJk‖2}. (A9)
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Then, the following hold true:

(i) For some κ4 ∈ (0, 1), the Cauchy step for subproblem (8) yields

∆qv(rk;xk) ≥ κ4‖FFEAS(xk)‖22 min

{
δ,

1

1 + Ω

}
. (A10)

(ii) For some κ5 ∈ (0, 1), the Cauchy step for subproblem (12) yields

∆q̃(sk;xk, yk, µk) ≥ κ5‖FAL(xk, yk, µk)‖22 min

{
δ,

1

1 + Ω

}
. (A11)

Proof. Let Σk := 1 + sup{|ωk(r)| : 0 < ‖r‖2 ≤ θk}, where

ωk(r) =
−∆qv(r;xk)− rTJTk ck

‖r‖22
for all r ∈ Rn.

In fact, using (A9), the Cauchy-Schwartz inequality, and standard norm inequalities, we
have that

ωk(r) =
rTJTkJkr

2‖r‖22
≤ Ω for all r ∈ Rn.

Hence, Σk ≤ 1 + Ω. The requirement (11) and [32, Theorem 4.4] then yield, for some
κ̄4 ∈ (0, 1), that

∆qv(rk;xk) ≥ εrκ̄4‖FFEAS(xk)‖2 min

{
θk,

1

Σk
‖FFEAS(xk)‖2

}
.

which, with (9), implies that (A10) follows with κ4 := εrκ̄4.
We now show (A11) in a similar manner. Let Σ̄k := 1 + sup{|ω̄k(s)| : 0 < ‖s‖2 ≤ Θk}

where

ω̄k(s) :=
−∆q̃(s;xk, yk, µk)− sT∇xL(xk, yk, µk)

‖s‖22
for all s ∈ Rn.

Using (A9), we have in a similar manner as above that

ω̄k(s) =
max{µksT∇2

xx`(xk, yk, µk)s+ sTJTkJks, 0}
2‖s‖22

≤
‖µk∇2

xx`(xk, yk, µk) + JTkJk‖2‖s‖22
2‖s‖22

≤ Ω.

Thus, Σ̄k ≤ 1 + Ω. The requirement (15) and [32, Theorem 4.4] then yield, for some
κ̄5 ∈ (0, 1), that

∆q̃(sk;xk, yk, µk) ≥
εk + εr

2
κ̄5‖FAL(xk, yk, µk)‖2 min

{
Θk,

1

Σ̄k
‖FAL(xk, yk, µk)‖2

}
,

which, with (13) and Lemma A.2(i), implies that (A11) follows with κ5 := 1
2εrκ̄5. �
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The next lemma shows that the while loop at line 19, which is responsible for ensuring
that our adaptive steering conditions in (16) are satisfied, terminates finitely. The proof
of this is similar to the second part of [15, Theorem 3.6]

Lemma A.5 The while loop that begins at line 19 of Algorithm 3 terminates finitely.

Proof. Since Lemma A.1 ensures that the latter condition in the while loop is satisfied
for all sufficiently small µk > 0, it suffices to show that sk = sk and rk = rk satisfy (16c)
for all sufficiently small µk > 0. To see this, we may borrow notation from Lemma A.3—
i.e., to consider sk = sk as a quantity dependent on a parameter µ > 0—and observe
that (A1d) implies

lim
µ→0

∆qv(sk(µ);xk) = lim
µ→0

∆qv(sk(µ);xk) = ∆qv(rk;xk) = ∆qv(rk;xk). (A12)

If ∆qv(rk;xk) > 0, then (A12) implies that (16c) is satisfied for sufficiently small µk > 0.
Otherwise,

∆qv(rk;xk) = ∆qv(rk;xk) = 0, (A13)

which along with (A10) implies that FFEAS(xk) = 0. We may now consider two cases
depending on whether xk is feasible for (1). If ck 6= 0, then Algorithm 3 would have
terminated in line 9, meaning that the while loop at line 19 would not have been reached.
On the other hand, if ck = 0, then (A13) implies

min{κ3∆qv(rk;xk), vk − 1
2(κttj)

2} = −1
2(κttj)

2 < 0. (A14)

This last strict inequality follows since tj > 0 by construction and κt ∈ (0, 1) by choice.
Therefore, we can deduce that (16c) will be satisfied for sufficiently small µk > 0 by
observing (A12), (A13) and (A14). �

The final lemma of this section shows that sk is a strict descent direction for the AL
function. The conclusion of this lemma is the primary motivation for our use of the
convexified model q̃.

Lemma A.6 At line 24 of Algorithm 3, the search direction sk is a strict descent direction
for L(·, yk, µk) from xk. In particular,

∇xL(xk, yk, µk)
T sk ≤ −∆q̃(sk;xk, yk, µk) ≤ −κ1∆q̃(sk;xk, yk, µk) < 0. (A15)

Proof. From the definition of q̃, we find

∆q̃(sk;xk, yk, µk) = q̃(0;xk, yk, µk)− q̃(sk;xk, yk, µk)

= −∇xL(xk, yk, µk)
Tsk −max{1

2s
T
k(µk∇2

xx`(xk, yk) + JTk Jk)sk, 0}

≤ −∇xL(xk, yk, µk)
Tsk.

It follows from this inequality and (16a) that

∇xL(xk, yk, µk)
Tsk ≤ −∆q̃(sk;xk, yk, µk) ≤ −κ1∆q̃(sk;xk, yk, µk) < 0,

as desired. �
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A.2 Proof of well-posedness result

Proof of Theorem 2.2. If, during the kth iteration, Algorithm 3 terminates in line 6 or 9,
then there is nothing to prove. Thus, to proceed in the proof, we may assume that line 11
is reached. Lemma A.1 then ensures that

FAL(xk, yk, µ) 6= 0 for all sufficiently small µ > 0. (A16)

Consequently, the while loop in line 11 will terminate for a sufficiently small µk > 0.
Next, by construction, conditions (16a) and (16b) are satisfied for any µk > 0 by sk = sk
and rk = rk. Lemma A.5 then shows that for a sufficiently small µk > 0, (16c) is also
satisfied by sk = sk and rk = rk. Therefore, line 24 will be reached. Finally, Lemma A.6
ensures that αk in line 24 is well-defined. This completes the proof as all remaining lines
in the kth iteration are explicit. �

Appendix B. Global Convergence

We shall tacitly presume that Assumption 2.3 holds throughout this section, and not
state it explicitly. This assumption and the bound on the multipliers enforced in line 31
of Algorithm 3 imply that there exists a positive monotonically increasing sequence
{Ωj}j≥1 such that for all kj ≤ k < kj+1 we have

‖∇2
xxL(σ, yk, µk)‖2 ≤ Ωj for all σ on the segment [xk, xk + sk], (B1a)

‖µk∇2
xx`(xk, yk) + JTk Jk‖2 ≤ Ωj , (B1b)

and ‖JTk Jk‖2 ≤ Ωj . (B1c)

In the subsequent analysis, we make use of the subset of iterations for which line 29 of
Algorithm 3 is reached. For this purpose, we define the iteration index set

Y :=
{
kj : ‖ckj‖2 ≤ tj , min{‖FL(xkj , ŷkj )‖2, ‖FAL(xkj , ykj−1, µkj−1)‖2} ≤ Tj

}
. (B2)

B.1 Preliminary results

The following result provides critical bounds on differences in (components of) the aug-
mented Lagrangian summed over sequences of iterations. We remark that the proof in
[15] essentially relies on Assumption 2.3 and Dirichlet’s Test [16, §3.4.10].

Lemma B.1 ([15, Lemma 3.7].) The following hold true.

(i) If µk = µ for some µ > 0 and all sufficiently large k, then there exist positive constants
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Mf , Mc, and ML such that for all integers p ≥ 1 we have

p−1∑
k=0

µk(fk − fk+1) < Mf , (B3)

p−1∑
k=0

µky
T
k(ck+1 − ck) < Mc, (B4)

and

p−1∑
k=0

(L(xk, yk, µk)− L(xk+1, yk, µk)) < ML. (B5)

(ii) If µk → 0, then the sums

∞∑
k=0

µk(fk − fk+1), (B6)

∞∑
k=0

µky
T
k(ck+1 − ck), (B7)

and

∞∑
k=0

(L(xk, yk, µk)− L(xk+1, yk, µk)) (B8)

converge and are finite, and

lim
k→∞

‖ck‖2 = c̄ for some c̄ ≥ 0. (B9)

We also need the following lemma that bounds the step-size sequence {αk} below.

Lemma B.2 There exists a positive monotonically decreasing sequence {Cj}j≥1 such that,
with the sequence {kj} computed in Algorithm 3, the step-size sequence {αk} satisfies

αk ≥ Cj > 0 for all kj ≤ k < kj+1.

Proof. By Taylor’s Theorem and Lemma A.6, it follows under Assumption 2.3 that there
exists τ > 0 such that for all sufficiently small α > 0 we have

L(xk + αsk, yk, µk)− L(xk, yk, µk) ≤ −α∆q̃(sk;xk, yk, µk) + τα2‖sk‖2. (B10)

On the other hand, during the line search implicit in line 24 of Algorithm 3, a step-size
α is rejected if

L(xk + αsk, yk, µk)− L(xk, yk, µk) > −ηsα∆q̃(sk;xk, yk, µk). (B11)

Combining (B10), (B11), and (16a) we have that a rejected step-size α satisfies

α >
(1− ηs)∆q̃(sk;xk, yk, µk)

τ‖sk‖22
≥ (1− ηs)∆q̃(sk;xk, yk, µk)

τΘ2
k

.

From this bound, the fact that if the line search rejects a step-size it multiplies it by
γα ∈ (0, 1), (16a), (A11), (B1b), (13), and Γk ∈ (1, 2] (see Lemma A.2) it follows that,
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for all k ∈ [kj , kj+1),

αk ≥
γα(1− ηs)∆q̃(sk;xk, yk, µk)

τΘ2
k

≥ γα(1− ηs)κ1κ5‖FAL(xk, yk, µk)‖22
τΓ2

kδ
2‖FAL(xk, yk, µk)‖22

min

{
δ,

1

1 + Ωj

}
≥ γα(1− ηs)κ1κ5

4τδ2
min

{
δ,

1

1 + Ωj

}
=: Cj > 0,

as desired. �

We break the remainder of the analysis into two cases depending on whether there are
a finite or an infinite number of modifications of the Lagrange multiplier estimate.

B.2 A finite number of multiplier updates

In this section, we suppose that the set Y in (B2) is finite in that the counter j in
Algorithm 3 satisfies

j ∈ {1, 2, . . . j̄} for some finite j̄. (B12)

This allows us to define, and consequently use in our analysis, the quantities

t := tj̄ > 0 and T := Tj̄ > 0. (B13)

We provide two lemmas in this subsection. The first considers cases when the penalty
parameter converges to zero, and the second considers cases when the penalty parameter
remains bounded away from zero. This first case—in which the multiplier estimate is only
modified a finite number of times and the penalty parameter vanishes—may be expected
to occur when (1) is infeasible. Indeed, in this case, we show that every limit point of
the primal iterate sequence is an infeasible stationary point.

Lemma B.3 If |Y| <∞ and µk → 0, then there exist a vector y and integer k ≥ 0 such
that

yk = y for all k ≥ k, (B14)

and for some constant c̄ > 0, we have the limits

lim
k→∞

‖ck‖2 = c̄ > 0 and lim
k→∞

FFEAS(xk) = 0. (B15)

Therefore, every limit point of {xk}k≥0 is an infeasible stationary point.

Proof. It follows from (B12), (B13), and the manner in which the multiplier estimates
are updated in Algorithm 3 that there exists y and a scalar k ≥ kj̄ such that (B14) holds.
Thus, all that remains is to prove that (B15) holds for some c̄ > 0.

From (B9) and the supposition that µk → 0, it follows that ‖ck‖2 → c̄ for some c̄ ≥ 0.
If c̄ = 0, then by Assumption 2.3, (B14), and the fact that µk → 0 it follows that
limk→∞∇xL(xk, y, µk) = limk→∞ J

T
k ck = 0, which implies that limk→∞ FAL(xk, y, µk) =

limk→∞ FFEAS(xk) = 0. This would imply that for some k ≥ k the algorithm would set
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j ← j̄ + 1, thus violating (B12). Consequently, we may conclude that c̄ > 0, which
proves the first limit in (B15). Now, to reach a contradiction to the second limit in
(B15), suppose that FFEAS(xk) 9 0. This, together with Assumption 2.3, (B14), and the
supposition that µk → 0, implies that there exist a positive constant ε and an infinite
index set K such that

‖FAL(xk, yk, µk)‖2 ≥ ε for all k ∈ K. (B16)

It follows from (17), (16a), (A11), (B16), and Lemma B.2 that for all k ∈ K we have

L(xk+1, yk, µk) = L(xk + αksk, yk, µk)

≤ L(xk, yk, µk)− ηsαk∆q̃(sk;xk, yk, µk)

≤ L(xk, yk, µk)− ηsαkκ1∆q̃(sk;xk, yk, µk)

≤ L(xk, yk, µk)− ηsαkκ1κ5‖FAL(xk, yk, µk)‖22 min

{
δ,

1

1 + Ωj̄

}
≤ L(xk, yk, µk)− ηsCj̄κ1κ5ε

2 min

{
δ,

1

1 + Ωj̄

}
.

This implies that, for all k ∈ K, the reduction L(xk, yk, µk) − L(xk+1, yk, µk) is greater
than or equal to a positive constant. In the meantime, we know from Lemma A.6 and
the way we update xk at each iteration that L(xk, yk, µk) − L(xk+1, yk, µk) ≥ 0 for all
k. Therefore, we have reached a contradiction to (B8). This implies that our supposition
that FFEAS(xk) 9 0 cannot be true, so we have (B15). �

The next lemma considers the case when µ stays bounded away from zero. This is
possible, for example, if the algorithm converges to an infeasible stationary point that
is stationary for the AL function for the final Lagrange multiplier estimate and penalty
parameter computed in the algorithm.

Lemma B.4 If |Y| <∞ and µk = µ for some µ > 0 for all sufficiently large k, then with
t defined in (B13) there exist a vector y and integer k ≥ 0 such that

yk = y and ‖ck‖2 ≥ t for all k ≥ k, (B17)

and we have the limit

lim
k→∞

FFEAS(xk) = 0. (B18)

Therefore, every limit point of {xk}k≥0 is an infeasible stationary point.

Proof. Since |Y| < ∞, we know that (B12) and (B13) hold for some j̄ ≥ 0, and since
we suppose that µk = µ > 0 for all sufficiently large k, it follows by the mechanisms
for updating the Lagrange multiplier estimates in Algorithm 3 that there exists y and a
scalar k′ ≥ kj̄ such that

µk = µ and yk = y for all k ≥ k′. (B19)
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Our next goal is to prove that

lim
k→∞

‖FAL(xk, y, µ)‖2 = 0. (B20)

Indeed, to reach a contradiction, suppose that (B20) does not hold. It then follows that
there exist a positive number ζ and an infinite index set K′ with all elements greater
than or equal to k′ such that

‖FAL(xk, y, µ)‖2 ≥ ζ for all k ∈ K′. (B21)

Similar to the proof of Lemma B.3, it then follows from (B21), (17), (16a), (A11), and
Lemma B.2 that for all k ∈ K′ we have

L(xk+1, y, µ) = L(xk + αksk, y, µ)

≤ L(xk, y, µ)− ηsαk∆q̃(sk;xk, y, µ)

≤ L(xk, y, µ)− ηsαkκ1∆q̃(sk;xk, y, µ)

≤ L(xk, y, µ)− ηsαkκ1κ5‖FAL(xk, y, µ)‖22 min

{
δ,

1

1 + Ωj̄

}
≤ L(xk, y, µ)− ηsCj̄κ1κ5ζ

2 min

{
δ,

1

1 + Ωj̄

}
.

This implies that, for all k ∈ K′, the reduction L(xk, y, µ)−L(xk+1, y, µ) is greater than
or equal to a positive constant. However, we know from Assumption 2.3 that L(xk, y, µ)
is bounded below. Therefore, we have reached a contradiction, so (B20) must hold.

The first consequence of (B20) is that it allows us to prove (B17). Indeed, it follows
that there exists k ≥ k′ such that ‖ck‖2 ≥ t for all k ≥ k, since otherwise (B20) would
imply that, for some k ≥ k, Algorithm 3 would set j ← j̄+1, which violates (B12). Thus,
along with (B19), we have proved (B17).

The second consequence of (B20) is that it allows us to prove (B18), which is all that
remains to complete the proof of the lemma. It follows from (16a), (B20), and part (i)
of Lemma A.2 that

lim
k→∞

‖sk‖2 ≤ lim
k→∞

Θk = lim
k→∞

Γkδ‖FAL(xk, y, µ)‖2 = 0. (B22)

Furthermore, from (B22) and Assumption 2.3, we have

lim
k→∞

∆qv(sk;xk) = 0, (B23)

and, along with (B13) and (B17), we have

vk − 1
2(κttj̄)

2 ≥ 1
2 t

2 − 1
2(κtt)

2 = 1
2(1− κ2

t )t
2 > 0 for all k ≥ k. (B24)

We may use these facts to prove FFEAS(xk) → 0. In particular, in order to derive a
contradiction, suppose that FFEAS(xk) 9 0. Then, there exist a positive number ξ and
an infinite index set K′′ such that

‖FFEAS(xk)‖2 ≥ ξ for all k ∈ K′′. (B25)
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Using (16b), (A10), (B1c), and (B12), we then find for k ∈ K′′ that

∆qv(rk;xk) ≥ κ2∆qv(rk;xk) ≥ κ2κ4ξ
2 min

{
1

1 + Ωj̄

, δ

}
=: ζ ′ > 0. (B26)

We may now combine (B26), (B24), and (B23) to state that (16c) must be violated for
sufficiently large k ∈ K′′ and, consequently, the penalty parameter will be decreased.
However, this is a contradiction to (B19), so we conclude that FFEAS(xk) → 0. The fact
that every limit point of {xk}k≥0 is an infeasible stationary point follows since ‖ck‖2 ≥ t
for all k ≥ k from (B17) and FFEAS(xk)→ 0. �

This completes the analysis for the case that the set Y is finite.

