default search action
Michael Galkin
Person information
- affiliation: Intel
- affiliation (former): Mila, McGill University, Montreal, Canada
- affiliation (former): TU Dresden, Germany
- affiliation (former): Fraunhofer IAIS, Sankt Augustin, Germany
Other persons with the same name
- Mikhail Galkin 0002 — Burdenko Neurosurgery Institute, Moscow, Russia
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Books and Theses
- 2019
- [b1]Michael Galkin:
Strategies for Managing Linked Enterprise Data. University of Bonn, Germany, 2019
Journal Articles
- 2024
- [j3]Luis Müller, Mikhail Galkin, Christopher Morris, Ladislav Rampásek:
Attending to Graph Transformers. Trans. Mach. Learn. Res. 2024 (2024) - 2022
- [j2]Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin, Sahand Sharifzadeh, Asja Fischer, Volker Tresp, Jens Lehmann:
Bringing Light Into the Dark: A Large-Scale Evaluation of Knowledge Graph Embedding Models Under a Unified Framework. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 8825-8845 (2022) - 2018
- [j1]Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-Esther Vidal, Sören Auer:
Querying Interlinked Data by Bridging RDF Molecule Templates. Trans. Large Scale Data Knowl. Centered Syst. 39: 1-42 (2018)
Conference and Workshop Papers
- 2024
- [c38]Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, Zhaocheng Zhu:
Towards Foundation Models for Knowledge Graph Reasoning. ICLR 2024 - [c37]Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail Galkin, Jiliang Tang:
Position: Graph Foundation Models Are Already Here. ICML 2024 - 2023
- [c36]Yi Ren, Samuel Lavoie, Michael Galkin, Danica J. Sutherland, Aaron C. Courville:
Improving Compositional Generalization using Iterated Learning and Simplicial Embeddings. NeurIPS 2023 - [c35]Zhaocheng Zhu, Xinyu Yuan, Michael Galkin, Louis-Pascal A. C. Xhonneux, Ming Zhang, Maxime Gazeau, Jian Tang:
A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs. NeurIPS 2023 - [c34]Kin Long Kelvin Lee, Carmelo Gonzales, Matthew Spellings, Mikhail Galkin, Santiago Miret, Nalini Kumar:
Towards Foundation Models for Materials Science: The Open MatSci ML Toolkit. SC Workshops 2023: 51-59 - 2022
- [c33]Mikhail Galkin, Etienne G. Denis, Jiapeng Wu, William L. Hamilton:
NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. ICLR 2022 - [c32]Dimitrios Alivanistos, Max Berrendorf, Michael Cochez, Mikhail Galkin:
Query Embedding on Hyper-Relational Knowledge Graphs. ICLR 2022 - [c31]Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, Jian Tang:
Neural-Symbolic Models for Logical Queries on Knowledge Graphs. ICML 2022: 27454-27478 - [c30]Mehdi Ali, Max Berrendorf, Mikhail Galkin, Veronika Thost, Tengfei Ma, Volker Tresp, Jens Lehmann:
Improving Inductive Link Prediction Using Hyper-Relational Facts (Extended Abstract). IJCAI 2022: 5259-5263 - [c29]Phillip Schneider, Tim Schopf, Juraj Vladika, Michael Galkin, Elena Simperl, Florian Matthes:
A Decade of Knowledge Graphs in Natural Language Processing: A Survey. AACL/IJCNLP (1) 2022: 601-614 - [c28]Pablo Barceló, Mikhail Galkin, Christopher Morris, Miguel A. Romero Orth:
Weisfeiler and Leman Go Relational. LoG 2022: 46 - [c27]Vijay Prakash Dwivedi, Ladislav Rampásek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, Dominique Beaini:
Long Range Graph Benchmark. NeurIPS 2022 - [c26]Michael Galkin, Zhaocheng Zhu, Hongyu Ren, Jian Tang:
Inductive Logical Query Answering in Knowledge Graphs. NeurIPS 2022 - [c25]Ladislav Rampásek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, Dominique Beaini:
