default search action
RecSys 2011: Chicago, IL, USA
- Bamshad Mobasher, Robin D. Burke, Dietmar Jannach, Gediminas Adomavicius:
Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23-27, 2011. ACM 2011, ISBN 978-1-4503-0683-6
Keynote talks
- Neel Sundaresan:
Recommender systems at the long tail. 1-6
Invited tutorials: tutorial program
- Òscar Celma, Paul Lamere:
Music recommendation and discovery revisited. 7-8 - Neil J. Hurley:
Robustness of recommender systems. 9-10 - Daniel Tunkelang:
Recommendations as a conversation with the user. 11-12
Algorithms
- Liang Zhang, Deepak Agarwal, Bee-Chung Chen:
Generalizing matrix factorization through flexible regression priors. 13-20 - Nicola Barbieri, Gianni Costa, Giuseppe Manco, Riccardo Ortale:
Modeling item selection and relevance for accurate recommendations: a bayesian approach. 21-28 - Yu Zhao, Xinping Feng, Jianqiang Li, Bo Liu:
Shared collaborative filtering. 29-36 - Nathan Nan Liu, Xiangrui Meng, Chao Liu, Qiang Yang:
Wisdom of the better few: cold start recommendation via representative based rating elicitation. 37-44
Recommenders and the social web
- Heung-Nam Kim, Abdulmotaleb El-Saddik:
Personalized PageRank vectors for tag recommendations: inside FolkRank. 45-52 - Mohsen Jamali, Tianle Huang, Martin Ester:
A generalized stochastic block model for recommendation in social rating networks. 53-60 - Panagiotis Symeonidis, Eleftherios Tiakas, Yannis Manolopoulos:
Product recommendation and rating prediction based on multi-modal social networks. 61-68 - Sibren Isaacman, Stratis Ioannidis, Augustin Chaintreau, Margaret Martonosi:
Distributed rating prediction in user generated content streams. 69-76
Multi-dimensional recommendation, context-awareness and group recommendation
- Liwei Liu, Nikolay Mehandjiev, Dong-Ling Xu:
Multi-criteria service recommendation based on user criteria preferences. 77-84 - Michele Gorgoglione, Umberto Panniello, Alexander Tuzhilin:
The effect of context-aware recommendations on customer purchasing behavior and trust. 85-92 - Sangkeun Lee, Sang-il Song, Minsuk Kahng, Dongjoo Lee, Sang-goo Lee:
Random walk based entity ranking on graph for multidimensional recommendation. 93-100 - Shunichi Seko, Takashi Yagi, Manabu Motegi, Shin-yo Muto:
Group recommendation using feature space representing behavioral tendency and power balance among members. 101-108
Methodological issues, evaluation metrics and tools
- Saul Vargas, Pablo Castells:
Rank and relevance in novelty and diversity metrics for recommender systems. 109-116 - Yehuda Koren, Joe Sill:
OrdRec: an ordinal model for predicting personalized item rating distributions. 117-124 - Harald Steck:
Item popularity and recommendation accuracy. 125-132 - Michael D. Ekstrand, Michael Ludwig, Joseph A. Konstan, John Riedl:
Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit. 133-140
Human factors
- Bart P. Knijnenburg, Niels J. M. Reijmer, Martijn C. Willemsen:
Each to his own: how different users call for different interaction methods in recommender systems. 141-148 - E. Isaac Sparling, Shilad Sen:
Rating: how difficult is it? 149-156 - Pearl Pu, Li Chen, Rong Hu:
A user-centric evaluation framework for recommender systems. 157-164
Emerging recommendation domains
- Noam Koenigstein, Gideon Dror, Yehuda Koren:
Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. 165-172 - Mohammad A. Tayebi, Mohsen Jamali, Martin Ester, Uwe Glässer, Richard Frank:
CrimeWalker: a recommendation model for suspect investigation. 173-180 - Ido Guy, Inbal Ronen, Ariel Raviv:
Personalized activity streams: sifting through the "river of news". 181-188
Poster session 1
- Masoud Makrehchi:
Social link recommendation by learning hidden topics. 189-196 - Rong Hu, Pearl Pu:
Enhancing collaborative filtering systems with personality information. 197-204 - Sarabjot Singh Anand, Nathan Griffiths:
A market-based approach to address the new item problem. 205-212 - Kibeom Lee, Kyogu Lee:
My head is your tail: applying link analysis on long-tailed music listening behavior for music recommendation. 213-220 - Yu Xin, Harald Steck:
Multi-value probabilistic matrix factorization for IP-TV recommendations. 221-228 - Oliver Jojic, Manu Shukla, Niranjan Bhosarekar:
A probabilistic definition of item similarity. 229-236 - Shankar Prawesh, Balaji Padmanabhan:
The "top N" news recommender: count distortion and manipulation resistance. 237-244 - Quan Yuan, Li Chen, Shiwan Zhao:
Factorization vs. regularization: fusing heterogeneous social relationships in top-n recommendation. 245-252
Poster session 2
- Matthias Braunhofer, Marius Kaminskas, Francesco Ricci:
Recommending music for places of interest in a mobile travel guide. 253-256 - Le Yu, Rong Pan, Zhangfeng Li:
Adaptive social similarities for recommender systems. 257-260 - Peter Forbes, Mu Zhu:
Content-boosted matrix factorization for recommender systems: experiments with recipe recommendation. 261-264 - Francesca Guzzi, Francesco Ricci, Robin D. Burke:
Interactive multi-party critiquing for group recommendation. 265-268 - Wolfgang Woerndl, Johannes Huebner, Roland Bader, Daniel Gallego-Vico:
A model for proactivity in mobile, context-aware recommender systems. 273-276 - Elizabeth M. Daly, Werner Geyer:
Effective event discovery: using location and social information for scoping event recommendations. 277-280 - Yong Ge, Hui Xiong, Alexander Tuzhilin, Qi Liu:
Collaborative filtering with collective training. 281-284 - Gilad Katz, Nir Ofek, Bracha Shapira, Lior Rokach, Guy Shani:
Using Wikipedia to boost collaborative filtering techniques. 285-288 - Zhiang Wu, Jie Cao, Bo Mao, Youquan Wang:
Semi-SAD: applying semi-supervised learning to shilling attack detection. 289-292 - Pasquale Lops, Marco de Gemmis, Giovanni Semeraro, Fedelucio Narducci, Cataldo Musto:
Leveraging the linkedin social network data for extracting content-based user profiles. 293-296 - Gábor Takács, István Pilászy, Domonkos Tikk:
Applications of the conjugate gradient method for implicit feedback collaborative filtering. 297-300 - Linas Baltrunas, Bernd Ludwig, Francesco Ricci:
Matrix factorization techniques for context aware recommendation. 301-304 - Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, Lars Schmidt-Thieme:
MyMediaLite: a free recommender system library. 305-308 - Pedro G. Campos, Fernando Díez, Manuel A. Sánchez-Montañés:
Towards a more realistic evaluation: testing the ability to predict future tastes of matrix factorization-based recommenders. 309-312 - Alexandros Karatzoglou:
Collaborative temporal order modeling. 313-316 - Lei Li, Li Zheng, Tao Li:
LOGO: a long-short user interest integration in personalized news recommendation. 317-320 - Bart P. Knijnenburg, Martijn C. Willemsen, Alfred Kobsa:
A pragmatic procedure to support the user-centric evaluation of recommender systems. 321-324 - Ioannis K. Paparrizos, Berkant Barla Cambazoglu, Aristides Gionis:
Machine learned job recommendation. 325-328 - Jian Wang, Badrul Sarwar, Neel Sundaresan:
Utilizing related products for post-purchase recommendation in e-commerce. 329-332 - Alejandro Bellogín, Pablo Castells, Iván Cantador:
Precision-oriented evaluation of recommender systems: an algorithmic comparison. 333-336 - Steven Bourke, Kevin McCarthy, Barry Smyth:
Power to the people: exploring neighbourhood formations in social recommender system. 337-340 - Luiz Augusto Sangoi Pizzato, Cameron Silvestrini:
Stochastic matching and collaborative filtering to recommend people to people. 341-344 - Shanchan Wu, William Rand, Louiqa Raschid:
Recommendations in social media for brand monitoring. 345-348
Industry half-day session: demos and speaker Lapers
- Michael D. Ekstrand, Michael Ludwig, Jack Kolb, John Riedl:
LensKit: a modular recommender framework. 349-350 - Andrew T. Sabin, Chun Liang Chan:
myMicSound: an online sound-based microphone recommendation system. 351-352 - Aviram Dayan, Guy Katz, Naseem Biasdi, Lior Rokach, Bracha Shapira, Aykan Aydin, Roland Schwaiger, Radmila Fishel:
Recommenders benchmark framework. 353-354
Doctoral symposium
- Siamak Faridani:
Using canonical correlation analysis for generalized sentiment analysis, product recommendation and search. 355-358 - Markus Tschersich:
Design guidelines for mobile group recommender systems to handle inaccurate or missing location data. 359-362 - Yu Chen:
Interface and interaction design for group and social recommender systems. 363-366 - Shafiq Alam:
Intelligent web usage clustering based recommender system. 367-370 - Alejandro Bellogín:
Predicting performance in recommender systems. 371-374 - Jingjing Zhang:
Anchoring effects of recommender systems. 375-378
Workshop outlines
- Gediminas Adomavicius, Linas Baltrunas, Tim Hussein, Francesco Ricci, Alexander Tuzhilin:
3rd workshop on context-aware recommender systems (CARS 2011). 379-380 - Amelie Anglade, Òscar Celma, Ben Fields, Paul Lamere, Brian McFee:
WOMRAD: 2nd workshop on music recommendation and discovery. 381-382 - Jill Freyne, Sarabjot Singh Anand, Ido Guy, Andreas Hotho:
3rd workshop on recommender systems and the social web. 383-384 - Alan Said, Shlomo Berkovsky, Ernesto William De Luca, Jannis Hermanns:
Challenge on context-aware movie recommendation: CAMRa2011. 385-386 - Iván Cantador, Peter Brusilovsky, Tsvi Kuflik:
Second workshop on information heterogeneity and fusion in recommender systems (HetRec2011). 387-388 - Alexander Felfernig, Li Chen, Monika Mandl:
RecSys'11 workshop on human decision making in recommender systems. 389-390 - Neal Lathia, Daniele Quercia, Licia Capra, Jon Crowcroft:
Recsys'11 workshop outline PeMA 2011: personalization in mobile applications. 391-392 - Pablo Castells, Jun Wang, Rubén Lara, Dell Zhang:
Workshop on novelty and diversity in recommender systems - DiveRS 2011. 393-394 - Martijn C. Willemsen, Dirk G. F. M. Bollen, Michael D. Ekstrand:
UCERSTI 2: second workshop on user-centric evaluation of recommender systems and their interfaces. 395-396
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.