B.3 An infinite number of multiplier updates

We now suppose that |Y| =∞. In this case, it follows from the procedures for updating
the Lagrange multiplier estimate and target values in Algorithm 3 that

lim
j→∞

tj = lim
j→∞

Tj = 0. (B27)

As in the previous subsection, we split the analysis in this subsection into two re-
sults. This time, we begin by considering the case when the penalty parameter remains
bounded below and away from zero. In this scenario, we state the following result that
a subsequence of the iterates converges to a first-order stationary point. The proof of
the corresponding result in [15] applies for Algorithm 3, so we do not provide it here for
the sake of brevity; the proof is relatively straightforward, essentially relying on the fact
that (B27) squeezes the constraint violation and stationarity measure error to zero to
yield (B28).

Lemma B.5 ([15, Lemma 3.10].) If |Y| =∞ and µk = µ for some µ > 0 for all sufficiently
large k, then

lim
j→∞

ckj = 0 (B28a)

and lim
j→∞

FL(xkj , ŷkj ) = 0. (B28b)

Thus, any limit point (x∗, y∗) of {(xkj , ŷkj )}j≥0 is first-order stationary for (1).

Finally, we consider the case when the penalty parameter converges to zero. Again,
we do not provide a proof of the following lemma since that of the corresponding proof
in [15] suffices here as well.

Lemma B.6 ([15, Lemma 3.13]) If |Y| =∞ and µk → 0, then

lim
k→∞

ck = 0. (B29)

If, in addition, there exists a positive integer p such that µkj−1 ≥ γpµµkj−1−1 for all
sufficiently large j, then there exists an infinite ordered set J ⊆ N such that

lim
j∈J ,j→∞

‖FL(xkj , ŷkj )‖2 = 0 or lim
j∈J ,j→∞

‖FL(xkj , π(xkj , ykj−1, µkj−1))‖2 = 0. (B30)
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In such cases, if the first (respectively, second) limit in (B30) holds, then along with
(B29) it follows that any limit point of {(xkj , ŷkj )}j∈J (respectively, {(xkj , ykj−1)}j∈J )
is a first-order stationary point for (1).

B.4 Proof of global convergence result

Proof of Theorem 2.4. Lemmas B.3, B.4, B.5 and B.6 cover the only four possible out-
comes of Algorithm 3; the result follows from those described in these lemmas. �

Appendix C. Numerical Results

In this appendix, we provide detailed results of our experiments described in §3. The
problems listed in the tables in this appendix are only those that were used in the
performance data provided in §3. Also, note that we provide problem size information
for the reformulated model, i.e., that resulting after transformations were employed to
create a model of the form (1). For example, a general inequality constraint with lower
and upper bounds would have been augmented with two auxiliary variables to form two
equality constraints with lower bounds on the auxiliary variables.

In Tables C1–C6 for our Matlab software, we indicate the name (Name) along with
the numbers of variables (n), equality constraints (me), and bound constraints (mb) of
each problem solved. Then, for each algorithm, we indicate the termination flag (Flag)
along with the numbers of iterations (Iter.), function evaluations (Func.), and gradient
evaluations (Grad.) required before termination. The flags indicate whether a first-order
stationary point was found (Opt.), an infeasible stationary point was found (Inf.), the
iteration limit was reached (Itr.), or the time limit was reached (Time).

Table C1.: Matlab line search algorithms, results on CUTEst problems

BAL-LS AAL-LS AAL-LS-safe

Name n me mb Flag Iter. Func. Grad. Flag Iter. Func. Grad. Flag Iter. Func. Grad.
ACOPP30 154 142 166 Itr. 10000 10032 10002 Itr. 10000 10011 10002 Itr. 10000 10009 10002
ACOPR14 106 96 88 Opt. 5976 5998 5978 Opt. 72 78 74 Opt. 67 74 69

AIRCRFTA 5 5 0 Opt. 151 152 153 Opt. 151 152 153 Opt. 151 152 153
AIRPORT 126 42 210 Opt. 176 226 178 Opt. 64 80 66 Opt. 113 129 115

ALSOTAME 2 1 4 Opt. 10 11 12 Opt. 9 10 11 Opt. 9 10 11
ANTWERP 29 10 53 Opt. 215 216 217 Opt. 54 55 56 Opt. 54 55 56
ARGAUSS 3 15 0 Inf. 158 159 160 Inf. 158 159 160 Inf. 158 159 160
AVGASA 18 10 26 Opt. 190 191 192 Opt. 163 164 165 Opt. 163 164 165
AVGASB 18 10 26 Opt. 104 105 106 Opt. 189 190 191 Opt. 189 190 191
BATCH 109 73 155 Opt. 116 138 118 Opt. 101 111 103 Opt. 101 111 103

BIGGSC4 17 13 21 Opt. 136 137 138 Opt. 32 33 34 Opt. 32 33 34
BOOTH 2 2 0 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3

BT1 2 1 0 Opt. 689 690 691 Opt. 29 30 31 Opt. 29 30 31
BT10 2 2 0 Opt. 140 142 142 Opt. 49 50 51 Opt. 49 50 51
BT11 5 3 0 Opt. 103 104 105 Opt. 37 38 39 Opt. 37 38 39
BT12 5 3 0 Opt. 11 12 13 Opt. 8 9 10 Opt. 8 9 10
BT13 5 1 1 Opt. 9 10 11 Opt. 774 1758 776 Itr. 10000 10984 10002
BT2 3 1 0 Opt. 96 97 98 Opt. 10 11 12 Opt. 10 11 12
BT3 5 3 0 Opt. 19 20 21 Opt. 20 21 22 Opt. 20 21 22
BT4 3 2 0 Opt. 26 27 28 Opt. 12 13 14 Opt. 12 13 14
BT5 3 2 0 Opt. 6 10 8 Opt. 5 9 7 Opt. 5 9 7
BT6 5 2 0 Opt. 11 13 13 Opt. 19 21 21 Opt. 19 21 21
BT7 5 3 0 Opt. 138 157 140 Opt. 53 71 55 Opt. 56 74 58
BT8 5 2 0 Itr. 10000 10002 10002 Opt. 23 27 25 Opt. 23 27 25
BT9 4 2 0 Opt. 62 85 64 Opt. 63 86 65 Opt. 63 86 65

BURKEHAN 2 1 2 Inf. 0 1 2 Inf. 0 1 2 Inf. 0 1 2
BYRDSPHR 3 2 0 Opt. 28 78 30 Opt. 34 84 36 Opt. 34 84 36
C-RELOAD 426 284 684 Opt. 110 111 112 Opt. 40 41 42 Opt. 40 41 42
CANTILVR 6 1 6 Opt. 201 207 203 Opt. 372 379 374 Opt. 372 379 374

CB2 6 3 3 Opt. 30 42 32 Opt. 20 32 22 Opt. 20 32 22
CB3 6 3 3 Opt. 26 27 28 Opt. 24 25 26 Opt. 24 25 26

CHACONN1 6 3 3 Opt. 22 27 24 Opt. 22 27 24 Opt. 22 27 24
CHACONN2 6 3 3 Opt. 33 34 35 Opt. 24 25 26 Opt. 24 25 26
CLUSTER 2 2 0 Opt. 3125 3126 3127 Opt. 3125 3126 3127 Opt. 3125 3126 3127

CONGIGMZ 8 5 5 Opt. 5330 5342 5332 Opt. 133 146 135 Opt. 133 146 135
COOLHANS 9 9 0 Itr. 10000 10001 10002 Itr. 10000 10001 10002 Itr. 10000 10001 10002
CRESC100 206 200 205 Inf. 36 56 38 Inf. 24 25 26 Inf. 24 25 26
CRESC4 14 8 13 Opt. 88 96 90 Opt. 20 23 22 Opt. 8186 8193 8188
CRESC50 106 100 105 Inf. 41 57 43 Inf. 31 32 33 Inf. 31 32 33

CSFI1 8 5 9 Opt. 1173 1233 1175 Opt. 59 94 61 Opt. 59 94 61
CSFI2 8 5 8 Opt. 1165 1216 1167 Opt. 9179 9234 9181 Itr. 10000 10055 10002

CUBENE 2 2 0 Opt. 8 14 10 Opt. 8 14 10 Opt. 8 14 10
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DALLASL 906 667 1812 Opt. 30 31 32 Opt. 30 31 32 Opt. 35 36 37
DALLASM 196 151 392 Opt. 28 29 30 Opt. 55 56 57 Opt. 50 51 52
DALLASS 46 31 92 Opt. 1540 1541 1542 Opt. 9 10 11 Itr. 10000 10001 10002
DECONVC 51 1 51 Opt. 15 22 17 Opt. 14 23 16 Opt. 14 23 16

DEMYMALO 6 3 3 Opt. 16 24 18 Opt. 17 25 19 Opt. 17 25 19
DIPIGRI 11 4 4 Opt. 30 59 32 Opt. 31 65 33 Opt. 31 65 33
DISC2 35 23 20 Inf. 54 77 56 Inf. 58 81 60 Inf. 58 81 60
DISCS 81 66 60 Opt. 339 473 341 Opt. 47 91 49 Opt. 47 91 49

DIXCHLNG 10 5 0 Opt. 84 89 86 Opt. 130 139 132 Opt. 130 139 132
DNIEPER 57 24 112 Opt. 66 67 68 Opt. 36 37 38 Opt. 36 37 38

DUAL1 85 1 170 Opt. 7 8 9 Opt. 7 8 9 Opt. 7 8 9
DUAL2 96 1 192 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
DUAL3 111 1 222 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
DUAL4 75 1 150 Opt. 12 13 14 Opt. 12 13 14 Opt. 12 13 14

ELATTAR 109 102 102 Time 6223 9136 6225 Inf. 150 209 152 Inf. 3309 3657 3311
EQC 10 3 17 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4

EXPFITA 27 22 22 Itr. 10000 10016 10002 Opt. 39 63 41 Opt. 39 63 41
EXPFITB 107 102 102 Opt. 27 28 29 Opt. 24 25 26 Opt. 24 25 26
EXPFITC 507 502 502 Opt. 21 22 23 Opt. 12 13 14 Opt. 12 13 14

EXTRASIM 2 1 1 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
FCCU 19 8 19 Opt. 22 23 24 Opt. 27 28 29 Opt. 27 28 29

FLETCHER 7 4 4 Opt. 89 94 91 Opt. 144 153 146 Opt. 144 153 146
GENHS28 10 8 0 Opt. 27 28 29 Opt. 9 10 11 Opt. 9 10 11

GIGOMEZ1 6 3 3 Opt. 18 31 20 Opt. 13 26 15 Opt. 13 26 15
GIGOMEZ2 6 3 3 Opt. 21 36 23 Opt. 21 36 23 Opt. 21 36 23
GIGOMEZ3 6 3 3 Opt. 8 9 10 Opt. 17 18 19 Opt. 17 18 19
GMNCASE1 475 300 300 Opt. 37 38 39 Opt. 51 52 53 Opt. 46 47 48
GMNCASE4 525 350 350 Opt. 36 37 38 Opt. 43 44 45 Opt. 43 44 45

GOFFIN 101 50 50 Opt. 3 4 5 Opt. 3 4 5 Opt. 3 4 5
GOTTFR 2 2 0 Opt. 19 28 21 Opt. 19 28 21 Opt. 19 28 21

GOULDQP1 32 17 64 Opt. 47 48 49 Opt. 35 36 37 Opt. 35 36 37
GROUPING 100 125 200 Opt. 41 42 43 Opt. 53 54 55 Opt. 53 54 55
GROWTH 3 12 0 Inf. 119 237 121 Inf. 122 240 124 Inf. 122 240 124
HAIFAM 249 150 150 Opt. 78 189 80 Opt. 134 298 136 Opt. 134 298 136
HAIFAS 22 9 9 Opt. 51 58 53 Opt. 58 67 60 Opt. 58 67 60

HALDMADS 48 42 42 Opt. 2448 2451 2450 Opt. 120 123 122 Opt. 120 123 122
HATFLDFL 3 0 0 Opt. 5 6 7 Opt. 5 6 7 Opt. 5 6 7
HATFLDG 25 25 0 Opt. 12 13 14 Opt. 12 13 14 Opt. 12 13 14
HATFLDH 17 13 21 Opt. 36 37 38 Opt. 16 17 18 Opt. 16 17 18
HEART8 8 8 0 Opt. 34 90 36 Opt. 34 90 36 Opt. 34 90 36
HIE1372D 637 525 1156 Opt. 37 38 39 Opt. 31 32 33 Opt. 31 32 33

HIMMELBA 2 2 0 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
HIMMELBC 2 2 0 Opt. 5 7 7 Opt. 5 7 7 Opt. 5 7 7
HIMMELBD 2 2 0 Inf. 28 121 30 Inf. 32 257 34 Inf. 32 257 34
HIMMELBE 3 3 0 Opt. 4 5 6 Opt. 4 5 6 Opt. 4 5 6
HIMMELBI 112 12 212 Opt. 15 16 17 Opt. 8 9 10 Opt. 8 9 10
HIMMELBJ 43 14 43 Itr. 10000 333513 10002 Opt. 9 10 11 Opt. 84 85 86
HIMMELBK 24 14 24 Opt. 40 65 42 Opt. 40 65 42 Opt. 40 65 42
HIMMELP2 3 1 5 Opt. 1195 1428 1197 Itr. 10000 10275 10002 Itr. 10000 10275 10002
HIMMELP3 4 2 6 Opt. 11 12 13 Opt. 10 11 12 Opt. 10 11 12
HIMMELP4 5 3 7 Opt. 893 895 895 Opt. 16 18 18 Opt. 16 18 18
HIMMELP5 5 3 7 Itr. 10000 10001 10002 Opt. 20 21 22 Opt. 20 21 22
HIMMELP6 7 5 9 Opt. 1903 2230 1905 Opt. 41 60 43 Opt. 41 60 43

HONG 4 1 8 Opt. 34 35 36 Opt. 48 49 50 Opt. 48 49 50
HS10 3 1 1 Opt. 40 52 42 Opt. 30 245 32 Opt. 30 245 32
HS100 11 4 4 Opt. 30 59 32 Opt. 28 62 30 Opt. 28 62 30

HS100LNP 7 2 0 Opt. 12 28 14 Opt. 27 53 29 Opt. 27 53 29
HS100MOD 11 4 4 Opt. 70 122 72 Opt. 28 76 30 Opt. 28 76 30

HS102 13 6 20 Itr. 10000 17537 10002 Opt. 1959 2586 1961 Opt. 1959 2586 1961
HS103 13 6 20 Itr. 10000 10119 10002 Itr. 10000 15155 10002 Itr. 10000 15703 10002
HS104 14 6 22 Opt. 1893 1913 1895 Opt. 106 142 108 Itr. 10000 10036 10002
HS105 9 1 17 Opt. 13 14 15 Opt. 380 381 382 Opt. 380 381 382
HS107 9 6 8 Opt. 83 91 85 Opt. 37 38 39 Opt. 37 38 39
HS108 22 13 14 Opt. 29 32 31 Opt. 29 32 31 Opt. 29 32 31
HS11 3 1 1 Opt. 13 14 15 Opt. 20 21 22 Opt. 20 21 22
HS111 10 3 20 Itr. 10000 10037 10002 Opt. 192 200 194 Opt. 192 200 194

HS111LNP 10 3 0 Itr. 10000 10037 10002 Opt. 192 200 194 Opt. 192 200 194
HS112 10 3 10 Opt. 54 55 56 Opt. 29 30 31 Opt. 29 30 31
HS113 18 8 8 Opt. 8 9 10 Opt. 13 14 15 Opt. 13 14 15
HS114 18 11 28 Itr. 10000 10365 10002 Itr. 10000 10006 10002 Itr. 10000 10006 10002
HS117 20 5 20 Opt. 11 12 13 Opt. 13 14 15 Opt. 13 14 15
HS118 44 29 59 Opt. 13 14 15 Opt. 11 12 13 Opt. 11 12 13
HS119 16 8 32 Opt. 107 108 109 Opt. 32 33 34 Opt. 32 33 34
HS12 3 1 1 Opt. 9 13 11 Opt. 9 13 11 Opt. 9 13 11
HS14 3 2 1 Opt. 41 43 43 Opt. 19 20 21 Opt. 19 20 21
HS15 4 2 3 Opt. 246 248 248 Opt. 48 49 50 Opt. 48 49 50
HS16 4 2 5 Opt. 14 17 16 Opt. 13 15 15 Opt. 13 15 15
HS17 4 2 5 Opt. 22 27 24 Opt. 22 25 24 Opt. 22 25 24
HS18 4 2 6 Opt. 41 51 43 Opt. 47 59 49 Opt. 47 59 49
HS19 4 2 6 Opt. 46 48 48 Opt. 32 34 34 Opt. 32 34 34
HS20 5 3 5 Opt. 53 54 55 Opt. 91 92 93 Opt. 91 92 93
HS21 3 1 5 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3

HS21MOD 8 1 9 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
HS22 4 2 2 Opt. 23 24 25 Opt. 10 11 12 Opt. 10 11 12
HS23 7 5 9 Opt. 48 49 50 Opt. 1035 1036 1037 Opt. 1035 1036 1037
HS24 5 3 5 Itr. 10000 10003 10002 Opt. 53 54 55 Opt. 53 54 55
HS26 3 1 0 Opt. 14 15 16 Opt. 12 13 14 Opt. 12 13 14
HS268 10 5 5 Opt. 19 20 21 Opt. 10 11 12 Opt. 10 11 12
HS27 3 1 0 Opt. 34 46 36 Opt. 21 33 23 Opt. 21 33 23
HS28 3 1 0 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
HS29 4 1 1 Opt. 13 19 15 Opt. 14 28 16 Opt. 14 28 16
HS30 4 1 7 Opt. 5 6 7 Opt. 5 6 7 Opt. 5 6 7
HS31 4 1 7 Opt. 52 53 54 Opt. 31 32 33 Opt. 31 32 33
HS32 4 2 4 Opt. 338 339 340 Opt. 335 336 337 Opt. 335 336 337
HS33 5 2 6 Opt. 114 115 116 Opt. 7 8 9 Opt. 7 8 9
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HS34 5 2 8 Opt. 18 21 20 Opt. 18 21 20 Opt. 18 21 20
HS35 4 1 4 Opt. 13 14 15 Opt. 9 10 11 Opt. 9 10 11
HS35I 4 1 7 Opt. 13 14 15 Opt. 9 10 11 Opt. 9 10 11

HS35MOD 3 1 3 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
HS36 4 1 7 Opt. 5 6 7 Opt. 5 6 7 Opt. 5 6 7
HS37 5 2 8 Opt. 100 101 102 Opt. 60 61 62 Opt. 60 61 62
HS39 4 2 0 Opt. 62 85 64 Opt. 63 86 65 Opt. 63 86 65
HS40 4 3 0 Opt. 46 67 48 Opt. 54 75 56 Opt. 54 75 56
HS41 4 1 8 Opt. 33 34 35 Opt. 33 34 35 Opt. 33 34 35
HS42 4 2 0 Opt. 19 21 21 Opt. 21 24 23 Opt. 21 24 23
HS43 7 3 3 Opt. 95 102 97 Opt. 27 33 29 Opt. 27 33 29
HS44 10 6 10 Opt. 10 11 12 Opt. 11 12 13 Opt. 11 12 13

HS44NEW 10 6 10 Opt. 17 18 19 Opt. 18 19 20 Opt. 18 19 20
HS46 5 2 0 Opt. 36 37 38 Opt. 22 23 24 Opt. 22 23 24
HS47 5 3 0 Opt. 14 15 16 Opt. 13 14 15 Opt. 13 14 15
HS48 5 2 0 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
HS49 5 2 0 Opt. 10 11 12 Opt. 9 10 11 Opt. 9 10 11
HS50 5 3 0 Opt. 8 9 10 Opt. 13 14 15 Opt. 13 14 15
HS51 5 3 0 Opt. 4 5 6 Opt. 4 5 6 Opt. 4 5 6
HS52 5 3 0 Opt. 22 23 24 Opt. 24 25 26 Opt. 24 25 26
HS53 5 3 10 Opt. 43 44 45 Opt. 48 49 50 Opt. 48 49 50
HS55 6 6 8 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4
HS56 7 4 0 Opt. 63 77 65 Opt. 36 50 38 Opt. 36 50 38
HS57 3 1 3 Opt. 39 40 41 Opt. 39 40 41 Opt. 39 40 41
HS59 5 3 7 Itr. 10000 10012 10002 Itr. 10000 10006 10002 Itr. 10000 10006 10002
HS6 2 1 0 Opt. 18 35 20 Opt. 18 35 20 Opt. 18 35 20
HS60 3 1 6 Opt. 7 8 9 Opt. 7 8 9 Opt. 7 8 9
HS61 3 2 0 Opt. 10 12 12 Opt. 7 9 9 Opt. 7 9 9
HS62 3 1 6 Opt. 313 314 315 Opt. 41 42 43 Opt. 41 42 43
HS63 3 2 3 Opt. 9 11 11 Opt. 9 11 11 Opt. 9 11 11
HS65 4 1 7 Opt. 16 20 18 Opt. 13 15 15 Opt. 13 15 15
HS66 5 2 8 Opt. 34 36 36 Opt. 19 21 21 Opt. 19 21 21
HS69 4 2 8 Opt. 473 481 475 Opt. 71 84 73 Opt. 71 84 73
HS7 2 1 0 Opt. 16 36 18 Opt. 14 34 16 Opt. 14 34 16
HS70 5 1 9 Opt. 31 35 33 Opt. 437 441 439 Opt. 437 441 439
HS71 5 2 9 Opt. 8 9 10 Opt. 7 8 9 Opt. 7 8 9
HS73 6 3 6 Opt. 44 45 46 Opt. 28 29 30 Opt. 28 29 30
HS74 6 5 10 Itr. 10000 10001 10002 Opt. 145 146 147 Opt. 145 146 147
HS76 7 3 7 Opt. 14 15 16 Opt. 16 17 18 Opt. 16 17 18
HS76I 7 3 11 Opt. 14 15 16 Opt. 16 17 18 Opt. 16 17 18
HS77 5 2 0 Opt. 11 13 13 Opt. 25 27 27 Opt. 25 27 27
HS78 5 3 0 Opt. 16 18 18 Opt. 9 10 11 Opt. 9 10 11
HS79 5 3 0 Opt. 16 17 18 Opt. 12 13 14 Opt. 12 13 14
HS8 2 2 0 Opt. 4 6 6 Opt. 4 6 6 Opt. 4 6 6
HS80 5 3 10 Opt. 9 11 11 Opt. 9 11 11 Opt. 9 11 11
HS81 5 3 10 Opt. 1192 1197 1194 Opt. 23 27 25 Opt. 23 27 25
HS83 11 6 16 Opt. 122 123 124 Opt. 33 34 35 Opt. 33 34 35
HS84 11 6 16 Itr. 10000 10006 10002 Itr. 10000 10010 10002 Itr. 10000 10005 10002
HS86 15 10 15 Opt. 779 780 781 Opt. 19 20 21 Opt. 19 20 21
HS88 3 1 1 Inf. 8 114 10 Inf. 12 249 14 Inf. 12 249 14
HS89 4 1 1 Inf. 8 109 10 Inf. 11 212 13 Inf. 11 212 13
HS9 2 1 0 Opt. 8 9 10 Opt. 8 9 10 Opt. 8 9 10
HS90 5 1 1 Inf. 8 141 10 Inf. 12 277 14 Inf. 12 277 14
HS91 6 1 1 Inf. 8 141 10 Inf. 12 145 14 Inf. 12 145 14
HS92 7 1 1 Inf. 8 141 10 Inf. 12 245 14 Inf. 12 245 14
HS93 8 2 8 Inf. 2 3 4 Inf. 2 3 4 Inf. 2 3 4
HS95 10 4 16 Opt. 31 32 33 Opt. 31 32 33 Opt. 31 32 33
HS96 10 4 16 Opt. 17 18 19 Opt. 17 18 19 Opt. 17 18 19
HS97 10 4 16 Opt. 678 679 680 Opt. 461 462 463 Opt. 461 462 463
HS98 10 4 16 Itr. 10000 10001 10002 Opt. 565 566 567 Opt. 565 566 567
HS99 7 2 14 Opt. 13 14 15 Itr. 10000 339217 10002 Itr. 10000 339217 10002

HUBFIT 3 1 2 Opt. 32 33 34 Opt. 20 21 22 Opt. 20 21 22
HYDCAR20 99 99 0 Inf. 4182 4191 4184 Inf. 4325 4334 4327 Inf. 4325 4334 4327

HYPCIR 2 2 0 Opt. 5 7 7 Opt. 5 7 7 Opt. 5 7 7
KIWCRESC 5 2 2 Opt. 25 37 27 Opt. 19 31 21 Opt. 19 31 21

LAKES 90 78 18 Opt. 115 164 117 Itr. 10000 24777 10002 Itr. 10000 26212 10002
LEUVEN7 1306 946 1605 Opt. 35 36 37 Opt. 46 47 48 Opt. 46 47 48

LEWISPOL 6 9 12 Opt. 11 12 13 Opt. 14 15 16 Opt. 14 15 16
LIN 4 2 8 Opt. 41 42 43 Opt. 33 34 35 Opt. 33 34 35

LINSPANH 81 33 162 Opt. 89 90 91 Opt. 34 35 36 Opt. 34 35 36
LOADBAL 51 31 62 Opt. 62 63 64 Opt. 30 31 32 Opt. 30 31 32
LOOTSMA 5 2 6 Inf. 0 1 2 Inf. 0 1 2 Inf. 0 1 2
LOTSCHD 12 7 12 Opt. 53 54 55 Opt. 24 25 26 Opt. 24 25 26

LSNNODOC 5 4 6 Opt. 14 15 16 Opt. 17 18 19 Opt. 17 18 19
LSQFIT 3 1 2 Opt. 20 21 22 Opt. 19 20 21 Opt. 19 20 21

MADSEN 9 6 6 Opt. 20 22 22 Opt. 17 19 19 Opt. 17 19 19
MAKELA1 5 2 2 Opt. 28 30 30 Opt. 30 32 32 Opt. 30 32 32
MAKELA2 6 3 3 Opt. 11 12 13 Opt. 17 18 19 Opt. 17 18 19
MAKELA3 41 20 20 Opt. 38 81 40 Opt. 25 68 27 Opt. 25 68 27
MAKELA4 61 40 40 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4
MARATOS 2 1 0 Opt. 12 14 14 Opt. 10 12 12 Opt. 10 12 12
MIFFLIN1 5 2 2 Opt. 14 17 16 Opt. 13 16 15 Opt. 13 16 15
MIFFLIN2 5 2 2 Opt. 19 51 21 Opt. 19 51 21 Opt. 19 51 21

MINMAXBD 25 20 20 Opt. 796 1552 798 Opt. 354 751 356 Itr. 10000 10799 10002
MINMAXRB 7 4 4 Opt. 34 56 36 Opt. 29 51 31 Opt. 29 51 31

MISTAKE 22 13 14 Opt. 41 49 43 Opt. 41 49 43 Opt. 41 49 43
MRIBASIS 70 55 94 Opt. 20 21 22 Opt. 20 21 22 Opt. 20 21 22

MSS1 90 73 0 Inf. 59 65 61 Inf. 56 57 58 Inf. 56 57 58
MSS2 756 703 0 Opt. 24 25 26 Opt. 10 11 12 Opt. 10 11 12

MWRIGHT 5 3 0 Opt. 37 40 39 Opt. 36 38 38 Opt. 36 38 38
NASH 18 24 6 Inf. 17 18 19 Inf. 22 23 24 Inf. 22 23 24

ODFITS 10 6 10 Opt. 267 268 269 Opt. 24 25 26 Itr. 10000 10001 10002
OPTCNTRL 29 20 30 Opt. 31 32 33 Opt. 41 42 43 Opt. 47 48 49
ORTHREGB 27 6 0 Opt. 4 5 6 Opt. 4 5 6 Opt. 4 5 6
PENTAGON 21 15 15 Opt. 497 498 499 Opt. 497 498 499 Opt. 497 498 499
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PFIT2 3 3 1 Itr. 10000 10074 10002 Itr. 10000 10074 10002 Itr. 10000 10074 10002
PFIT3 3 3 1 Itr. 10000 10101 10002 Itr. 10000 10101 10002 Itr. 10000 10101 10002
PFIT4 3 3 1 Itr. 10000 336197 10002 Itr. 10000 336197 10002 Itr. 10000 336197 10002

POLAK1 5 2 2 Opt. 44 46 46 Opt. 18 20 20 Opt. 18 20 20
POLAK3 22 10 10 Opt. 161 298 163 Opt. 92 230 94 Opt. 92 230 94
POLAK4 6 3 3 Opt. 8 21 10 Opt. 8 21 10 Opt. 8 21 10
POLAK5 5 2 2 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
POLAK6 9 4 4 Opt. 8754 8817 8756 Opt. 111 241 113 Opt. 111 241 113
PORTFL1 12 1 24 Opt. 54 55 56 Opt. 54 55 56 Opt. 54 55 56
PORTFL2 12 1 24 Opt. 126 127 128 Opt. 126 127 128 Opt. 126 127 128
PORTFL3 12 1 24 Opt. 27 28 29 Opt. 27 28 29 Opt. 27 28 29
PORTFL4 12 1 24 Opt. 22 23 24 Opt. 22 23 24 Opt. 22 23 24
PORTFL6 12 1 24 Opt. 186 187 188 Opt. 186 187 188 Opt. 186 187 188

POWELLSQ 2 2 0 Opt. 12 25 14 Opt. 12 25 14 Opt. 12 25 14
PRIMAL1 410 85 86 Opt. 14 15 16 Opt. 15 16 17 Opt. 15 16 17
PRIMAL2 745 96 97 Opt. 10 11 12 Opt. 10 11 12 Opt. 10 11 12
PRIMAL3 856 111 112 Opt. 11 12 13 Opt. 11 12 13 Opt. 11 12 13

PRIMALC1 239 9 224 Itr. 10000 336952 10002 Opt. 179 180 181 Itr. 10000 10001 10002
PRIMALC5 295 8 286 Itr. 10000 10003 10002 Opt. 43 44 45 Opt. 43 44 45
PRIMALC8 528 8 511 Time 9731 329055 9733 Opt. 36 37 38 Itr. 10000 10001 10002
PRODPL0 69 29 69 Opt. 81 82 83 Opt. 69 70 71 Opt. 66 67 68
PRODPL1 69 29 69 Opt. 51 54 53 Opt. 41 42 43 Opt. 41 42 43

QC 11 4 18 Opt. 7 8 9 Opt. 7 8 9 Opt. 7 8 9
QCNEW 10 3 17 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4

QPCBLEND 114 74 114 Opt. 36 37 38 Opt. 54 55 56 Opt. 54 55 56
QPCBOEI2 324 185 378 Itr. 10000 285852 10002 Opt. 543 544 545 Opt. 4052 4053 4054
QPCSTAIR 532 356 532 Opt. 43 44 45 Opt. 57 58 59 Itr. 10000 10001 10002
QPNBLEND 114 74 114 Opt. 103 104 105 Opt. 52 53 54 Opt. 52 53 54
QPNBOEI1 815 440 971 Time 1303 1304 1305 Time 313 314 315 Time 446 447 448
QPNBOEI2 324 185 378 Time 5358 5359 5360 Opt. 559 560 561 Itr. 10000 309218 10002
QPNSTAIR 532 356 532 Opt. 62 63 64 Opt. 83 84 85 Opt. 50 51 52
READING6 101 50 102 Opt. 2190 2215 2192 Opt. 46 50 48 Opt. 46 50 48

RECIPE 3 3 0 Opt. 790 791 792 Opt. 790 791 792 Opt. 790 791 792
RES 22 14 42 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
RK23 17 11 6 Opt. 3005 3012 3007 Opt. 2549 2558 2551 Opt. 2394 2403 2396

ROBOT 7 2 14 Opt. 40 41 42 Opt. 30 31 32 Opt. 30 31 32
ROSENMMX 9 4 4 Opt. 222 344 224 Opt. 94 191 96 Opt. 94 191 96
RSNBRNE 2 2 0 Opt. 18 38 20 Opt. 18 38 20 Opt. 18 38 20

S268 10 5 5 Opt. 19 20 21 Opt. 10 11 12 Opt. 10 11 12
S316-322 2 1 0 Inf. 0 1 2 Inf. 0 1 2 Inf. 0 1 2

SIMPLLPA 4 2 4 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
SIMPLLPB 5 3 5 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
SINVALNE 2 2 0 Opt. 24 44 26 Opt. 24 44 26 Opt. 24 44 26
SMBANK 117 64 234 Opt. 47 48 49 Opt. 42 43 44 Opt. 50 51 52
SMMPSF 743 263 743 Opt. 1068 1571 1070 Opt. 1909 2809 1911 Time 2099 3022 2101

SPANHYD 81 33 162 Opt. 31 32 33 Opt. 16 17 18 Opt. 41 42 43
SPIRAL 5 2 2 Opt. 617 645 619 Opt. 92 119 94 Opt. 92 119 94
SSEBLIN 216 72 384 Opt. 22 23 24 Opt. 28 29 30 Opt. 37 38 39
SSEBNLN 216 96 384 Opt. 23 24 25 Opt. 32 33 34 Opt. 32 33 34
STATIC3 434 96 144 Opt. 63 64 65 Opt. 20 21 22 Opt. 96 97 98

STEENBRA 432 108 432 Opt. 20 21 22 Opt. 24 25 26 Opt. 23 24 25
STEENBRB 468 108 468 Opt. 65 126 67 Opt. 29 80 31 Opt. 29 80 31
STEENBRC 540 126 540 Opt. 79 218 81 Opt. 21 77 23 Opt. 21 77 23
STEENBRD 468 108 468 Opt. 61 142 63 Opt. 16 30 18 Opt. 16 30 18
STEENBRE 540 126 540 Opt. 62 154 64 Opt. 21 45 23 Opt. 21 45 23
STEENBRF 468 108 468 Opt. 73 168 75 Opt. 21 50 23 Opt. 21 50 23
STEENBRG 540 126 540 Opt. 61 143 63 Opt. 19 56 21 Opt. 19 56 21
SUPERSIM 2 2 1 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4

SWOPF 97 92 34 Opt. 316 426 318 Opt. 99 132 101 Opt. 99 132 101
SYNTHES1 12 6 18 Opt. 54 55 56 Opt. 36 37 38 Opt. 36 37 38
SYNTHES2 25 15 34 Opt. 374 375 376 Opt. 252 253 254 Opt. 252 253 254
SYNTHES3 38 23 55 Opt. 6686 6687 6688 Opt. 5848 5849 5850 Opt. 5848 5849 5850

TABLE7 624 230 1108 Opt. 60 61 62 Opt. 16 17 18 Opt. 38 39 40
TAME 2 1 2 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3

TARGUS 162 63 277 Opt. 42 43 44 Opt. 13 14 15 Opt. 13 14 15
TENBARS1 19 9 15 Itr. 10000 329913 10002 Opt. 199 350 201 Opt. 199 350 201
TENBARS3 18 8 12 Itr. 10000 336191 10002 Opt. 251 690 253 Opt. 251 690 253
TENBARS4 19 9 11 Itr. 10000 330767 10002 Opt. 432 1262 434 Opt. 432 1262 434
TRIGGER 6 6 0 Itr. 10000 10002 10002 Itr. 10000 10002 10002 Itr. 10000 10002 10002
TRIMLOSS 197 75 319 Itr. 10000 10026 10002 Opt. 83 126 85 Opt. 83 126 85

TRO6X2 46 21 26 Itr. 10000 333426 10002 Itr. 10000 338881 10002 Itr. 10000 10009 10002
TRUSPYR1 12 4 9 Itr. 10000 10265 10002 Opt. 241 510 243 Itr. 10000 10270 10002

TRY-B 2 1 2 Opt. 11 12 13 Opt. 15 16 17 Opt. 15 16 17
TWOBARS 4 2 6 Opt. 64 66 66 Opt. 42 44 44 Opt. 42 44 44
WACHBIEG 3 2 2 Opt. 24 25 26 Opt. 25 27 27 Opt. 25 27 27

WATER 31 10 62 Opt. 12 15 14 Opt. 14 15 16 Itr. 10000 10001 10002
WOMFLET 6 3 3 Opt. 38 77 40 Opt. 37 77 39 Opt. 37 77 39

YFITNE 3 17 0 Opt. 58 81 60 Opt. 58 81 60 Opt. 58 81 60
YORKNET 312 256 288 Opt. 110 125 112 Opt. 91 102 93 Opt. 86 97 88
ZAMB2-10 264 96 528 Opt. 34 37 36 Opt. 36 39 38 Opt. 36 39 38
ZAMB2-11 264 96 528 Opt. 28 29 30 Opt. 28 29 30 Opt. 28 29 30
ZAMB2-8 132 48 264 Opt. 27 28 29 Opt. 24 25 26 Opt. 24 25 26
ZAMB2-9 132 48 264 Opt. 39 40 41 Opt. 35 36 37 Opt. 35 36 37

ZANGWIL3 3 3 0 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
ZECEVIC2 4 2 6 Opt. 4 5 6 Opt. 4 5 6 Opt. 4 5 6
ZECEVIC3 4 2 6 Opt. 55 59 57 Opt. 22 24 24 Opt. 22 24 24
ZECEVIC4 4 2 6 Opt. 13 15 15 Opt. 17 19 19 Opt. 17 19 19

ZY2 5 2 6 Opt. 45 46 47 Opt. 10 11 12 Opt. 10 11 12
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Table C2.: Matlab trust region algorithms, results on CUTEst problems

BAL-TR AAL-TR AAL-TR-safe

Name n me mb Flag Iter. Func. Grad. Flag Iter. Func. Grad. Flag Iter. Func. Grad.
ACOPP30 154 142 166 Itr. 10000 10001 9978 Itr. 10000 10001 9992 Opt. 96 97 90
ACOPR14 106 96 88 Opt. 8211 8212 7954 Itr. 10000 10001 9641 Itr. 10000 10001 9625

AIRCRFTA 5 5 0 Opt. 5 6 7 Opt. 5 6 7 Opt. 5 6 7
AIRPORT 126 42 210 Opt. 275 276 221 Opt. 71 72 59 Opt. 150 151 138

ALSOTAME 2 1 4 Opt. 10 11 12 Opt. 14 15 16 Opt. 14 15 16
ANTWERP 29 10 53 Opt. 79 80 81 Opt. 44 45 46 Opt. 44 45 46
ARGAUSS 3 15 0 Inf. 158 159 160 Inf. 158 159 160 Inf. 158 159 160
AVGASA 18 10 26 Opt. 190 191 192 Opt. 163 164 165 Opt. 163 164 165
AVGASB 18 10 26 Opt. 104 105 106 Opt. 189 190 191 Opt. 189 190 191
BATCH 109 73 155 Opt. 209 210 166 Opt. 142 143 120 Opt. 141 142 119

BIGGSC4 17 13 21 Opt. 39 40 41 Opt. 30 31 32 Opt. 30 31 32
BOOTH 2 2 0 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4

BT1 2 1 0 Opt. 689 690 691 Opt. 29 30 31 Opt. 29 30 31
BT10 2 2 0 Opt. 137 138 137 Opt. 49 50 51 Opt. 49 50 51
BT11 5 3 0 Opt. 129 130 131 Opt. 26 27 27 Opt. 26 27 27
BT12 5 3 0 Opt. 8 9 10 Opt. 9 10 11 Opt. 9 10 11
BT13 5 1 1 Opt. 468 469 451 Opt. 2023 2024 1517 Opt. 2023 2024 1517
BT2 3 1 0 Opt. 93 94 95 Opt. 12 13 14 Opt. 12 13 14
BT3 5 3 0 Opt. 21 22 23 Opt. 25 26 27 Opt. 25 26 27
BT4 3 2 0 Opt. 23 24 23 Opt. 23 24 23 Opt. 23 24 23
BT5 3 2 0 Opt. 6 7 8 Opt. 5 6 7 Opt. 5 6 7
BT6 5 2 0 Opt. 13 14 13 Opt. 15 16 15 Opt. 15 16 15
BT7 5 3 0 Opt. 135 136 127 Opt. 59 60 51 Opt. 62 63 54
BT8 5 2 0 Itr. 10000 10001 10000 Opt. 33 34 28 Opt. 33 34 28
BT9 4 2 0 Opt. 63 64 62 Opt. 89 90 86 Opt. 88 89 85

BURKEHAN 2 1 2 Inf. 0 1 2 Inf. 0 1 2 Inf. 0 1 2
BYRDSPHR 3 2 0 Opt. 10 11 12 Opt. 29 30 26 Opt. 29 30 26
C-RELOAD 426 284 684 Opt. 49 50 51 Opt. 48 49 50 Opt. 48 49 50
CANTILVR 6 1 6 Opt. 159 160 160 Opt. 437 438 436 Opt. 437 438 436

CB2 6 3 3 Opt. 16 17 14 Opt. 13 14 12 Opt. 13 14 12
CB3 6 3 3 Opt. 26 27 28 Opt. 26 27 28 Opt. 26 27 28

CHACONN1 6 3 3 Opt. 20 21 19 Opt. 17 18 15 Opt. 17 18 15
CHACONN2 6 3 3 Opt. 33 34 35 Opt. 21 22 23 Opt. 21 22 23
CLUSTER 2 2 0 Opt. 3099 3100 3101 Opt. 3099 3100 3101 Opt. 3099 3100 3101

CONGIGMZ 8 5 5 Itr. 10000 10001 9996 Opt. 67 68 63 Opt. 3304 3305 3300
COOLHANS 9 9 0 Inf. 27 28 29 Itr. 10000 10001 10002 Itr. 10000 10001 10002
CRESC100 206 200 205 Inf. 35 36 35 Opt. 115 116 100 Opt. 115 116 100
CRESC4 14 8 13 Inf. 33 34 35 Inf. 26 27 28 Opt. 85 86 69
CRESC50 106 100 105 Itr. 10000 10001 3605 Opt. 158 159 145 Opt. 158 159 145

CSFI1 8 5 9 Opt. 3412 3413 3391 Opt. 159 160 133 Opt. 109 110 83
CSFI2 8 5 8 Opt. 1454 1455 1443 Opt. 6179 6180 6165 Itr. 10000 10001 9986

CUBENE 2 2 0 Opt. 9 10 10 Opt. 12 13 12 Opt. 12 13 12
DALLASL 906 667 1812 Opt. 17 18 19 Opt. 14 15 16 Opt. 11 12 13
DALLASM 196 151 392 Itr. 10000 10001 10002 Opt. 15 16 17 Opt. 22 23 24
DALLASS 46 31 92 Opt. 60 61 62 Opt. 11 12 13 Opt. 11 12 13
DECONVC 51 1 51 Opt. 29 30 22 Opt. 26 27 13 Opt. 26 27 13

DEMYMALO 6 3 3 Opt. 17 18 16 Opt. 16 17 15 Opt. 16 17 15
DIPIGRI 11 4 4 Opt. 150 151 129 Opt. 71 72 55 Opt. 71 72 55
DISC2 35 23 20 Inf. 58 59 42 Inf. 63 64 46 Inf. 63 64 46
DISCS 81 66 60 Inf. 659 660 562 Opt. 82 83 42 Opt. 82 83 42

DIXCHLNG 10 5 0 Opt. 90 91 89 Opt. 53 54 45 Opt. 53 54 45
DNIEPER 57 24 112 Itr. 10000 10001 10002 Opt. 36 37 38 Opt. 36 37 38

DUAL1 85 1 170 Opt. 7 8 9 Opt. 7 8 9 Opt. 7 8 9
DUAL2 96 1 192 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
DUAL3 111 1 222 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
DUAL4 75 1 150 Opt. 12 13 14 Opt. 12 13 14 Opt. 12 13 14

ELATTAR 109 102 102 Inf. 731 732 613 Inf. 861 862 659 Inf. 899 900 695
EQC 10 3 17 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4

EXPFITA 27 22 22 Opt. 13 14 15 Opt. 16 17 18 Opt. 16 17 18
EXPFITB 107 102 102 Opt. 7 8 9 Opt. 7 8 9 Opt. 7 8 9
EXPFITC 507 502 502 Opt. 69 70 71 Opt. 25 26 27 Opt. 25 26 27

EXTRASIM 2 1 1 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
FCCU 19 8 19 Opt. 24 25 26 Opt. 7 8 9 Opt. 7 8 9

FLETCHER 7 4 4 Opt. 1101 1102 1093 Opt. 280 281 281 Itr. 10000 10001 9998
GENHS28 10 8 0 Opt. 16 17 18 Opt. 15 16 17 Opt. 15 16 17

GIGOMEZ1 6 3 3 Opt. 16 17 14 Opt. 14 15 13 Opt. 14 15 13
GIGOMEZ2 6 3 3 Opt. 16 17 14 Opt. 15 16 14 Opt. 15 16 14
GIGOMEZ3 6 3 3 Opt. 8 9 10 Opt. 8 9 10 Opt. 8 9 10
GMNCASE1 475 300 300 Opt. 37 38 39 Opt. 51 52 53 Opt. 46 47 48
GMNCASE4 525 350 350 Opt. 27 28 29 Opt. 45 46 47 Opt. 46 47 48

GOFFIN 101 50 50 Opt. 3 4 5 Opt. 3 4 5 Opt. 3 4 5
GOTTFR 2 2 0 Opt. 49 50 44 Opt. 20 21 15 Opt. 20 21 15

GOULDQP1 32 17 64 Opt. 37 38 39 Opt. 46 47 48 Opt. 46 47 48
GROUPING 100 125 200 Opt. 41 42 43 Opt. 53 54 55 Opt. 53 54 55
GROWTH 3 12 0 Inf. 144 145 132 Inf. 134 135 128 Inf. 134 135 128
HAIFAM 249 150 150 Opt. 108 109 62 Opt. 129 130 99 Opt. 129 130 99
HAIFAS 22 9 9 Opt. 40 41 38 Opt. 62 63 58 Opt. 62 63 58

HALDMADS 48 42 42 Opt. 1852 1853 1851 Opt. 58 59 57 Opt. 58 59 57
HATFLDFL 3 0 0 Opt. 5 6 7 Opt. 5 6 7 Opt. 5 6 7
HATFLDG 25 25 0 Opt. 9 10 9 Opt. 2550 2551 2550 Opt. 2550 2551 2550
HATFLDH 17 13 21 Opt. 19 20 21 Opt. 29 30 31 Opt. 29 30 31
HEART8 8 8 0 Opt. 61 62 50 Opt. 51 52 36 Opt. 51 52 36
HIE1372D 637 525 1156 Opt. 24 25 26 Opt. 29 30 31 Opt. 29 30 31

HIMMELBA 2 2 0 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4
HIMMELBC 2 2 0 Opt. 4 5 6 Opt. 4 5 6 Opt. 4 5 6
HIMMELBD 2 2 0 Inf. 98 99 81 Inf. 49 50 35 Inf. 49 50 35
HIMMELBE 3 3 0 Opt. 3 4 5 Opt. 3 4 5 Opt. 3 4 5
HIMMELBI 112 12 212 Opt. 10 11 12 Opt. 7 8 9 Opt. 7 8 9
HIMMELBJ 43 14 43 Itr. 10000 10001 85 Opt. 10 11 12 Opt. 43 44 45
HIMMELBK 24 14 24 Opt. 36 37 29 Opt. 44 45 35 Opt. 44 45 35
HIMMELP2 3 1 5 Opt. 1525 1526 1522 Opt. 2582 2583 2577 Opt. 2582 2583 2577
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HIMMELP3 4 2 6 Opt. 38 39 33 Opt. 33 34 32 Opt. 33 34 32
HIMMELP4 5 3 7 Opt. 1277 1278 1266 Opt. 188 189 178 Opt. 188 189 178
HIMMELP5 5 3 7 Itr. 10000 10001 10000 Opt. 26 27 28 Opt. 26 27 28
HIMMELP6 7 5 9 Opt. 123 124 115 Opt. 192 193 185 Opt. 192 193 185

HONG 4 1 8 Opt. 34 35 36 Opt. 48 49 50 Opt. 48 49 50
HS10 3 1 1 Opt. 21 22 15 Opt. 33 34 30 Opt. 33 34 30
HS100 11 4 4 Opt. 154 155 133 Opt. 83 84 61 Opt. 83 84 61

HS100LNP 7 2 0 Opt. 15 16 12 Opt. 15 16 13 Opt. 15 16 13
HS100MOD 11 4 4 Opt. 1052 1053 1030 Opt. 60 61 46 Opt. 60 61 46

HS102 13 6 20 Itr. 10000 10001 9972 Opt. 550 551 340 Opt. 550 551 340
HS103 13 6 20 Itr. 10000 10001 9974 Opt. 995 996 738 Opt. 5064 5065 4799
HS104 14 6 22 Itr. 10000 10001 9958 Opt. 1195 1196 1169 Opt. 1195 1196 1169
HS105 9 1 17 Opt. 17 18 19 Opt. 31 32 29 Opt. 31 32 29
HS107 9 6 8 Opt. 99 100 88 Opt. 44 45 43 Opt. 44 45 43
HS108 22 13 14 Opt. 32 33 28 Opt. 34 35 26 Opt. 34 35 26
HS11 3 1 1 Opt. 47 48 49 Opt. 18 19 20 Opt. 18 19 20
HS111 10 3 20 Opt. 506 507 506 Opt. 109 110 102 Opt. 109 110 102

HS111LNP 10 3 0 Opt. 506 507 506 Opt. 109 110 102 Opt. 109 110 102
HS112 10 3 10 Opt. 54 55 56 Opt. 33 34 35 Opt. 33 34 35
HS113 18 8 8 Opt. 11 12 13 Opt. 28 29 28 Opt. 28 29 28
HS114 18 11 28 Itr. 10000 10001 9981 Opt. 5072 5073 5068 Itr. 10000 10001 9996
HS117 20 5 20 Opt. 15 16 16 Opt. 36 37 38 Opt. 36 37 38
HS118 44 29 59 Opt. 13 14 15 Opt. 13 14 15 Opt. 13 14 15
HS119 16 8 32 Opt. 105 106 107 Opt. 44 45 46 Opt. 44 45 46
HS12 3 1 1 Opt. 8 9 10 Opt. 8 9 10 Opt. 8 9 10
HS14 3 2 1 Opt. 46 47 46 Opt. 19 20 21 Opt. 19 20 21
HS15 4 2 3 Opt. 226 227 226 Opt. 48 49 50 Opt. 48 49 50
HS16 4 2 5 Opt. 17 18 16 Opt. 24 25 22 Opt. 24 25 22
HS17 4 2 5 Opt. 29 30 24 Opt. 20 21 19 Opt. 20 21 19
HS18 4 2 6 Opt. 116 117 107 Itr. 10000 10001 9994 Itr. 10000 10001 9994
HS19 4 2 6 Opt. 46 47 46 Opt. 85 86 83 Opt. 85 86 83
HS20 5 3 5 Opt. 53 54 55 Opt. 91 92 93 Opt. 91 92 93
HS21 3 1 5 Opt. 2 3 4 Opt. 3 4 5 Opt. 3 4 5

HS21MOD 8 1 9 Opt. 2 3 4 Opt. 3 4 5 Opt. 3 4 5
HS22 4 2 2 Opt. 23 24 25 Opt. 10 11 12 Opt. 10 11 12
HS23 7 5 9 Opt. 48 49 50 Opt. 1019 1020 1021 Opt. 1019 1020 1021
HS24 5 3 5 Opt. 51 52 47 Opt. 59 60 61 Opt. 59 60 61
HS26 3 1 0 Opt. 14 15 16 Opt. 12 13 14 Opt. 12 13 14
HS268 10 5 5 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
HS27 3 1 0 Opt. 29 30 25 Opt. 28 29 27 Opt. 28 29 27
HS28 3 1 0 Opt. 2 3 4 Opt. 3 4 5 Opt. 3 4 5
HS29 4 1 1 Opt. 26 27 22 Opt. 24 25 21 Opt. 24 25 21
HS30 4 1 7 Opt. 5 6 7 Opt. 5 6 7 Opt. 5 6 7
HS31 4 1 7 Opt. 52 53 54 Opt. 31 32 33 Opt. 31 32 33
HS32 4 2 4 Opt. 338 339 340 Opt. 335 336 337 Opt. 335 336 337
HS33 5 2 6 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
HS34 5 2 8 Opt. 21 22 22 Opt. 15 16 16 Opt. 15 16 16
HS35 4 1 4 Opt. 13 14 15 Opt. 9 10 11 Opt. 9 10 11
HS35I 4 1 7 Opt. 13 14 15 Opt. 9 10 11 Opt. 9 10 11

HS35MOD 3 1 3 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
HS36 4 1 7 Opt. 8 9 10 Opt. 5 6 7 Opt. 5 6 7
HS37 5 2 8 Opt. 7 8 9 Opt. 16 17 18 Opt. 16 17 18
HS39 4 2 0 Opt. 63 64 62 Opt. 89 90 86 Opt. 88 89 85
HS40 4 3 0 Opt. 62 63 56 Opt. 107 108 101 Opt. 107 108 101
HS41 4 1 8 Opt. 31 32 33 Opt. 31 32 33 Opt. 31 32 33
HS42 4 2 0 Opt. 21 22 21 Opt. 21 22 21 Opt. 21 22 21
HS43 7 3 3 Opt. 92 93 91 Opt. 28 29 26 Opt. 28 29 26
HS44 10 6 10 Opt. 24 25 26 Opt. 15 16 17 Opt. 15 16 17

HS44NEW 10 6 10 Opt. 17 18 19 Opt. 17 18 19 Opt. 17 18 19
HS46 5 2 0 Opt. 36 37 38 Opt. 22 23 24 Opt. 22 23 24
HS47 5 3 0 Opt. 14 15 16 Opt. 13 14 15 Opt. 13 14 15
HS48 5 2 0 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4
HS49 5 2 0 Opt. 12 13 14 Opt. 15 16 17 Opt. 15 16 17
HS50 5 3 0 Opt. 8 9 10 Opt. 10 11 12 Opt. 10 11 12
HS51 5 3 0 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3
HS52 5 3 0 Opt. 22 23 24 Opt. 31 32 33 Opt. 31 32 33
HS53 5 3 10 Opt. 43 44 45 Opt. 57 58 59 Opt. 57 58 59
HS55 6 6 8 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4
HS56 7 4 0 Opt. 54 55 52 Opt. 37 38 35 Opt. 37 38 35
HS57 3 1 3 Opt. 39 40 41 Opt. 39 40 41 Opt. 39 40 41
HS59 5 3 7 Opt. 1675 1676 1666 Opt. 188 189 179 Opt. 188 189 179
HS6 2 1 0 Opt. 12 13 12 Opt. 16 17 14 Opt. 16 17 14
HS60 3 1 6 Opt. 7 8 9 Opt. 7 8 9 Opt. 7 8 9
HS61 3 2 0 Opt. 10 11 12 Opt. 9 10 11 Opt. 9 10 11
HS62 3 1 6 Opt. 313 314 315 Opt. 41 42 43 Opt. 41 42 43
HS63 3 2 3 Opt. 10 11 12 Opt. 8 9 10 Opt. 8 9 10
HS65 4 1 7 Opt. 12 13 12 Opt. 31 32 30 Opt. 31 32 30
HS66 5 2 8 Opt. 305 306 304 Opt. 31 32 31 Opt. 31 32 31
HS69 4 2 8 Opt. 427 428 414 Opt. 74 75 66 Opt. 74 75 66
HS7 2 1 0 Opt. 15 16 15 Opt. 15 16 16 Opt. 15 16 16
HS70 5 1 9 Opt. 8 9 10 Opt. 1662 1663 1657 Opt. 1662 1663 1657
HS71 5 2 9 Opt. 8 9 10 Opt. 7 8 9 Opt. 7 8 9
HS73 6 3 6 Opt. 44 45 46 Opt. 28 29 30 Opt. 28 29 30
HS74 6 5 10 Itr. 10000 10001 10002 Opt. 146 147 148 Opt. 146 147 148
HS76 7 3 7 Opt. 14 15 16 Opt. 29 30 31 Opt. 29 30 31
HS76I 7 3 11 Opt. 14 15 16 Opt. 29 30 31 Opt. 29 30 31
HS77 5 2 0 Opt. 15 16 15 Opt. 13 14 13 Opt. 13 14 13
HS78 5 3 0 Opt. 19 20 19 Opt. 9 10 11 Opt. 9 10 11
HS79 5 3 0 Opt. 16 17 18 Opt. 12 13 14 Opt. 12 13 14
HS8 2 2 0 Opt. 6 7 6 Opt. 5 6 7 Opt. 5 6 7
HS80 5 3 10 Opt. 70 71 68 Opt. 13 14 12 Opt. 13 14 12
HS81 5 3 10 Opt. 315 316 286 Opt. 31 32 29 Opt. 31 32 29
HS83 11 6 16 Opt. 129 130 130 Opt. 15 16 17 Opt. 15 16 17
HS84 11 6 16 Opt. 372 373 370 Itr. 10000 10001 9976 Itr. 10000 10001 9999
HS86 15 10 15 Opt. 618 619 620 Opt. 61 62 63 Opt. 61 62 63
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HS88 3 1 1 Inf. 8 9 6 Inf. 12 13 6 Inf. 12 13 6
HS89 4 1 1 Inf. 8 9 8 Inf. 11 12 6 Inf. 11 12 6
HS9 2 1 0 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
HS90 5 1 1 Inf. 8 9 6 Inf. 12 13 6 Inf. 12 13 6
HS91 6 1 1 Inf. 8 9 6 Inf. 12 13 10 Inf. 12 13 10
HS92 7 1 1 Inf. 8 9 6 Inf. 12 13 6 Inf. 12 13 6
HS93 8 2 8 Inf. 2 3 4 Inf. 4 5 6 Inf. 4 5 6
HS95 10 4 16 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
HS96 10 4 16 Opt. 7 8 9 Opt. 6 7 8 Opt. 6 7 8
HS97 10 4 16 Itr. 10000 10001 10002 Opt. 451 452 453 Opt. 451 452 453
HS98 10 4 16 Opt. 108 109 110 Itr. 10000 10001 10002 Opt. 7139 7140 7141
HS99 7 2 14 Opt. 13 14 15 Itr. 10000 10001 25 Itr. 10000 10001 25

HUBFIT 3 1 2 Opt. 32 33 34 Opt. 20 21 22 Opt. 20 21 22
HYDCAR20 99 99 0 Inf. 4494 4495 4485 Inf. 4496 4497 4487 Inf. 4496 4497 4487

HYPCIR 2 2 0 Opt. 5 6 6 Opt. 7 8 9 Opt. 7 8 9
KIWCRESC 5 2 2 Opt. 19 20 19 Opt. 21 22 19 Opt. 21 22 19

LAKES 90 78 18 Opt. 111 112 98 Itr. 10000 10001 9365 Itr. 10000 10001 9506
LEUVEN7 1306 946 1605 Opt. 33 34 35 Opt. 64 65 66 Opt. 64 65 66

LEWISPOL 6 9 12 Opt. 11 12 13 Opt. 13 14 15 Opt. 13 14 15
LIN 4 2 8 Opt. 41 42 43 Opt. 33 34 35 Opt. 33 34 35

LINSPANH 81 33 162 Opt. 80 81 82 Opt. 30 31 32 Opt. 30 31 32
LOADBAL 51 31 62 Itr. 10000 10001 10002 Opt. 19 20 21 Opt. 19 20 21
LOOTSMA 5 2 6 Inf. 0 1 2 Inf. 0 1 2 Inf. 0 1 2
LOTSCHD 12 7 12 Opt. 54 55 56 Opt. 27 28 29 Opt. 27 28 29

LSNNODOC 5 4 6 Opt. 14 15 16 Opt. 17 18 19 Opt. 17 18 19
LSQFIT 3 1 2 Opt. 20 21 22 Opt. 19 20 21 Opt. 19 20 21

MADSEN 9 6 6 Opt. 40 41 36 Opt. 17 18 16 Opt. 17 18 16
MAKELA1 5 2 2 Opt. 18 19 18 Opt. 31 32 29 Opt. 31 32 29
MAKELA2 6 3 3 Opt. 14 15 16 Opt. 27 28 29 Opt. 27 28 29
MAKELA3 41 20 20 Opt. 27 28 21 Opt. 27 28 19 Opt. 27 28 19
MAKELA4 61 40 40 Opt. 3 4 5 Opt. 3 4 5 Opt. 3 4 5
MARATOS 2 1 0 Opt. 14 15 14 Opt. 11 12 11 Opt. 11 12 11
MIFFLIN1 5 2 2 Opt. 19 20 16 Opt. 18 19 16 Opt. 18 19 16
MIFFLIN2 5 2 2 Opt. 15 16 16 Opt. 25 26 24 Opt. 25 26 24

MINMAXBD 25 20 20 Opt. 199 200 123 Opt. 727 728 673 Opt. 727 728 673
MINMAXRB 7 4 4 Opt. 19 20 19 Opt. 30 31 27 Opt. 30 31 27

MISTAKE 22 13 14 Opt. 58 59 51 Opt. 40 41 35 Opt. 40 41 35
MRIBASIS 70 55 94 Opt. 26 27 14 Opt. 10 11 8 Opt. 10 11 8

MSS1 90 73 0 Opt. 178 179 166 Inf. 56 57 58 Inf. 56 57 58
MSS2 756 703 0 Opt. 24 25 26 Opt. 10 11 12 Opt. 10 11 12

MWRIGHT 5 3 0 Opt. 63 64 57 Opt. 47 48 49 Opt. 47 48 49
NASH 18 24 6 Inf. 9 10 8 Inf. 37 38 36 Inf. 37 38 36

ODFITS 10 6 10 Opt. 79 80 81 Opt. 11 12 13 Opt. 11 12 13
OPTCNTRL 29 20 30 Opt. 31 32 33 Opt. 39 40 41 Opt. 45 46 47
ORTHREGB 27 6 0 Opt. 4 5 6 Opt. 4 5 6 Opt. 4 5 6
PENTAGON 21 15 15 Opt. 518 519 520 Opt. 518 519 520 Opt. 518 519 520

PFIT2 3 3 1 Opt. 699 700 698 Opt. 6542 6543 6536 Opt. 6542 6543 6536
PFIT3 3 3 1 Opt. 226 227 217 Opt. 144 145 137 Opt. 144 145 137
PFIT4 3 3 1 Opt. 301 302 292 Opt. 284 285 274 Opt. 284 285 274

POLAK1 5 2 2 Opt. 27 28 27 Opt. 23 24 23 Opt. 23 24 23
POLAK3 22 10 10 Opt. 230 231 224 Opt. 79 80 74 Opt. 79 80 74
POLAK4 6 3 3 Opt. 10 11 9 Opt. 12 13 12 Opt. 12 13 12
POLAK5 5 2 2 Opt. 10 11 12 Opt. 11 12 13 Opt. 11 12 13
POLAK6 9 4 4 Opt. 2300 2301 2224 Opt. 306 307 231 Opt. 306 307 231
PORTFL1 12 1 24 Opt. 35 36 37 Opt. 35 36 37 Opt. 35 36 37
PORTFL2 12 1 24 Opt. 29 30 31 Opt. 29 30 31 Opt. 29 30 31
PORTFL3 12 1 24 Opt. 42 43 44 Opt. 42 43 44 Opt. 42 43 44
PORTFL4 12 1 24 Opt. 19 20 21 Opt. 19 20 21 Opt. 19 20 21
PORTFL6 12 1 24 Opt. 23 24 25 Opt. 23 24 25 Opt. 23 24 25

POWELLSQ 2 2 0 Opt. 11 12 9 Opt. 8 9 8 Opt. 8 9 8
PRIMAL1 410 85 86 Opt. 16 17 18 Opt. 15 16 17 Opt. 15 16 17
PRIMAL2 745 96 97 Opt. 8 9 10 Opt. 8 9 10 Opt. 8 9 10
PRIMAL3 856 111 112 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8

PRIMALC1 239 9 224 Itr. 10000 10001 10002 Opt. 87 88 89 Itr. 10000 10001 10002
PRIMALC5 295 8 286 Itr. 10000 10001 10002 Opt. 21 22 23 Opt. 21 22 23
PRIMALC8 528 8 511 Itr. 10000 10001 29 Opt. 24 25 26 Opt. 24 25 26
PRODPL0 69 29 69 Opt. 77 78 70 Opt. 60 61 53 Opt. 60 61 53
PRODPL1 69 29 69 Opt. 115 116 100 Opt. 66 67 56 Opt. 66 67 56

QC 11 4 18 Opt. 7 8 9 Opt. 7 8 9 Opt. 7 8 9
QCNEW 10 3 17 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4

QPCBLEND 114 74 114 Opt. 45 46 47 Opt. 53 54 55 Opt. 53 54 55
QPCBOEI2 324 185 378 Itr. 10000 10001 103 Opt. 577 578 579 Opt. 3696 3697 3698
QPCSTAIR 532 356 532 Opt. 46 47 48 Opt. 68 69 70 Opt. 56 57 58
QPNBLEND 114 74 114 Opt. 56 57 58 Opt. 49 50 51 Opt. 49 50 51
QPNBOEI1 815 440 971 Time 932 933 934 Opt. 275 276 277 Time 391 392 393
QPNBOEI2 324 185 378 Time 5293 5294 5263 Opt. 401 402 403 Time 4619 4620 4621
QPNSTAIR 532 356 532 Itr. 10000 10001 10002 Opt. 73 74 75 Opt. 62 63 62
READING6 101 50 102 Opt. 287 288 275 Itr. 10000 10001 9998 Itr. 10000 10001 9998

RECIPE 3 3 0 Opt. 554 555 556 Opt. 811 812 813 Opt. 811 812 813
RES 22 14 42 Opt. 3 4 5 Opt. 4 5 6 Opt. 4 5 6
RK23 17 11 6 Opt. 3362 3363 3350 Opt. 4624 4625 4614 Opt. 4878 4879 4868

ROBOT 7 2 14 Opt. 40 41 42 Opt. 30 31 32 Opt. 30 31 32
ROSENMMX 9 4 4 Opt. 6261 6262 6202 Opt. 338 339 290 Opt. 338 339 290
RSNBRNE 2 2 0 Opt. 11 12 11 Opt. 16 17 14 Opt. 16 17 14

S268 10 5 5 Opt. 6 7 8 Opt. 6 7 8 Opt. 6 7 8
S316-322 2 1 0 Inf. 0 1 2 Inf. 0 1 2 Inf. 0 1 2

SIMPLLPA 4 2 4 Opt. 4 5 6 Opt. 4 5 6 Opt. 4 5 6
SIMPLLPB 5 3 5 Opt. 3 4 5 Opt. 3 4 5 Opt. 3 4 5
SINVALNE 2 2 0 Opt. 21 22 18 Opt. 20 21 18 Opt. 20 21 18
SMBANK 117 64 234 Itr. 10000 10001 44 Opt. 1541 1542 1543 Itr. 10000 10001 10002
SMMPSF 743 263 743 Opt. 190 191 151 Opt. 360 361 316 Opt. 360 361 316

SPANHYD 81 33 162 Opt. 22 23 24 Opt. 16 17 18 Opt. 16 17 18
SPIRAL 5 2 2 Opt. 103 104 77 Opt. 119 120 85 Opt. 119 120 85
SSEBLIN 216 72 384 Opt. 12 13 14 Opt. 13 14 15 Opt. 13 14 15
SSEBNLN 216 96 384 Opt. 12 13 14 Opt. 13 14 15 Opt. 13 14 15
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STATIC3 434 96 144 Itr. 10000 10001 10002 Opt. 21 22 23 Itr. 10000 10001 10002
STEENBRA 432 108 432 Opt. 14 15 16 Opt. 11 12 13 Opt. 11 12 13
STEENBRB 468 108 468 Opt. 160 161 63 Opt. 18 19 14 Opt. 18 19 14
STEENBRC 540 126 540 Opt. 284 285 164 Opt. 32 33 17 Opt. 32 33 17
STEENBRD 468 108 468 Opt. 297 298 148 Opt. 33 34 20 Opt. 33 34 20
STEENBRE 540 126 540 Opt. 270 271 186 Opt. 67 68 19 Opt. 67 68 19
STEENBRF 468 108 468 Opt. 163 164 97 Opt. 15 16 11 Opt. 15 16 11
STEENBRG 540 126 540 Opt. 329 330 261 Opt. 20 21 16 Opt. 20 21 16
SUPERSIM 2 2 1 Opt. 2 3 4 Opt. 2 3 4 Opt. 2 3 4

SWOPF 97 92 34 Opt. 440 441 406 Opt. 292 293 228 Opt. 292 293 228
SYNTHES1 12 6 18 Opt. 54 55 56 Opt. 36 37 38 Opt. 36 37 38
SYNTHES2 25 15 34 Opt. 371 372 373 Opt. 416 417 418 Opt. 432 433 434
SYNTHES3 38 23 55 Opt. 6669 6670 6671 Opt. 7314 7315 7316 Opt. 7314 7315 7316

TABLE7 624 230 1108 Itr. 10000 10001 1028 Opt. 33 34 35 Opt. 33 34 35
TAME 2 1 2 Opt. 1 2 3 Opt. 1 2 3 Opt. 1 2 3

TARGUS 162 63 277 Itr. 10000 10001 10002 Opt. 35 36 37 Opt. 35 36 37
TENBARS1 19 9 15 Itr. 10000 10001 9937 Opt. 186 187 143 Opt. 186 187 143
TENBARS3 18 8 12 Opt. 107 108 73 Itr. 10000 10001 76 Itr. 10000 10001 76
TENBARS4 19 9 11 Itr. 10000 10001 961 Opt. 642 643 494 Itr. 10000 10001 9852
TRIGGER 6 6 0 Opt. 9 10 9 Opt. 8 9 8 Opt. 8 9 8
TRIMLOSS 197 75 319 Opt. 151 152 112 Opt. 89 90 75 Opt. 89 90 75

TRO6X2 46 21 26 Itr. 10000 10001 9751 Inf. 147 148 92 Itr. 10000 10001 9945
TRUSPYR1 12 4 9 Itr. 10000 10001 9961 Opt. 1005 1006 934 Opt. 1013 1014 942

TRY-B 2 1 2 Opt. 10 11 12 Opt. 18 19 17 Opt. 18 19 17
TWOBARS 4 2 6 Opt. 54 55 50 Opt. 50 51 47 Opt. 50 51 47
WACHBIEG 3 2 2 Opt. 24 25 26 Opt. 22 23 22 Opt. 22 23 22

WATER 31 10 62 Opt. 9 10 11 Opt. 8 9 10 Opt. 8 9 10
WOMFLET 6 3 3 Opt. 8 9 9 Opt. 41 42 29 Opt. 41 42 29

YFITNE 3 17 0 Opt. 58 59 56 Itr. 10000 10001 9996 Itr. 10000 10001 9996
YORKNET 312 256 288 Opt. 149 150 123 Opt. 135 136 106 Inf. 305 306 276
ZAMB2-10 264 96 528 Opt. 47 48 44 Opt. 43 44 45 Opt. 43 44 45
ZAMB2-11 264 96 528 Opt. 17 18 19 Opt. 17 18 19 Opt. 17 18 19
ZAMB2-8 132 48 264 Opt. 17 18 19 Opt. 26 27 28 Opt. 26 27 28
ZAMB2-9 132 48 264 Opt. 2297 2298 2299 Itr. 10000 10001 10002 Itr. 10000 10001 10002

ZANGWIL3 3 3 0 Opt. 4 5 6 Opt. 5 6 7 Opt. 5 6 7
ZECEVIC2 4 2 6 Opt. 5 6 7 Opt. 5 6 7 Opt. 5 6 7
ZECEVIC3 4 2 6 Opt. 69 70 64 Opt. 47 48 44 Opt. 47 48 44
ZECEVIC4 4 2 6 Opt. 12 13 14 Opt. 15 16 17 Opt. 15 16 17

ZY2 5 2 6 Opt. 8 9 10 Opt. 8 9 10 Opt. 8 9 10

Table C3.: Matlab line search algorithms, results on COPS problems

BAL-LS AAL-LS

Name n me mb Flag Iter. Func. Grad. Flag Iter. Func. Grad.

bearing1 2500 0 2500 Opt. 4 5 6 Opt. 4 5 6
camshape1 3198 2398 3998 Opt. 30 31 32 Opt. 24 25 26

catmix1 1098 798 600 Opt. 366 672 368 Itr. 10000 10201 10002
channel1 1598 1598 0 Opt. 357 690 359 Opt. 357 690 359

elec1 150 50 0 Opt. 65 119 67 Opt. 200 205 202
gasoil1 1001 998 3 Opt. 223 441 225 Opt. 66 86 68
glider1 499 400 402 Opt. 75 107 77 Opt. 138 221 140
marine1 1615 1592 15 Opt. 124 126 126 Opt. 47 48 49

methanol1 1202 1197 5 Opt. 123 226 125 Opt. 57 101 59
minsurf1 2500 0 2500 Opt. 7 8 9 Opt. 7 8 9
pinene1 2000 1995 5 Inf. 45 46 47 Inf. 34 35 36

polygon1 1371 1273 1469 Time 627 691 629 Opt. 54 83 56
rocket1 1601 1200 2401 Opt. 37 39 39 Opt. 37 39 39

steering1 999 800 403 Opt. 28 29 30 Opt. 27 28 29
tetra1 3693 2826 2927 Opt. 5 6 7 Opt. 5 6 7

torsion1 2500 0 5000 Opt. 4 5 6 Opt. 4 5 6
triangle1 3317 1797 1802 Opt. 5 6 7 Opt. 5 6 7

Table C4.: Matlab trust region algorithms, results on COPS problems

BAL-TR AAL-TR

Name n me mb Flag Iter. Func. Grad. Flag Iter. Func. Grad.

bearing1 2500 0 2500 Opt. 3 4 5 Opt. 3 4 5
camshape1 3198 2398 3998 Inf. 4726 4727 4728 Opt. 16 17 18

catmix1 1098 798 600 Inf. 745 746 496 Time 8021 8022 7908
channel1 1598 1598 0 Opt. 610 611 402 Opt. 573 574 393

elec1 150 50 0 Opt. 108 109 75 Opt. 80 81 59
gasoil1 1001 998 3 Opt. 193 194 163 Opt. 119 120 94
glider1 499 400 402 Opt. 140 141 103 Opt. 113 114 85
marine1 1615 1592 15 Opt. 144 145 144 Opt. 56 57 58

methanol1 1202 1197 5 Opt. 366 367 174 Opt. 107 108 67
minsurf1 2500 0 2500 Opt. 14 15 11 Opt. 14 15 11
pinene1 2000 1995 5 Inf. 37 38 39 Inf. 39 40 41

polygon1 1371 1273 1469 Opt. 125 126 86 Opt. 43 44 32
rocket1 1601 1200 2401 Opt. 49 50 45 Opt. 49 50 45

steering1 999 800 403 Opt. 99 100 80 Opt. 55 56 43
tetra1 3693 2826 2927 Opt. 5 6 7 Opt. 5 6 7

torsion1 2500 0 5000 Opt. 2 3 4 Opt. 2 3 4
triangle1 3317 1797 1802 Opt. 5 6 7 Opt. 5 6 7
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Table C5.: Matlab line search algorithms, results on OPF problems

BAL-LS AAL-LS

Name n me mb Flag Iter. Func. Grad. Flag Iter. Func. Grad.
OPFapproxIEEE014 76 68 84 Opt. 16 19 18 Opt. 16 19 18

OPFcartIEEE014 108 100 98 Opt. 13 14 15 Opt. 12 13 14
OPFdcIEEE014 49 49 40 Opt. 2 3 4 Opt. 2 3 4

OPFpolarIEEE014 76 68 84 Opt. 14 15 16 Opt. 15 16 17
OPFapproxIEEE030 151 142 160 Opt. 22 23 24 Opt. 18 19 20

OPFcartIEEE030 215 206 190 Opt. 34 36 36 Opt. 30 32 32
OPFdcIEEE030 107 107 82 Opt. 4 5 6 Opt. 4 5 6

OPFpolarIEEE030 151 142 160 Opt. 35 37 37 Opt. 36 38 38
OPFapproxIEEE057 288 267 312 Opt. 24 29 26 Opt. 21 25 23

OPFcartIEEE057 410 389 369 Opt. 29 32 31 Opt. 31 34 33
OPFdcIEEE057 204 204 156 Opt. 6 7 8 Opt. 6 7 8

OPFpolarIEEE057 288 267 312 Opt. 38 55 40 Opt. 40 46 42
OPFapproxIEEE118 696 634 718 Opt. 15 16 17 Opt. 21 22 23

OPFcartIEEE118 944 882 836 Opt. 30 31 32 Opt. 27 28 29
OPFdcIEEE118 463 463 358 Opt. 3 4 5 Opt. 3 4 5

OPFpolarIEEE118 696 634 718 Opt. 24 25 26 Opt. 31 32 33
OPFapproxIEEE162 959 901 1008 Opt. 50 85 52 Opt. 51 86 53

OPFcartIEEE162 1285 1227 1170 Opt. 99 116 101 Opt. 88 94 90
OPFdcIEEE162 727 727 568 Opt. 4 5 6 Opt. 4 5 6

OPFpolarIEEE162 959 901 1008 Opt. 143 201 145 Opt. 72 90 74
OPFapproxIEEE300 1661 1487 1770 Opt. 73 94 75 Opt. 60 79 62

OPFcartIEEE300 2263 2089 2070 Opt. 91 125 93 Opt. 96 138 98
OPFdcIEEE300 1119 1119 822 Opt. 19 20 21 Opt. 19 20 21

OPFpolarIEEE300 1661 1487 1770 Opt. 78 101 80 Opt. 76 91 78
OPFapproxIEEE662 3665 3427 3834 Opt. 105 134 107 Opt. 52 80 54

OPFcartIEEE662 4991 4753 4496 Opt. 72 76 74 Opt. 62 66 64
OPFdcIEEE662 2691 2691 2032 Opt. 10 11 12 Opt. 10 11 12

OPFpolarIEEE662 3665 3427 3834 Opt. 37 39 39 Opt. 34 36 36

Table C6.: Matlab trust region algorithms, results on OPF problems

BAL-TR AAL-TR

Name n me mb Flag Iter. Func. Grad. Flag Iter. Func. Grad.

OPFapproxIEEE014 76 68 84 Opt. 24 25 22 Opt. 41 42 31
OPFcartIEEE014 108 100 98 Opt. 23 24 21 Opt. 21 22 23
OPFdcIEEE014 49 49 40 Opt. 2 3 4 Opt. 2 3 4

OPFpolarIEEE014 76 68 84 Opt. 14 15 16 Opt. 22 23 21
OPFapproxIEEE030 151 142 160 Opt. 22 23 24 Opt. 18 19 20

OPFcartIEEE030 215 206 190 Opt. 34 35 33 Opt. 35 36 34
OPFdcIEEE030 107 107 82 Opt. 3 4 5 Opt. 3 4 5

OPFpolarIEEE030 151 142 160 Opt. 30 31 30 Opt. 44 45 41
OPFapproxIEEE057 288 267 312 Opt. 36 37 28 Opt. 31 32 29

OPFcartIEEE057 410 389 369 Opt. 34 35 31 Opt. 41 42 35
OPFdcIEEE057 204 204 156 Opt. 2 3 4 Opt. 2 3 4

OPFpolarIEEE057 288 267 312 Opt. 43 44 40 Opt. 35 36 33
OPFapproxIEEE118 696 634 718 Opt. 15 16 17 Opt. 12 13 14

OPFcartIEEE118 944 882 836 Opt. 34 35 36 Opt. 35 36 37
OPFdcIEEE118 463 463 358 Opt. 2 3 4 Opt. 2 3 4

OPFpolarIEEE118 696 634 718 Opt. 27 28 29 Opt. 31 32 33
OPFapproxIEEE162 959 901 1008 Opt. 75 76 58 Opt. 76 77 61

OPFcartIEEE162 1285 1227 1170 Opt. 183 184 144 Opt. 109 110 95
OPFdcIEEE162 727 727 568 Opt. 2 3 4 Opt. 2 3 4

OPFpolarIEEE162 959 901 1008 Opt. 162 163 120 Opt. 93 94 67
OPFapproxIEEE300 1661 1487 1770 Opt. 94 95 74 Opt. 78 79 70

OPFcartIEEE300 2263 2089 2070 Opt. 131 132 91 Opt. 146 147 104
OPFdcIEEE300 1119 1119 822 Opt. 14 15 16 Opt. 14 15 16

OPFpolarIEEE300 1661 1487 1770 Opt. 87 88 68 Opt. 85 86 73
OPFapproxIEEE662 3665 3427 3834 Opt. 106 107 95 Opt. 64 65 53

OPFcartIEEE662 4991 4753 4496 Opt. 60 61 62 Opt. 55 56 57
OPFdcIEEE662 2691 2691 2032 Opt. 5 6 7 Opt. 5 6 7

OPFpolarIEEE662 3665 3427 3834 Opt. 113 114 98 Opt. 47 48 42

In Table C7 for our Lancelot software, we indicate the name (Name) along with the
numbers of variables (n), equality constraints (me), and bound constraints (mb) of each
problem solved. Then, for each algorithm, we indicate the termination flag (Flag) along
with the numbers of iterations (Iter.), gradient evaluations (Grad.), and time (Time)
required before termination. The flags indicate whether a first-order stationary point
was found (Opt.), the problem was suspected to be infeasible (Inf.), the iteration limit
was reached (Itr.), or the algorithm determined that no more progress could be made.
In this last situation, we verified whether the final point was approximately stationary
based on a loosened threshold criteria (Thr.) or not (Ter.).
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Table C7.: Lancelot algorithms, results on CUTEst problems

lancelot lancelot-steering lancelot-steering-safe

Name n me mb Flag Iter. Grad. Time Flag Iter. Grad. Time Flag Iter. Grad. Time
A0NSDSDS 6012 2004 1000 Opt. 15 19 27.03 Opt. 19 23 33.04 Opt. 19 23 33.04

A4X12 514 385 384 Thr. 1849 1790 445.10 Opt. 1307 1265 200.37 Opt. 2647 2597 713.78
A5NSDSDM 6012 2004 1000 Opt. 15 19 26.95 Opt. 19 23 33.05 Opt. 19 23 33.02
A5NSSNSM 6012 2004 1000 Opt. 15 19 27.03 Opt. 19 23 33.03 Opt. 19 23 32.94
ACOPP30 154 142 166 Thr. 92 91 0.53 Opt. 99 93 0.59 Thr. 106 100 0.57
ACOPR30 184 172 136 Thr. 105 104 0.52 Opt. 3105 3077 19.11 Thr. 1048 1020 6.19

AIRCRFTA 8 5 0 Opt. 4 5 0.00 Opt. 4 5 0.00 Opt. 4 5 0.00
AIRPORT 126 42 210 Opt. 43 44 0.06 Opt. 47 48 0.07 Opt. 43 44 0.07
ALLINITA 6 4 5 Opt. 67 68 0.01 Opt. 161 162 0.02 Opt. 86 87 0.01
ALLINITC 4 1 3 Opt. 70 71 0.01 Opt. 62 63 0.01 Opt. 64 65 0.01
ARGAUSS 3 15 0 Opt. 1 2 0.00 Opt. 1 2 0.00 Opt. 1 2 0.00
AVGASA 18 10 26 Opt. 8 9 0.00 Opt. 8 9 0.00 Opt. 8 9 0.00
AVGASB 18 10 26 Opt. 9 10 0.00 Opt. 9 10 0.00 Opt. 9 10 0.00
BIGGSC4 11 7 15 Opt. 11 12 0.00 Opt. 11 12 0.00 Opt. 11 12 0.00
BOOTH 2 2 0 Opt. 2 3 0.00 Opt. 2 3 0.00 Opt. 2 3 0.00

BRAINPC0 6907 6900 6905 Opt. 101 68 157.30 Opt. 101 68 158.22 Opt. 101 68 157.75
BRAINPC1 6907 6900 6905 Opt. 54 47 61.97 Opt. 91 91 26.26 Opt. 91 91 26.18
BRAINPC3 6907 6900 6905 Opt. 368 250 587.63 Opt. 434 289 600.06 Opt. 434 289 596.14
BRAINPC4 6907 6900 6905 Opt. 1406 1357 284.73 Opt. 1406 1357 287.96 Opt. 1406 1357 286.15
BRAINPC5 6907 6900 6905 Opt. 608 389 422.36 Opt. 301 171 330.89 Opt. 301 171 330.49
BRAINPC6 6907 6900 6905 Opt. 106 89 236.23 Opt. 106 89 237.28 Opt. 106 89 235.44
BRAINPC7 6907 6900 6905 Opt. 188 101 248.67 Opt. 188 101 246.84 Opt. 188 101 246.83
BRAINPC8 6907 6900 6905 Opt. 103 82 65.04 Opt. 103 82 64.94 Opt. 103 82 65.27
BRAINPC9 6907 6900 6905 Opt. 55 46 53.48 Opt. 55 46 53.65 Opt. 55 46 54.42

BT1 2 1 0 Opt. 24 21 0.00 Opt. 31 29 0.00 Opt. 31 29 0.00
BT10 2 2 0 Opt. 20 21 0.00 Opt. 20 21 0.00 Opt. 20 21 0.00
BT11 5 3 0 Opt. 20 20 0.00 Opt. 20 20 0.00 Opt. 20 20 0.00
BT12 5 3 0 Opt. 10 11 0.00 Opt. 10 11 0.00 Opt. 10 11 0.00
BT13 5 1 1 Opt. 16 16 0.00 Opt. 16 16 0.00 Opt. 16 16 0.00
BT2 3 1 0 Opt. 43 42 0.00 Opt. 45 44 0.01 Opt. 45 44 0.01
BT3 5 3 0 Opt. 6 7 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00
BT4 3 2 0 Opt. 26 26 0.00 Opt. 43 39 0.01 Opt. 43 39 0.01
BT5 3 2 0 Opt. 14 14 0.00 Opt. 14 14 0.00 Opt. 14 14 0.00
BT6 5 2 0 Opt. 25 24 0.00 Opt. 26 25 0.00 Opt. 26 25 0.00
BT7 5 3 0 Opt. 47 46 0.01 Opt. 39 37 0.01 Opt. 39 37 0.01
BT8 5 2 0 Opt. 28 26 0.00 Opt. 26 24 0.00 Opt. 26 24 0.00
BT9 4 2 0 Opt. 21 22 0.00 Opt. 21 22 0.00 Opt. 21 22 0.00

BYRDSPHR 3 2 0 Opt. 16 17 0.00 Opt. 16 17 0.00 Opt. 16 17 0.00
C-RELOAD 426 284 684 Opt. 119 113 3.24 Opt. 132 126 3.47 Opt. 132 126 3.47
CANTILVR 6 1 5 Opt. 26 26 0.00 Opt. 22 23 0.00 Opt. 22 23 0.00

CB2 6 3 3 Opt. 13 14 0.00 Opt. 13 14 0.00 Opt. 13 14 0.00
CB3 6 3 3 Opt. 13 14 0.00 Opt. 13 14 0.00 Opt. 13 14 0.00

CHACONN1 6 3 3 Opt. 9 10 0.00 Opt. 9 10 0.00 Opt. 9 10 0.00
CHACONN2 6 3 3 Opt. 13 14 0.00 Opt. 13 14 0.00 Opt. 13 14 0.00
CLUSTER 2 2 0 Opt. 12 11 0.00 Opt. 12 11 0.00 Opt. 12 11 0.00

CONGIGMZ 8 5 5 Opt. 28 28 0.00 Opt. 28 28 0.00 Opt. 28 28 0.00
COOLHANS 9 9 0 Opt. 114 108 0.02 Opt. 114 108 0.02 Opt. 114 108 0.02

CRESC4 14 8 13 Opt. 8209 8191 1.38 Opt. 8232 8220 1.60 Opt. 8232 8220 1.59
CSFI2 7 4 7 Opt. 89 84 0.01 Opt. 89 84 0.01 Opt. 89 84 0.01

CUBENE 2 2 0 Opt. 10 10 0.00 Opt. 10 10 0.00 Opt. 10 10 0.00
DALLASL 906 667 1812 Opt. 64 65 1.35 Opt. 34 35 2.34 Opt. 39 40 1.95
DALLASM 196 151 392 Opt. 808 809 1.02 Opt. 27 28 0.14 Opt. 33 34 0.14
DALLASS 46 31 92 Opt. 57 58 0.03 Opt. 22 23 0.02 Opt. 28 29 0.02
DECONVC 63 1 51 Opt. 30 27 0.05 Opt. 25 23 0.03 Opt. 25 23 0.03
DEGENLPA 20 15 40 Opt. 25 28 0.01 Inf. 12 14 0.00 Inf. 12 14 0.00
DEGENLPB 20 15 40 Opt. 20 21 0.00 Opt. 20 21 0.01 Opt. 20 21 0.01

DEMBO7 36 20 52 Thr. 1209 1090 0.31 Opt. 2217 2032 0.53 Opt. 2111 1935 0.50
DEMYMALO 6 3 3 Opt. 13 13 0.00 Opt. 13 13 0.00 Opt. 13 13 0.00

DIPIGRI 11 4 4 Opt. 1184 1183 0.11 Opt. 641 640 0.08 Opt. 641 640 0.08
DISC2 35 23 20 Opt. 52 47 0.03 Opt. 59 54 0.03 Opt. 59 54 0.03

DIXCHLNG 10 5 0 Opt. 31 29 0.01 Opt. 121 110 0.02 Opt. 48 45 0.01
DNIEPER 61 24 112 Opt. 38 39 0.01 Opt. 38 39 0.01 Opt. 40 41 0.01

DUAL1 85 1 170 Opt. 6 8 0.05 Opt. 6 8 0.05 Opt. 6 8 0.05
DUAL2 96 1 192 Opt. 3 4 0.02 Opt. 3 4 0.02 Opt. 3 4 0.02
DUAL3 111 1 222 Opt. 6 9 0.08 Opt. 6 9 0.08 Opt. 6 9 0.08
DUAL4 75 1 150 Opt. 7 8 0.02 Opt. 7 8 0.03 Opt. 7 8 0.03

DUALC5 285 278 293 Ter. 42 38 0.16 Ter. 43 40 0.18 Thr. 40 38 0.17
EQC 12 3 17 Opt. 0 2 0.00 Opt. 0 2 0.00 Opt. 0 2 0.00

ERRINBAR 19 9 14 Opt. 667 616 0.17 Opt. 1052 966 0.28 Opt. 1052 966 0.28
EXPFITA 27 22 22 Opt. 108 108 0.04 Opt. 15 16 0.01 Opt. 15 16 0.01
EXPFITB 107 102 102 Opt. 35 36 0.05 Opt. 55 56 0.09 Opt. 55 56 0.09
EXPFITC 507 502 502 Opt. 51 52 0.38 Opt. 150 151 1.36 Opt. 150 151 1.35

EXTRASIM 2 1 1 Opt. 2 3 0.00 Opt. 2 3 0.00 Opt. 2 3 0.00
FCCU 19 8 19 Opt. 6 7 0.00 Opt. 4 5 0.00 Opt. 4 5 0.00

FLETCHER 7 4 4 Itr. 10000 184 0.85 Opt. 36 33 0.01 Opt. 36 33 0.01
FLT 2 2 0 Opt. 10 11 0.00 Opt. 10 11 0.00 Opt. 10 11 0.00

GENHS28 10 8 0 Opt. 5 6 0.00 Opt. 5 6 0.00 Opt. 5 6 0.00
GIGOMEZ1 6 3 3 Opt. 14 14 0.00 Opt. 14 14 0.00 Opt. 14 14 0.00
GIGOMEZ2 6 3 3 Opt. 13 14 0.00 Opt. 13 14 0.00 Opt. 13 14 0.00
GIGOMEZ3 6 3 3 Opt. 13 14 0.00 Opt. 13 14 0.00 Opt. 13 14 0.00
GMNCASE1 475 300 300 Opt. 22 23 5.84 Opt. 18 20 5.02 Opt. 18 20 5.04
GMNCASE2 1225 1050 1050 Opt. 23 24 9.15 Opt. 18 19 8.09 Opt. 18 19 8.10
GMNCASE3 1225 1050 1050 Opt. 23 24 8.67 Opt. 20 21 7.95 Opt. 20 21 7.94
GMNCASE4 525 350 350 Opt. 31 33 3.67 Opt. 27 29 3.24 Opt. 29 31 3.45

GOFFIN 101 50 50 Opt. 53 54 0.23 Opt. 53 54 0.24 Opt. 53 54 0.23
GOTTFR 2 2 0 Opt. 19 17 0.00 Opt. 19 17 0.00 Opt. 19 17 0.00

GOULDQP1 32 17 64 Opt. 14 15 0.00 Opt. 8 9 0.01 Opt. 9 10 0.01
GROUPING 100 125 200 Opt. 28 31 0.04 Opt. 31 34 0.06 Opt. 31 34 0.06
GROWTH 3 12 0 Opt. 132 121 0.01 Opt. 132 121 0.01 Opt. 132 121 0.01
HAIFAM 249 150 150 Opt. 5229 5220 29.37 Itr. 10000 10001 34.29 Itr. 10000 10001 34.03
HAIFAS 22 9 9 Opt. 33 29 0.01 Opt. 27 26 0.01 Opt. 27 26 0.01
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HALDMADS 48 42 42 Opt. 90 81 0.04 Opt. 92 82 0.05 Opt. 92 82 0.05
HATFLDF 3 3 0 Opt. 15 13 0.00 Opt. 15 13 0.00 Opt. 15 13 0.00

HATFLDFL 0 0 0 Opt. 407 403 0.04 Opt. 407 403 0.04 Opt. 407 403 0.04
HATFLDG 25 25 0 Opt. 18 17 0.00 Opt. 18 17 0.00 Opt. 18 17 0.00
HATFLDH 11 7 15 Opt. 8 9 0.00 Opt. 8 9 0.00 Opt. 8 9 0.00
HEART6 6 6 0 Opt. 833 827 0.09 Opt. 833 827 0.09 Opt. 833 827 0.09
HEART8 8 8 0 Opt. 101 98 0.01 Opt. 101 98 0.01 Opt. 101 98 0.01
HELSBY 1408 1399 685 Thr. 261 253 14.00 Opt. 306 296 14.58 Opt. 306 296 14.59
HIE1327D 1183 1443 2223 Opt. 30 35 1.83 Opt. 30 34 1.76 Opt. 30 34 1.76
HIE1372D 637 525 1156 Opt. 23 24 0.61 Opt. 23 26 0.60 Opt. 23 26 0.60
HIER13 2020 3313 4040 Opt. 17 18 0.40 Opt. 17 18 0.41 Opt. 17 18 0.41

HIER133A 2197 3549 4217 Opt. 25 29 1.69 Opt. 28 33 2.36 Opt. 28 33 2.36
HIER133B 2197 3549 4217 Opt. 25 29 1.69 Opt. 28 33 2.36 Opt. 28 33 2.36
HIER133C 2197 3549 4217 Opt. 25 29 1.71 Opt. 28 33 2.36 Opt. 28 33 2.36
HIER133D 2197 3549 4217 Opt. 26 30 1.72 Opt. 37 40 2.83 Opt. 37 40 2.83
HIER133E 2197 3549 4217 Opt. 27 30 1.72 Opt. 30 37 1.64 Opt. 30 37 1.64

HIER16 3564 5484 7128 Opt. 16 17 1.13 Opt. 16 17 1.15 Opt. 16 17 1.15
HIER163A 4096 5376 7660 Opt. 30 33 10.00 Opt. 26 33 8.73 Opt. 26 33 8.73
HIER163B 4096 5376 7660 Opt. 30 33 10.05 Opt. 26 33 8.73 Opt. 26 33 8.74
HIER163C 4096 5376 7660 Opt. 30 33 9.98 Opt. 26 33 8.73 Opt. 26 33 8.72
HIER163D 4096 5376 7660 Opt. 35 38 16.25 Opt. 35 41 15.28 Opt. 35 41 15.27
HIER163E 4096 5376 7660 Opt. 35 38 16.24 Opt. 35 41 15.28 Opt. 35 41 15.28

HIMMELBA 2 2 0 Opt. 1 2 0.00 Opt. 1 2 0.00 Opt. 1 2 0.00
HIMMELBC 2 2 0 Opt. 8 8 0.00 Opt. 8 8 0.00 Opt. 8 8 0.00
HIMMELBD 2 2 0 Opt. 10 11 0.00 Opt. 10 11 0.00 Opt. 10 11 0.00
HIMMELBE 3 3 0 Opt. 4 5 0.00 Opt. 4 5 0.00 Opt. 4 5 0.00
HIMMELBI 112 12 212 Opt. 14 15 0.04 Opt. 12 13 0.04 Opt. 12 13 0.04
HIMMELBJ 45 14 43 Opt. 134 139 0.09 Ter. 45 46 0.04 Opt. 49 52 0.04
HIMMELBK 24 14 24 Opt. 99 88 0.05 Opt. 99 88 0.06 Opt. 99 88 0.06
HIMMELP3 4 2 6 Opt. 1897 1897 0.16 Opt. 2107 2107 0.21 Opt. 2107 2107 0.21
HIMMELP4 5 3 7 Opt. 2120 2120 0.19 Opt. 2121 2121 0.23 Opt. 2121 2121 0.23
HIMMELP5 5 3 7 Opt. 1539 1539 0.13 Opt. 1430 1430 0.15 Opt. 1430 1430 0.15
HIMMELP6 7 5 9 Opt. 1396 1396 0.13 Opt. 1274 1274 0.14 Opt. 1274 1274 0.14

HONG 4 1 8 Opt. 21 21 0.00 Opt. 10 11 0.00 Opt. 10 11 0.00
HS10 3 1 0 Opt. 17 18 0.00 Opt. 17 18 0.00 Opt. 17 18 0.00
HS100 11 4 4 Opt. 1186 1185 0.11 Opt. 640 639 0.08 Opt. 640 639 0.08

HS100LNP 7 2 0 Opt. 24 23 0.00 Opt. 24 23 0.00 Opt. 24 23 0.00
HS104 13 5 21 Opt. 59 50 0.01 Opt. 34 32 0.01 Opt. 34 32 0.01
HS105 9 1 16 Opt. 11 12 0.02 Opt. 14 15 0.03 Opt. 13 14 0.03
HS107 9 6 8 Opt. 33 34 0.01 Opt. 31 32 0.01 Opt. 30 31 0.01
HS108 22 13 14 Opt. 25 21 0.01 Opt. 18 17 0.00 Opt. 18 17 0.00
HS11 3 1 0 Opt. 15 16 0.00 Opt. 15 16 0.00 Opt. 15 16 0.00
HS111 10 3 20 Opt. 57 54 0.01 Opt. 30 29 0.01 Opt. 30 29 0.01

HS111LNP 10 3 0 Opt. 57 54 0.01 Opt. 30 29 0.01 Opt. 30 29 0.01
HS112 10 3 10 Opt. 46 47 0.01 Opt. 27 28 0.01 Opt. 27 28 0.01
HS113 18 8 8 Opt. 24 25 0.01 Opt. 2564 2563 0.47 Opt. 2564 2563 0.47
HS114 18 11 28 Opt. 180 170 0.02 Opt. 95 91 0.01 Opt. 95 91 0.01
HS116 27 14 40 Ter. 2528 2261 0.53 Itr. 10000 8988 2.30 Thr. 1732 1543 0.42
HS117 20 5 20 Opt. 40 38 0.01 Opt. 12 12 0.01 Opt. 12 12 0.01
HS118 32 17 47 Opt. 15 16 0.00 Opt. 10 11 0.00 Opt. 10 11 0.00
HS119 16 8 32 Opt. 23 24 0.01 Opt. 22 23 0.01 Opt. 22 23 0.01
HS12 3 1 0 Opt. 77 76 0.01 Opt. 54 53 0.01 Opt. 54 53 0.01
HS13 3 1 2 Opt. 56 57 0.01 Opt. 53 54 0.01 Opt. 53 54 0.01
HS14 3 2 0 Opt. 13 14 0.00 Opt. 13 14 0.00 Opt. 13 14 0.00
HS15 4 2 3 Opt. 52 50 0.01 Opt. 29 29 0.00 Opt. 29 29 0.00
HS16 4 2 5 Opt. 9 10 0.00 Opt. 11 12 0.00 Opt. 11 12 0.00
HS17 4 2 5 Opt. 28 26 0.00 Opt. 10 11 0.00 Opt. 10 11 0.00
HS18 4 2 6 Opt. 47 44 0.01 Opt. 55 53 0.01 Opt. 55 53 0.01
HS19 4 2 6 Opt. 30 30 0.00 Opt. 30 31 0.00 Opt. 31 32 0.00
HS20 5 3 5 Opt. 34 33 0.00 Opt. 9 10 0.00 Opt. 9 10 0.00
HS21 3 1 4 Opt. 1 2 0.00 Opt. 1 2 0.00 Opt. 1 2 0.00

HS21MOD 8 1 8 Opt. 1 2 0.00 Opt. 1 2 0.00 Opt. 1 2 0.00
HS22 4 2 2 Opt. 10 11 0.00 Opt. 10 11 0.00 Opt. 10 11 0.00
HS23 7 5 9 Opt. 79 77 0.01 Opt. 67 67 0.01 Opt. 67 67 0.01
HS24 5 3 5 Opt. 5 6 0.00 Opt. 5 6 0.00 Opt. 5 6 0.00
HS26 3 1 0 Opt. 25 24 0.00 Opt. 32 31 0.00 Opt. 32 31 0.00
HS268 10 5 5 Opt. 3 4 0.00 Opt. 2 3 0.00 Opt. 2 3 0.00
HS27 3 1 0 Opt. 17 16 0.00 Opt. 19 18 0.00 Opt. 19 18 0.00
HS28 3 1 0 Opt. 1 2 0.00 Opt. 1 2 0.00 Opt. 1 2 0.00
HS29 4 1 0 Opt. 37 37 0.00 Opt. 35 35 0.00 Opt. 35 35 0.00
HS30 4 1 6 Opt. 4 6 0.00 Opt. 9 10 0.00 Opt. 9 10 0.00
HS31 4 1 6 Opt. 18 17 0.00 Opt. 9 10 0.00 Opt. 9 10 0.00
HS32 4 2 3 Opt. 7 8 0.00 Opt. 5 6 0.00 Opt. 5 6 0.00
HS33 5 2 6 Opt. 8 9 0.00 Opt. 9 10 0.00 Opt. 9 10 0.00
HS34 5 2 8 Opt. 19 18 0.00 Opt. 20 19 0.00 Opt. 20 19 0.00
HS35 4 1 3 Opt. 6 7 0.00 Opt. 3 4 0.00 Opt. 3 4 0.00
HS35I 4 1 6 Opt. 6 7 0.00 Opt. 3 4 0.00 Opt. 3 4 0.00

HS35MOD 4 1 2 Opt. 1 2 0.00 Opt. 1 2 0.00 Opt. 1 2 0.00
HS36 4 1 6 Opt. 6 7 0.00 Opt. 4 5 0.00 Opt. 4 5 0.00
HS37 5 2 8 Opt. 14 15 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00
HS39 4 2 0 Opt. 21 22 0.00 Opt. 21 22 0.00 Opt. 21 22 0.00
HS40 4 3 0 Itr. 10000 10001 1.24 Opt. 14 13 0.00 Opt. 14 13 0.00
HS41 4 1 8 Opt. 6 7 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00
HS42 4 2 0 Opt. 12 13 0.00 Opt. 11 12 0.00 Opt. 11 12 0.00
HS43 7 3 3 Opt. 24 24 0.00 Opt. 64 63 0.01 Opt. 64 63 0.01
HS44 10 6 10 Opt. 9 10 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00

HS44NEW 10 6 10 Opt. 8 9 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00
HS46 5 2 0 Opt. 23 24 0.00 Opt. 45 38 0.01 Opt. 45 38 0.01
HS47 5 3 0 Opt. 15 16 0.00 Opt. 36 35 0.01 Opt. 36 35 0.01
HS48 5 2 0 Opt. 1 2 0.00 Opt. 1 2 0.00 Opt. 1 2 0.00
HS49 5 2 0 Opt. 15 16 0.00 Opt. 15 16 0.00 Opt. 15 16 0.00
HS50 5 3 0 Opt. 10 11 0.00 Opt. 8 9 0.00 Opt. 8 9 0.00
HS51 5 3 0 Opt. 1 2 0.00 Opt. 1 2 0.00 Opt. 1 2 0.00
HS52 5 3 0 Opt. 6 7 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00
HS53 5 3 10 Opt. 6 7 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00
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HS54 6 1 12 Opt. 100 96 0.01 Opt. 96 93 0.01 Opt. 96 93 0.01
HS55 6 6 8 Opt. 6 7 0.00 Opt. 11 12 0.00 Opt. 11 12 0.00
HS56 7 4 0 Inf. 119 107 0.01 Opt. 16 15 0.00 Opt. 16 15 0.00
HS57 3 1 2 Opt. 21 20 0.00 Opt. 21 20 0.00 Opt. 21 20 0.00
HS59 5 3 7 Opt. 622 622 0.06 Opt. 622 622 0.07 Opt. 622 622 0.07
HS6 2 1 0 Opt. 21 21 0.00 Opt. 20 20 0.00 Opt. 20 20 0.00
HS60 3 1 6 Opt. 14 14 0.00 Opt. 15 15 0.00 Opt. 15 15 0.00
HS61 3 2 0 Opt. 14 14 0.00 Opt. 13 13 0.00 Opt. 13 13 0.00
HS62 3 1 6 Opt. 34 35 0.00 Opt. 11 11 0.00 Opt. 19 19 0.00
HS63 3 2 3 Opt. 14 14 0.00 Opt. 14 14 0.00 Opt. 14 14 0.00
HS64 4 1 3 Opt. 37 38 0.00 Opt. 37 38 0.01 Opt. 37 38 0.01
HS65 4 1 6 Opt. 27 27 0.00 Opt. 85 84 0.01 Opt. 85 84 0.01
HS66 5 2 8 Opt. 13 12 0.00 Opt. 11 10 0.00 Opt. 11 10 0.00
HS68 4 2 8 Opt. 79 75 0.01 Opt. 92 85 0.01 Opt. 94 87 0.01
HS69 4 2 8 Opt. 46 42 0.01 Opt. 27 25 0.00 Opt. 27 25 0.00
HS7 2 1 0 Opt. 15 16 0.00 Opt. 15 16 0.00 Opt. 15 16 0.00
HS70 5 1 8 Opt. 34 29 0.01 Opt. 25 23 0.01 Opt. 25 23 0.01
HS71 5 2 8 Opt. 14 15 0.00 Opt. 14 15 0.00 Opt. 14 15 0.00
HS72 6 2 10 Opt. 66 67 0.01 Opt. 66 67 0.01 Opt. 66 67 0.01
HS73 6 3 6 Opt. 17 18 0.00 Opt. 16 17 0.00 Opt. 16 17 0.00
HS74 6 5 10 Opt. 14 15 0.00 Opt. 15 16 0.00 Opt. 15 16 0.00
HS75 6 5 10 Thr. 87 78 0.01 Thr. 126 114 0.02 Thr. 96 89 0.01
HS76 7 3 7 Opt. 5 6 0.00 Opt. 4 5 0.00 Opt. 4 5 0.00
HS76I 7 3 11 Opt. 5 6 0.00 Opt. 4 5 0.00 Opt. 4 5 0.00
HS77 5 2 0 Opt. 15 16 0.00 Opt. 15 16 0.00 Opt. 15 16 0.00
HS78 5 3 0 Opt. 15 14 0.00 Opt. 15 14 0.00 Opt. 15 14 0.00
HS79 5 3 0 Opt. 10 10 0.00 Opt. 10 10 0.00 Opt. 10 10 0.00
HS8 2 2 0 Opt. 10 10 0.00 Opt. 10 10 0.00 Opt. 10 10 0.00
HS80 5 3 10 Opt. 9 10 0.00 Opt. 9 10 0.00 Opt. 9 10 0.00
HS81 5 3 10 Opt. 13 13 0.00 Opt. 15 16 0.00 Opt. 15 16 0.00
HS83 8 3 13 Opt. 19 20 0.00 Opt. 17 18 0.00 Opt. 18 19 0.00
HS84 8 3 13 Ter. 1850 1849 0.20 Thr. 1857 1857 0.22 Thr. 1857 1857 0.22
HS86 15 10 15 Opt. 15 16 0.00 Opt. 8 9 0.00 Opt. 8 9 0.00
HS88 3 1 0 Opt. 49 48 0.01 Opt. 49 48 0.01 Opt. 49 48 0.01
HS89 4 1 0 Opt. 53 52 0.02 Opt. 59 56 0.02 Opt. 59 56 0.02
HS9 2 1 0 Opt. 5 5 0.00 Opt. 5 5 0.00 Opt. 5 5 0.00
HS90 5 1 0 Opt. 87 67 0.05 Opt. 61 54 0.03 Opt. 61 54 0.03
HS91 6 1 0 Opt. 65 57 0.04 Opt. 66 56 0.05 Opt. 66 56 0.05
HS92 7 1 0 Opt. 80 61 0.06 Opt. 67 55 0.06 Opt. 67 55 0.06
HS93 8 2 8 Inf. 2 3 0.00 Opt. 29 28 0.01 Opt. 29 28 0.01
HS95 10 4 16 Thr. 9 8 0.00 Thr. 9 8 0.00 Thr. 9 8 0.00
HS96 10 4 16 Opt. 9 12 0.00 Opt. 9 12 0.00 Opt. 9 12 0.00
HS97 10 4 16 Opt. 6 8 0.00 Opt. 5 7 0.00 Opt. 5 7 0.00
HS98 10 4 16 Opt. 6 8 0.00 Opt. 5 7 0.00 Opt. 5 7 0.00

HUBFIT 3 1 1 Opt. 6 7 0.00 Opt. 3 4 0.00 Opt. 3 4 0.00
HYDCAR6 29 29 0 Thr. 6080 5572 2.73 Thr. 6080 5572 2.72 Thr. 6080 5572 2.72
HYPCIR 2 2 0 Opt. 7 7 0.00 Opt. 7 7 0.00 Opt. 7 7 0.00

JJTABEL3 3025 1650 5038 Opt. 87 91 89.97 Opt. 87 91 186.81 Opt. 87 91 186.88
KIWCRESC 5 2 2 Opt. 14 15 0.00 Opt. 14 15 0.00 Opt. 14 15 0.00

KSIP 1021 1001 1001 Thr. 46 47 4.27 Opt. 61 62 4.75 Opt. 61 62 4.76
LAKES 90 78 18 Ter. 467 422 0.32 Thr. 1480 1346 0.99 Ter. 2418 2163 1.60

LEAKNET 156 153 82 Opt. 88 88 0.20 Opt. 113 112 0.21 Opt. 113 112 0.21
LEUVEN7 1306 946 1605 Opt. 45 48 14.10 Opt. 45 49 9.72 Opt. 45 49 9.62

LIN 4 2 8 Opt. 16 17 0.00 Opt. 16 17 0.00 Opt. 16 17 0.00
LINSPANH 97 33 162 Opt. 7 10 0.01 Opt. 9 13 0.01 Opt. 9 13 0.01
LOADBAL 51 31 62 Opt. 39 41 0.02 Opt. 38 39 0.02 Opt. 38 39 0.02
LOTSCHD 12 7 12 Opt. 6 7 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00

LSNNODOC 5 4 6 Opt. 10 12 0.00 Opt. 7 8 0.00 Opt. 7 8 0.00
LSQFIT 3 1 1 Opt. 6 7 0.00 Opt. 3 4 0.00 Opt. 3 4 0.00

MADSEN 9 6 6 Opt. 14 15 0.00 Opt. 14 15 0.00 Opt. 14 15 0.00
MAKELA1 5 2 2 Opt. 11 11 0.00 Opt. 11 11 0.00 Opt. 11 11 0.00
MAKELA2 6 3 3 Opt. 10 11 0.00 Opt. 10 11 0.00 Opt. 10 11 0.00
MAKELA3 41 20 20 Opt. 42 38 0.01 Opt. 52 47 0.01 Opt. 52 47 0.01
MAKELA4 61 40 40 Opt. 6 7 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00
MARATOS 2 1 0 Opt. 8 9 0.00 Opt. 7 8 0.00 Opt. 7 8 0.00
MATRIX2 8 2 6 Opt. 9 10 0.00 Opt. 12 13 0.00 Opt. 12 13 0.00

METHANB8 31 31 0 Thr. 1269 1233 0.64 Thr. 1269 1233 0.64 Thr. 1269 1233 0.64
METHANL8 31 31 0 Thr. 5593 5303 2.52 Thr. 5593 5303 2.51 Thr. 5593 5303 2.50
MIFFLIN1 5 2 2 Opt. 10 10 0.00 Opt. 15 14 0.00 Opt. 15 14 0.00
MIFFLIN2 5 2 2 Opt. 17 18 0.00 Opt. 17 18 0.00 Opt. 17 18 0.00

MINMAXBD 25 20 20 Opt. 250 250 0.09 Opt. 354 353 0.12 Opt. 354 353 0.12
MINMAXRB 7 4 4 Opt. 54 52 0.01 Opt. 54 52 0.01 Opt. 54 52 0.01

MISTAKE 22 13 14 Opt. 20 17 0.01 Opt. 20 17 0.01 Opt. 20 17 0.01
MRIBASIS 82 55 94 Opt. 120 114 0.16 Inf. 116 110 0.16 Inf. 116 110 0.16

MSS1 90 73 0 Opt. 502 473 1.83 Opt. 901 870 3.65 Itr. 10000 3550 35.76
MWRIGHT 5 3 0 Opt. 60 57 0.01 Opt. 24 22 0.00 Opt. 24 22 0.00
NINENEW 6546 7340 13092 Opt. 17 18 6.27 Opt. 17 18 6.32 Opt. 17 18 6.32

NYSTROM5 18 20 0 Opt. 40 35 0.01 Opt. 40 35 0.01 Opt. 40 35 0.01
ODFITS 10 6 10 Opt. 8 9 0.00 Opt. 8 9 0.00 Opt. 8 9 0.00

OPTCNTRL 32 20 30 Opt. 23 24 0.01 Opt. 22 23 0.01 Opt. 22 23 0.01
ORTHREGB 27 6 0 Opt. 47 35 0.02 Opt. 47 35 0.02 Opt. 47 35 0.02
PENTAGON 21 15 15 Opt. 7 8 0.00 Opt. 7 8 0.00 Opt. 7 8 0.00

PFIT1 3 3 1 Opt. 235 230 0.02 Opt. 235 230 0.02 Opt. 235 230 0.03
PFIT2 3 3 1 Opt. 250 244 0.02 Opt. 250 244 0.02 Opt. 250 244 0.02
PFIT3 3 3 1 Opt. 71 64 0.01 Opt. 71 64 0.01 Opt. 71 64 0.01
PFIT4 3 3 1 Opt. 823 799 0.07 Opt. 823 799 0.07 Opt. 823 799 0.07

POLAK1 5 2 2 Opt. 21 21 0.00 Opt. 21 21 0.00 Opt. 21 21 0.00
POLAK2 13 2 2 Opt. 9 10 0.00 Opt. 9 10 0.00 Opt. 9 10 0.00
POLAK3 22 10 10 Opt. 50 48 0.01 Opt. 50 48 0.02 Opt. 50 48 0.02
POLAK4 6 3 3 Ter. 17 13 0.00 Thr. 15 13 0.00 Thr. 15 13 0.00
POLAK5 5 2 2 Opt. 6 7 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00
POLAK6 9 4 4 Opt. 304 303 0.03 Opt. 290 289 0.04 Opt. 290 289 0.04
PORTFL1 12 1 24 Opt. 2 3 0.00 Opt. 2 3 0.00 Opt. 2 3 0.00
PORTFL2 12 1 24 Opt. 3 4 0.00 Opt. 3 4 0.00 Opt. 3 4 0.00
PORTFL3 12 1 24 Opt. 2 3 0.00 Opt. 2 3 0.00 Opt. 2 3 0.00
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PORTFL4 12 1 24 Opt. 4 5 0.00 Opt. 4 5 0.00 Opt. 4 5 0.00
PORTFL6 12 1 24 Opt. 4 5 0.00 Opt. 4 5 0.00 Opt. 4 5 0.00

POWELLBS 2 2 0 Opt. 23 24 0.00 Opt. 23 24 0.00 Opt. 23 24 0.00
POWELLSQ 2 2 0 Opt. 11 11 0.00 Opt. 11 11 0.00 Opt. 11 11 0.00
PRIMAL1 410 85 86 Opt. 9 10 0.39 Opt. 8 9 0.38 Opt. 8 9 0.38
PRIMAL2 745 96 97 Opt. 8 9 0.99 Opt. 8 10 0.99 Opt. 8 10 1.00
PRIMAL3 856 111 112 Opt. 8 9 5.59 Opt. 9 11 6.44 Opt. 9 11 6.49
PRIMAL4 1564 75 76 Opt. 9 10 12.52 Opt. 8 9 11.45 Opt. 8 9 11.57

PRIMALC2 238 7 236 Opt. 267 268 0.07 Thr. 268 267 0.08 Thr. 268 267 0.08
PRIMALC5 295 8 286 Opt. 21 22 0.01 Opt. 21 22 0.01 Opt. 21 22 0.01
PRIMALC8 528 8 511 Opt. 512 513 0.65 Thr. 439 439 0.61 Thr. 439 439 0.61
PRODPL0 69 29 69 Thr. 31 30 0.01 Opt. 36 34 0.01 Opt. 36 34 0.01
PRODPL1 69 29 69 Opt. 80 76 0.03 Opt. 74 69 0.03 Opt. 74 69 0.03

QC 13 4 18 Opt. 1 2 0.00 Opt. 2 3 0.00 Opt. 2 3 0.00
QCNEW 12 3 17 Opt. 0 2 0.00 Opt. 0 2 0.00 Opt. 0 2 0.00

QPCBLEND 114 74 114 Thr. 46 46 0.08 Opt. 74 78 0.12 Opt. 74 78 0.12
QPCSTAIR 614 356 532 Opt. 83 88 2.74 Opt. 100 103 2.82 Opt. 98 103 3.19
QPNBLEND 114 74 114 Opt. 38 39 0.07 Opt. 56 58 0.09 Opt. 56 58 0.11
QPNSTAIR 614 356 532 Itr. 10000 10001 16.87 Opt. 103 106 2.84 Opt. 110 113 4.07
READING6 102 50 102 Opt. 6127 6021 7.10 Opt. 53 52 0.22 Opt. 53 52 0.23
READING7 1002 500 1002 Itr. 10000 10001 122.20 Opt. 29 30 61.31 Opt. 26 27 56.69
READING8 2002 1000 2002 Itr. 10000 10001 767.49 Opt. 23 24 496.70 Opt. 42 43 887.68

RECIPE 3 3 0 Opt. 22 23 0.00 Opt. 22 23 0.00 Opt. 22 23 0.00
RES 22 14 42 Opt. 2 3 0.00 Opt. 2 3 0.00 Opt. 2 3 0.00
RK23 17 11 6 Opt. 82 70 0.01 Opt. 79 69 0.01 Opt. 79 69 0.01

ROBOT 14 2 14 Opt. 52 49 0.01 Opt. 43 40 0.01 Opt. 43 40 0.01
ROSENMMX 9 4 4 Opt. 30 30 0.00 Opt. 37 37 0.01 Opt. 37 37 0.01
RSNBRNE 2 2 0 Opt. 6 7 0.00 Opt. 6 7 0.00 Opt. 6 7 0.00

S268 10 5 5 Opt. 3 4 0.00 Opt. 2 3 0.00 Opt. 2 3 0.00
S316-322 2 1 0 Opt. 21 22 0.00 Opt. 21 22 0.00 Opt. 21 22 0.00

SIMPLLPA 4 2 4 Opt. 11 10 0.00 Opt. 11 10 0.00 Opt. 11 10 0.00
SIMPLLPB 5 3 5 Opt. 4 5 0.00 Opt. 4 5 0.00 Opt. 4 5 0.00
SINVALNE 2 2 0 Opt. 2 3 0.00 Opt. 2 3 0.00 Opt. 2 3 0.00
SMBANK 117 64 234 Opt. 50 51 0.12 Opt. 93 94 0.39 Opt. 93 94 0.39
SPANHYD 97 33 162 Opt. 23 28 0.05 Opt. 8 9 0.02 Opt. 15 17 0.02

SPIRAL 5 2 2 Opt. 89 83 0.01 Opt. 84 83 0.01 Opt. 84 83 0.01
SSEBLIN 218 72 384 Opt. 29 30 0.03 Opt. 29 30 0.04 Opt. 26 27 0.03
SSEBNLN 218 96 384 Opt. 29 30 0.03 Opt. 28 29 0.05 Opt. 26 27 0.04

STEENBRA 432 108 432 Opt. 17 18 0.07 Opt. 17 18 0.07 Opt. 17 18 0.07
STEENBRB 468 108 468 Opt. 131 127 0.29 Opt. 74 73 0.42 Opt. 47 47 0.31
STEENBRC 540 126 540 Opt. 123 120 0.34 Opt. 45 42 0.48 Opt. 74 70 0.45
STEENBRD 468 108 468 Opt. 149 144 0.30 Opt. 46 46 0.43 Opt. 41 42 0.23
STEENBRE 540 126 540 Opt. 250 234 0.46 Opt. 99 93 0.81 Opt. 78 76 0.55
STEENBRF 468 108 468 Opt. 151 145 0.29 Opt. 62 60 0.28 Opt. 54 53 0.27
STEENBRG 540 126 540 Opt. 138 134 0.40 Opt. 123 115 0.64 Opt. 77 76 0.44
SUPERSIM 2 2 1 Opt. 3 4 0.00 Opt. 3 4 0.00 Opt. 3 4 0.00

SWOPF 97 92 34 Opt. 56 55 0.09 Opt. 56 55 0.09 Opt. 56 55 0.09
SYNTHES1 12 6 18 Opt. 14 15 0.00 Opt. 11 12 0.00 Opt. 11 12 0.00
SYNTHES2 24 14 33 Opt. 23 24 0.00 Opt. 23 24 0.01 Opt. 23 24 0.01
SYNTHES3 38 23 55 Opt. 21 22 0.01 Opt. 17 17 0.01 Opt. 17 17 0.01

TABLE1 1584 510 2546 Opt. 1677 1680 453.85 Opt. 370 375 100.95 Opt. 370 375 103.01
TABLE3 4992 2464 7389 Opt. 56 61 157.23 Opt. 56 61 157.08 Opt. 56 61 157.27
TABLE4 4992 2464 7389 Opt. 56 61 156.99 Opt. 56 61 157.31 Opt. 56 61 157.50
TABLE5 4992 2464 7389 Opt. 56 61 157.05 Opt. 56 61 157.18 Opt. 56 61 158.43
TABLE6 1584 510 2546 Opt. 1451 1456 405.72 Opt. 2305 2309 869.56 Opt. 2305 2309 871.01
TABLE7 624 230 1108 Opt. 57 60 3.99 Opt. 78 80 5.26 Opt. 78 80 5.28
TABLE8 1271 72 2542 Opt. 8 9 0.45 Opt. 8 9 0.45 Opt. 8 9 0.45
TAME 2 1 2 Opt. 1 2 0.00 Opt. 1 2 0.00 Opt. 1 2 0.00

TARGUS 162 63 277 Opt. 38 40 0.12 Opt. 32 36 0.10 Opt. 32 36 0.10
TENBARS1 19 9 14 Opt. 330 298 0.07 Opt. 261 239 0.07 Opt. 261 239 0.07
TENBARS2 18 8 14 Opt. 132 120 0.03 Opt. 238 217 0.06 Opt. 238 217 0.06
TENBARS3 18 8 12 Opt. 89 83 0.02 Opt. 89 83 0.02 Opt. 89 83 0.02
TENBARS4 19 9 10 Opt. 604 547 0.14 Opt. 1159 1054 0.31 Opt. 1159 1054 0.31
TRIGGER 7 6 0 Opt. 25 24 0.00 Opt. 25 24 0.00 Opt. 25 24 0.00
TRIMLOSS 197 75 319 Opt. 320 310 3.26 Opt. 266 258 3.01 Opt. 266 258 3.01
TRUSPYR1 12 4 8 Opt. 688 612 0.14 Opt. 612 546 0.14 Opt. 612 546 0.14
TRUSPYR2 19 11 16 Opt. 651 581 0.14 Opt. 620 555 0.15 Opt. 620 555 0.15

TRY-B 2 1 2 Opt. 21 20 0.00 Opt. 12 13 0.00 Opt. 12 13 0.00
TWO5IN6 5681 9629 11362 Opt. 22 23 6.62 Opt. 24 27 6.90 Opt. 24 27 6.90

TWOBARS 4 2 6 Opt. 19 19 0.00 Opt. 17 17 0.00 Opt. 17 17 0.00
WACHBIEG 3 2 2 Opt. 20 19 0.00 Opt. 20 19 0.00 Opt. 20 19 0.00

WATER 31 10 62 Opt. 26 27 0.01 Opt. 36 37 0.01 Opt. 36 37 0.01
WOMFLET 6 3 3 Opt. 57 53 0.01 Opt. 55 54 0.01 Opt. 55 54 0.01

YFITNE 3 17 0 Opt. 49 46 0.01 Opt. 49 46 0.01 Opt. 49 46 0.01
ZAMB2-10 270 96 528 Opt. 103 100 0.74 Opt. 99 95 0.74 Opt. 99 95 0.74
ZAMB2-11 270 96 528 Opt. 23 24 0.16 Opt. 35 39 0.22 Opt. 35 39 0.22
ZAMB2-8 138 48 264 Opt. 24 25 0.04 Opt. 39 38 0.06 Opt. 39 38 0.06
ZAMB2-9 138 48 264 Opt. 28 30 0.08 Opt. 29 33 0.09 Opt. 29 33 0.09

ZANGWIL3 3 3 0 Opt. 2 3 0.00 Opt. 2 3 0.00 Opt. 2 3 0.00
ZECEVIC2 4 2 6 Opt. 6 7 0.00 Opt. 3 4 0.00 Opt. 3 4 0.00
ZECEVIC3 4 2 6 Opt. 19 19 0.00 Opt. 65 64 0.01 Opt. 65 64 0.01
ZECEVIC4 4 2 6 Opt. 14 15 0.00 Opt. 8 9 0.00 Opt. 8 9 0.00

ZY2 5 2 6 Opt. 9 10 0.00 Opt. 14 14 0.00 Opt. 14 14 0.00
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