Recipe for a General, Powerful, Scalable Graph Transformer. NeurIPS 2022 - 2021
- [c24]Mehdi Ali, Max Berrendorf, Mikhail Galkin, Veronika Thost, Tengfei Ma, Volker Tresp, Jens Lehmann:
Improving Inductive Link Prediction Using Hyper-relational Facts. ISWC 2021: 74-92 - 2020
- [c23]Maria Khvalchik, Mikhail Galkin:
Departamento de Nosotros: How Machine Translated Corpora Affects Language Models in MRC Tasks. HI4NLP@ECAI 2020: 29-33 - [c22]Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, Jens Lehmann:
Message Passing for Hyper-Relational Knowledge Graphs. EMNLP (1) 2020: 7346-7359 - 2019
- [c21]Mayesha Tasnim, Diego Collarana, Damien Graux, Mikhail Galkin, Maria-Esther Vidal:
COMET: A Contextualized Molecule-Based Matching Technique. DEXA (1) 2019: 175-185 - [c20]Vitalis Wiens, Michael Galkin, Steffen Lohmann, Sören Auer:
Demonstration of a Customizable Representation Model for Graph-Based Visualizations of Ontologies - GizMO. ISWC (Satellites) 2019: 225-228 - 2018
- [c19]Omar Al-Safi, Christian Mader, Ioanna Lytra, Mikhail Galkin, Kemele M. Endris, Maria-Esther Vidal, Sören Auer:
Shipping Knowledge Graph Management Capabilities to Data Providers and Consumers. ICSC 2018: 9-16 - [c18]Diego Collarana, Mikhail Galkin, Christoph Lange, Simon Scerri, Sören Auer, Maria-Esther Vidal:
Synthesizing Knowledge Graphs from Web Sources with the MINTE ^+ + Framework. ISWC (2) 2018: 359-375 - [c17]Mikhail Galkin, Diego Collarana, Maria-Esther Vidal, Mayesha Tasnim:
Synthesizing a Knowledge Graph of Data Scientist Job Offers with MINTE+. ISWC (P&D/Industry/BlueSky) 2018 - 2017
- [c16]Mikhail Galkin, Maria-Esther Vidal, Sören Auer:
Towards a Multi-way Similarity Join Operator. ADBIS (Short Papers and Workshops) 2017: 267-274 - [c15]Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-Esther Vidal, Sören Auer:
MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates. DEXA (1) 2017: 3-18 - [c14]Mikhail Galkin, Diego Collarana, Ignacio Traverso Ribón, Maria-Esther Vidal, Sören Auer:
SJoin: A Semantic Join Operator to Integrate Heterogeneous RDF Graphs. DEXA (1) 2017: 206-221 - [c13]Mikhail Galkin, Kemele M. Endris, Maribel Acosta, Diego Collarana, Maria-Esther Vidal, Sören Auer:
SMJoin: A Multi-way Join Operator for SPARQL Queries. SEMANTiCS 2017: 104-111 - [c12]Mikhail Galkin, Sören Auer, Maria-Esther Vidal, Simon Scerri:
Enterprise Knowledge Graphs: A Semantic Approach for Knowledge Management in the Next Generation of Enterprise Information Systems. ICEIS (2) 2017: 88-98 - [c11]Diego Collarana, Mikhail Galkin, Ignacio Traverso Ribón, Christoph Lange, Maria-Esther Vidal, Sören Auer:
Semantic Data Integration for Knowledge Graph Construction at Query Time. ICSC 2017: 109-116 - [c10]Mikhail Galkin, Maria-Esther Vidal:
BatWAn: A Binary and Multi-Way Query Plan Analyzer. ISWC (Posters, Demos & Industry Tracks) 2017 - [c9]Diego Collarana, Mikhail Galkin, Ignacio Traverso Ribón, Maria-Esther Vidal, Christoph Lange, Sören Auer:
MINTE: semantically integrating RDF graphs. WIMS 2017: 22:1-22:11 - 2016
- [c8]Niklas Petersen, Michael Galkin, Christoph Lange, Steffen Lohmann, Sören Auer:
Monitoring and Automating Factories Using Semantic Models. JIST 2016: 315-330 - [c7]Diego Collarana, Mikhail Galkin, Christoph Lange, Irlán Grangel-González, Maria-Esther Vidal, Sören Auer:
FuhSen: A Federated Hybrid Search Engine for Building a Knowledge Graph On-Demand (Short Paper). OTM Conferences 2016: 752-761 - [c6]Mikhail Galkin, Sören Auer, Hak Lae Kim, Simon Scerri:
Integration Strategies for Enterprise Knowledge Graphs. ICSC 2016: 242-245 - [c5]Mikhail Galkin, Sören Auer, Simon Scerri:
Enterprise Knowledge Graphs: A Backbone of Linked Enterprise Data. WI 2016: 497-502 - 2015
- [c4]Mikhail Galkin, Dmitry Mouromtsev, Sören Auer:
Identifying Web Tables: Supporting a Neglected Type of Content on the Web. KESW 2015: 48-62 - [c3]Dmitry Mouromtsev, Dmitry S. Pavlov, Yury Emelyanov, Alexey V. Morozov, Daniil S. Razdyakonov, Mikhail Galkin:
The Simple Web-based Tool for Visualization and Sharing of Semantic Data and Ontologies. ISWC (Posters & Demos) 2015 - [c2]Klaudia Thellmann, Michael Galkin, Fabrizio Orlandi, Sören Auer:
LinkDaViz - Automatic Binding of Linked Data to Visualizations. ISWC (1) 2015: 147-162 - 2013
- [c1]Dmitry Mouromtsev, Vitaly Vlasov, Olga Parkhimovich, Mikhail Galkin, Vitaly Knyazev:
Development of the St. Petersburg's linked open data site using Information Workbench. FRUCT 2013: 77-82
Parts in Books or Collections
- 2023
- [p1]Michael Cochez, Dimitrios Alivanistos, Erik Arakelyan, Max Berrendorf, Daniel Daza, Mikhail Galkin, Pasquale Minervini, Mathias Niepert, Hongyu Ren:
Approximate Answering of Graph Queries. Compendium of Neurosymbolic Artificial Intelligence 2023: 373-386
Data and Artifacts
- 2022
- [d2]Daniel Obraczka, Max Berrendorf, Charles Tapley Hoyt, Michael Galkin, Erhard Rahm:
Benchmark Datasets for Inductive Entity Alignment. Version v0.1.0. Zenodo, 2022 [all versions] - [d1]Daniel Obraczka, Max Berrendorf, Charles Tapley Hoyt, Michael Galkin, Erhard Rahm:
Benchmark Datasets for Inductive Entity Alignment. Version v0.1.1. Zenodo, 2022 [all versions]
Informal and Other Publications
- 2024
- [i29]Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail Galkin, Jiliang Tang:
Graph Foundation Models. CoRR abs/2402.02216 (2024) - [i28]Mikhail Galkin, Jincheng Zhou, Bruno F. Ribeiro, Jian Tang, Zhaocheng Zhu:
Zero-shot Logical Query Reasoning on any Knowledge Graph. CoRR abs/2404.07198 (2024) - [i27]Uday Mallappa, Hesham Mostafa, Michael Galkin, Mariano Phielipp, Somdeb Majumdar:
FloorSet - a VLSI Floorplanning Dataset with Design Constraints of Real-World SoCs. CoRR abs/2405.05480 (2024) - [i26]Hesham Mostafa, Uday Mallappa, Mikhail Galkin, Mariano Phielipp, Somdeb Majumdar:
PARSAC: Fast, Human-quality Floorplanning for Modern SoCs with Complex Design Constraints. CoRR abs/2405.05495 (2024) - [i25]Jianan Zhao, Hesham Mostafa, Mikhail Galkin, Michael M. Bronstein, Zhaocheng Zhu, Jian Tang:
GraphAny: A Foundation Model for Node Classification on Any Graph. CoRR abs/2405.20445 (2024) - [i24]Julia Gastinger, Shenyang Huang, Mikhail Galkin, Erfan Loghmani, Ali Parviz, Farimah Poursafaei, Jacob Danovitch, Emanuele Rossi, Ioannis Koutis, Heiner Stuckenschmidt, Reihaneh Rabbany, Guillaume Rabusseau:
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs. CoRR abs/2406.09639 (2024) - [i23]Krzysztof Olejniczak, Xingyue Huang, Ismail Ilkan Ceylan, Mikhail Galkin:
One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs. CoRR abs/2409.13959 (2024) - 2023
- [i22]Luis Müller, Mikhail Galkin, Christopher Morris, Ladislav Rampásek:
Attending to Graph Transformers. CoRR abs/2302.04181 (2023) - [i21]Hongyu Ren, Mikhail Galkin, Michael Cochez, Zhaocheng Zhu, Jure Leskovec:
Neural Graph Reasoning: Complex Logical Query Answering Meets Graph Databases. CoRR abs/2303.14617 (2023) - [i20]Michael Cochez, Dimitrios Alivanistos, Erik Arakelyan, Max Berrendorf, Daniel Daza, Mikhail Galkin, Pasquale Minervini, Mathias Niepert, Hongyu Ren:
Approximate Answering of Graph Queries. CoRR abs/2308.06585 (2023) - [i19]Kin Long Kelvin Lee, Carmelo Gonzales, Marcel Nassar, Matthew Spellings, Mikhail Galkin, Santiago Miret:
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling. CoRR abs/2309.05934 (2023) - [i18]Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, Zhaocheng Zhu:
Towards Foundation Models for Knowledge Graph Reasoning. CoRR abs/2310.04562 (2023) - [i17]Yi Ren, Samuel Lavoie, Mikhail Galkin, Danica J. Sutherland, Aaron C. Courville:
Improving Compositional Generalization Using Iterated Learning and Simplicial Embeddings. CoRR abs/2310.18777 (2023) - 2022
- [i16]Mikhail Galkin, Max Berrendorf, Charles Tapley Hoyt:
An Open Challenge for Inductive Link Prediction on Knowledge Graphs. CoRR abs/2203.01520 (2022) - [i15]Charles Tapley Hoyt, Max Berrendorf, Mikhail Galkin, Volker Tresp, Benjamin M. Gyori:
A Unified Framework for Rank-based Evaluation Metrics for Link Prediction in Knowledge Graphs. CoRR abs/2203.07544 (2022) - [i14]Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, Jian Tang:
Neural-Symbolic Models for Logical Queries on Knowledge Graphs. CoRR abs/2205.10128 (2022) - [i13]Ladislav Rampásek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, Dominique Beaini:
Recipe for a General, Powerful, Scalable Graph Transformer. CoRR abs/2205.12454 (2022) - [i12]Vijay Prakash Dwivedi, Ladislav Rampásek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, Dominique Beaini:
Long Range Graph Benchmark. CoRR abs/2206.08164 (2022) - [i11]Phillip Schneider, Tim Schopf, Juraj Vladika, Mikhail Galkin, Elena Simperl, Florian Matthes:
A Decade of Knowledge Graphs in Natural Language Processing: A Survey. CoRR abs/2210.00105 (2022) - [i10]Jonathan Pilault, Michael Galkin, Bahare Fatemi, Perouz Taslakian, David Vázquez, Christopher Pal:
Using Graph Algorithms to Pretrain Graph Completion Transformers. CoRR abs/2210.07453 (2022) - [i9]Mikhail Galkin, Zhaocheng Zhu, Hongyu Ren, Jian Tang:
Inductive Logical Query Answering in Knowledge Graphs. CoRR abs/2210.08008 (2022) - [i8]Pablo Barceló, Mikhail Galkin, Christopher Morris, Miguel A. Romero Orth:
Weisfeiler and Leman Go Relational. CoRR abs/2211.17113 (2022) - 2021
- [i7]Dimitrios Alivanistos, Max Berrendorf, Michael Cochez, Mikhail Galkin:
Query Embedding on Hyper-relational Knowledge Graphs. CoRR abs/2106.08166 (2021) - [i6]Mikhail Galkin, Jiapeng Wu, Etienne G. Denis, William L. Hamilton:
NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs. CoRR abs/2106.12144 (2021) - [i5]Mehdi Ali, Max Berrendorf, Mikhail Galkin, Veronika Thost, Tengfei Ma, Volker Tresp, Jens Lehmann:
Improving Inductive Link Prediction Using Hyper-Relational Facts. CoRR abs/2107.04894 (2021) - 2020
- [i4]Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin, Sahand Sharifzadeh, Asja Fischer, Volker Tresp, Jens Lehmann:
Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph Embedding Models Under a Unified Framework. CoRR abs/2006.13365 (2020) - [i3]Maria Khvalchik, Mikhail Galkin:
El Departamento de Nosotros: How Machine Translated Corpora Affects Language Models in MRC Tasks. CoRR abs/2007.01955 (2020) - [i2]Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, Jens Lehmann:
Message Passing for Hyper-Relational Knowledge Graphs. CoRR abs/2009.10847 (2020) - 2015
- [i1]Mikhail Galkin, Dmitry Mouromtsev, Sören Auer:
Identifying Web Tables - Supporting a Neglected Type of Content on the Web. CoRR abs/1503.06598 (2015)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-23 20:35 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint