default search action
22nd MICCAI 2019: Shenzhen, China
- Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali R. Khan:
Medical Image Computing and Computer Assisted Intervention - MICCAI 2019 - 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part I. Lecture Notes in Computer Science 11764, Springer 2019, ISBN 978-3-030-32238-0
Optical Imaging
- Georgios Lazaridis, Marco Lorenzi, Sébastien Ourselin, David Garway-Heath:
Enhancing OCT Signal by Fusion of GANs: Improving Statistical Power of Glaucoma Clinical Trials. 3-11 - Gongning Luo, Suyu Dong, Kuanquan Wang, Dong Zhang, Yue Gao, Xin Chen, Henggui Zhang, Shuo Li:
A Deep Reinforcement Learning Framework for Frame-by-Frame Plaque Tracking on Intravascular Optical Coherence Tomography Image. 12-20 - Rongchang Zhao, Zailiang Chen, Xiyao Liu, Beiji Zou, Shuo Li:
Multi-index Optic Disc Quantification via MultiTask Ensemble Learning. 21-29 - Xin Wang, Lie Ju, Xin Zhao, Zongyuan Ge:
Retinal Abnormalities Recognition Using Regional Multitask Learning. 30-38 - Xi Wang, Hao Chen, Luyang Luo, An-ran Ran, Poemen P. Chan, Clement C. Tham, Carol Y. Cheung, Pheng-Ann Heng:
Unifying Structure Analysis and Surrogate-Driven Function Regression for Glaucoma OCT Image Screening. 39-47 - Huazhu Fu, Boyang Wang, Jianbing Shen, Shanshan Cui, Yanwu Xu, Jiang Liu, Ling Shao:
Evaluation of Retinal Image Quality Assessment Networks in Different Color-Spaces. 48-56 - Jiong Zhang, Amir H. Kashani, Yonggang Shi:
3D Surface-Based Geometric and Topological Quantification of Retinal Microvasculature in OCT-Angiography via Reeb Analysis. 57-65 - Hanene Ben Yedder, Majid Shokoufi, Ben Cardoen, Farid Golnaraghi, Ghassan Hamarneh:
Limited-Angle Diffuse Optical Tomography Image Reconstruction Using Deep Learning. 66-74 - He Zhao, Bingyu Yang, Lvchen Cao, Huiqi Li:
Data-Driven Enhancement of Blurry Retinal Images via Generative Adversarial Networks. 75-83 - Bo Wang, Shuang Qiu, Huiguang He:
Dual Encoding U-Net for Retinal Vessel Segmentation. 84-92 - Ricardo J. Araújo, Jaime S. Cardoso, Hélder P. Oliveira:
A Deep Learning Design for Improving Topology Coherence in Blood Vessel Segmentation. 93-101 - Shujun Wang, Lequan Yu, Kang Li, Xin Yang, Chi-Wing Fu, Pheng-Ann Heng:
Boundary and Entropy-Driven Adversarial Learning for Fundus Image Segmentation. 102-110 - Bo Liu, Lin Gu, Feng Lu:
Unsupervised Ensemble Strategy for Retinal Vessel Segmentation. 111-119 - Yufan He, Aaron Carass, Yihao Liu, Bruno M. Jedynak, Sharon D. Solomon, Shiv Saidha, Peter A. Calabresi, Jerry L. Prince:
Fully Convolutional Boundary Regression for Retina OCT Segmentation. 120-128 - Pengshuai Yin, Qingyao Wu, Yanwu Xu, Huaqing Min, Ming Yang, Yubing Zhang, Mingkui Tan:
PM-Net: Pyramid Multi-label Network for Joint Optic Disc and Cup Segmentation. 129-137 - Chi Liu, Wei Wang, Zhixi Li, Yu Jiang, Xiaotong Han, Jason Ha, Wei Meng, Mingguang He:
Biological Age Estimated from Retinal Imaging: A Novel Biomarker of Aging. 138-146 - Xiang Jiang, Liqiang Ding, Mohammad Havaei, Andrew Jesson, Stan Matwin:
Task Adaptive Metric Space for Medium-Shot Medical Image Classification. 147-155 - Weisen Wang, Zhiyan Xu, Weihong Yu, Jianchun Zhao, Jingyuan Yang, Feng He, Zhikun Yang, Di Chen, Dayong Ding, Youxin Chen, Xirong Li:
Two-Stream CNN with Loose Pair Training for Multi-modal AMD Categorization. 156-164 - Thomas Kurmann, Pablo Márquez-Neila, Sebastian Wolf, Raphael Sznitman:
Deep Multi-label Classification in Affine Subspaces. 165-173 - Mhd Hasan Sarhan, Shadi Albarqouni, Mehmet Yigitsoy, Nassir Navab, Abouzar Eslami:
Multi-scale Microaneurysms Segmentation Using Embedding Triplet Loss. 174-182 - Weilin Fu, Katharina Breininger, Roman Schaffert, Nishant Ravikumar, Andreas K. Maier:
A Divide-and-Conquer Approach Towards Understanding Deep Networks. 183-191 - Rhona Asgari, José Ignacio Orlando, Sebastian M. Waldstein, Ferdinand Schlanitz, Magdalena Baratsits, Ursula Schmidt-Erfurth, Hrvoje Bogunovic:
Multiclass Segmentation as Multitask Learning for Drusen Segmentation in Retinal Optical Coherence Tomography. 192-200 - Jianfei Liu, Christine Shen, Tao Liu, Nancy Aguilera, Johnny Tam:
Active Appearance Model Induced Generative Adversarial Network for Controlled Data Augmentation. 201-208 - Rong Zhang, Shuhan Tan, Ruixuan Wang, Siyamalan Manivannan, Jingjing Chen, Haotian Lin, Wei-Shi Zheng:
Biomarker Localization by Combining CNN Classifier and Generative Adversarial Network. 209-217 - Udaranga Wickramasinghe, Graham Knott, Pascal Fua:
Probabilistic Atlases to Enforce Topological Constraints. 218-226 - Brian Matejek, Donglai Wei, Xueying Wang, Jinglin Zhao, Kálmán Palágyi, Hanspeter Pfister:
Synapse-Aware Skeleton Generation for Neural Circuits. 227-235 - Shuangjun Liu, Sarah Ostadabbas:
Seeing Under the Cover: A Physics Guided Learning Approach for In-bed Pose Estimation. 236-245 - Changchun Yang, Fei Gao:
EDA-Net: Dense Aggregation of Deep and Shallow Information Achieves Quantitative Photoacoustic Blood Oxygenation Imaging Deep in Human Breast. 246-254 - Thomas Kurmann, Pablo Márquez-Neila, Siqing Yu, Marion Munk, Sebastian Wolf, Raphael Sznitman:
Fused Detection of Retinal Biomarkers in OCT Volumes. 255-263 - Yicheng Wu, Yong Xia, Yang Song, Donghao Zhang, Dongnan Liu, Chaoyi Zhang, Weidong Cai:
Vessel-Net: Retinal Vessel Segmentation Under Multi-path Supervision. 264-272 - Hengrong Lan, Kang Zhou, Changchun Yang, Jun Cheng, Jiang Liu, Shenghua Gao, Fei Gao:
Ki-GAN: Knowledge Infusion Generative Adversarial Network for Photoacoustic Image Reconstruction In Vivo. 273-281 - Suman Sedai, Bhavna Josephine Antony, Ravneet Rai, Katie Jones, Hiroshi Ishikawa, Joel S. Schuman, Gadi Wollstein, Rahil Garnavi:
Uncertainty Guided Semi-supervised Segmentation of Retinal Layers in OCT Images. 282-290
Endoscopy
- Xiaoqing Guo, Yixuan Yuan:
Triple ANet: Adaptive Abnormal-aware Attention Network for WCE Image Classification. 293-301 - Yuqi Fang, Cheng Chen, Yixuan Yuan, Raymond Kai-Yu Tong:
Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation. 302-310 - Sophia Bano, Francisco Vasconcelos, Marcel Tella-Amo, George Dwyer, Caspar Gruijthuijsen, Jan Deprest, Sébastien Ourselin, Emmanuel B. Vander Poorten, Tom Vercauteren, Danail Stoyanov:
Deep Sequential Mosaicking of Fetoscopic Videos. 311-319 - Jiawei Ge, Hamed Saeidi, Justin D. Opfermann, Arjun S. Joshi, Axel Krieger:
Landmark-Guided Deformable Image Registration for Supervised Autonomous Robotic Tumor Resection. 320-328 - Tingting Chen, Xinjun Ma, Xuechen Liu, Wenzhe Wang, Ruiwei Feng, Jintai Chen, Chunnv Yuan, Weiguo Lu, Danny Z. Chen, Jian Wu:
Multi-view Learning with Feature Level Fusion for Cervical Dysplasia Diagnosis. 329-338 - Haoyin Zhou, Jayender Jagadeesan:
Real-Time Surface Deformation Recovery from Stereo Videos. 339-347
Microscopy
- Hanbo Chen, Xiao Han, Xinjuan Fan, Xiaoying Lou, Hailing Liu, Junzhou Huang, Jianhua Yao:
Rectified Cross-Entropy and Upper Transition Loss for Weakly Supervised Whole Slide Image Classifier. 351-359 - Yifan Zhang, Hanbo Chen, Ying Wei, Peilin Zhao, Jiezhang Cao, Xinjuan Fan, Xiaoying Lou, Hailing Liu, Jinlong Hou, Xiao Han, Jianhua Yao, Qingyao Wu, Mingkui Tan, Junzhou Huang:
From Whole Slide Imaging to Microscopy: Deep Microscopy Adaptation Network for Histopathology Cancer Image Classification. 360-368 - Jingru Yi, Pengxiang Wu, Qiaoying Huang, Hui Qu, Bo Liu, Daniel J. Hoeppner, Dimitris N. Metaxas:
Multi-scale Cell Instance Segmentation with Keypoint Graph Based Bounding Boxes. 369-377 - Hui Qu, Zhennan Yan, Gregory M. Riedlinger, Subhajyoti De, Dimitris N. Metaxas:
Improving Nuclei/Gland Instance Segmentation in Histopathology Images by Full Resolution Neural Network and Spatial Constrained Loss. 378-386 - Yuan Xue, Qianying Zhou, Jiarong Ye, L. Rodney Long, Sameer K. Antani, Carl Cornwell, Zhiyun Xue, Xiaolei Huang:
Synthetic Augmentation and Feature-Based Filtering for Improved Cervical Histopathology Image Classification. 387-396 - Junya Hayashida, Ryoma Bise:
Cell Tracking with Deep Learning for Cell Detection and Motion Estimation in Low-Frame-Rate. 397-405 - Nikolas Ioannou, Milos Stanisavljevic, Andreea Anghel, Nikolaos Papandreou, Sonali Andani, Jan Hendrik Rüschoff, Peter Wild, Maria Gabrani, Haralampos Pozidis:
Accelerated ML-Assisted Tumor Detection in High-Resolution Histopathology Images. 406-414 - Zhenyu Tang, Yuyun Xu, Zhicheng Jiao, Junfeng Lu, Lei Jin, Abudumijiti Aibaidula, Jinsong Wu, Qian Wang, Han Zhang, Dinggang Shen:
Pre-operative Overall Survival Time Prediction for Glioblastoma Patients Using Deep Learning on Both Imaging Phenotype and Genotype. 415-422 - Xiaofei Wang, Mai Xu, Liu Li, Zulin Wang, Zhenyu Guan:
Pathology-Aware Deep Network Visualization and Its Application in Glaucoma Image Synthesis. 423-431 - Sam Maksoud, Arnold Wiliem, Kun Zhao, Teng Zhang, Lin Wu, Brian C. Lovell:
CORAL8: Concurrent Object Regression for Area Localization in Medical Image Panels. 432-441 - Zhijie Zhang, Huazhu Fu, Hang Dai, Jianbing Shen, Yanwei Pang, Ling Shao:
ET-Net: A Generic Edge-aTtention Guidance Network for Medical Image Segmentation. 442-450 - Long Chen, Martin Strauch, Dorit Merhof:
Instance Segmentation of Biomedical Images with an Object-Aware Embedding Learned with Local Constraints. 451-459 - Ze Ye, Cong Chen, Changhe Yuan, Chao Chen:
Diverse Multiple Prediction on Neuron Image Reconstruction. 460-468 - Yutong Xie, Hao Lu, Jianpeng Zhang, Chunhua Shen, Yong Xia:
Deep Segmentation-Emendation Model for Gland Instance Segmentation. 469-477 - Shenglong Zhou, Zhiwei Xiong, Chang Chen, Xuejin Chen, Dong Liu, Yueyi Zhang, Zheng-Jun Zha, Feng Wu:
Fast and Accurate Electron Microscopy Image Registration with 3D Convolution. 478-486 - Yukun Chen, Chenyan Wu, Zhuomin Zhang, Jeffery A. Goldstein, Alison D. Gernand, James Z. Wang:
PlacentaNet: Automatic Morphological Characterization of Placenta Photos with Deep Learning. 487-495 - Jiawen Yao, Xinliang Zhu, Junzhou Huang:
Deep Multi-instance Learning for Survival Prediction from Whole Slide Images. 496-504 - Yi Zhou, Xiaodong He, Shanshan Cui, Fan Zhu, Li Liu, Ling Shao:
High-Resolution Diabetic Retinopathy Image Synthesis Manipulated by Grading and Lesions. 505-513 - Meng Li, Lin Wu, Arnold Wiliem, Kun Zhao, Teng Zhang, Brian C. Lovell:
Deep Instance-Level Hard Negative Mining Model for Histopathology Images. 514-522 - Artem Lukoyanov, Isabella Haberbosch, Constantin Pape, Alwin Krämer, Yannick Schwab, Anna Kreshuk:
Synthetic Patches, Real Images: Screening for Centrosome Aberrations in EM Images of Human Cancer Cells. 523-531 - Weijian Li, Viet-Duy Nguyen, Haofu Liao, Matt Wilder, Ke Cheng, Jiebo Luo:
Patch Transformer for Multi-tagging Whole Slide Histopathology Images. 532-540 - Han Le, Dimitris Samaras, Tahsin M. Kurç, Rajarsi Gupta, Kenneth Shroyer, Joel H. Saltz:
Pancreatic Cancer Detection in Whole Slide Images Using Noisy Label Annotations. 541-549 - Yushan Zheng, Bonan Jiang, Jun Shi, Haopeng Zhang, Fengying Xie:
Encoding Histopathological WSIs Using GNN for Scalable Diagnostically Relevant Regions Retrieval. 550-558 - Hai Su, Xiaoshuang Shi, Jinzheng Cai, Lin Yang:
Local and Global Consistency Regularized Mean Teacher for Semi-supervised Nuclei Classification. 559-567 - Amal Lahiani, Nassir Navab, Shadi Albarqouni, Eldad Klaiman:
Perceptual Embedding Consistency for Seamless Reconstruction of Tilewise Style Transfer. 568-576 - Miguel Luna, Mungi Kwon, Sang Hyun Park:
Precise Separation of Adjacent Nuclei Using a Siamese Neural Network. 577-585 - Zixu Zhao, Huangjing Lin, Hao Chen, Pheng-Ann Heng:
PFA-ScanNet: Pyramidal Feature Aggregation with Synergistic Learning for Breast Cancer Metastasis Analysis. 586-594 - Li Xiao, Chunlong Luo, Yufan Luo, Tianqi Yu, Chan Tian, Jie Qiao, Yi Zhao:
DeepACE: Automated Chromosome Enumeration in Metaphase Cell Images Using Deep Convolutional Neural Networks. 595-603 - Hassan Muhammad, Carlie S. Sigel, Gabriele Campanella, Thomas Börner, Linda M. Pak, Stefan Büttner, Jan N. M. IJzermans, Bas Groot Koerkamp, Michael Doukas, William R. Jarnagin, Amber L. Simpson, Thomas J. Fuchs:
Unsupervised Subtyping of Cholangiocarcinoma Using a Deep Clustering Convolutional Autoencoder. 604-612 - Yongxiang Huang, Albert C. S. Chung:
Evidence Localization for Pathology Images Using Weakly Supervised Learning. 613-621 - Navid Alemi Koohbanani, Mostafa Jahanifar, Ali Gooya, Nasir M. Rajpoot:
Nuclear Instance Segmentation Using a Proposal-Free Spatially Aware Deep Learning Framework. 622-630 - Laxmi Gupta, Barbara Mara Klinkhammer, Peter Boor, Dorit Merhof, Michael Gadermayr:
GAN-Based Image Enrichment in Digital Pathology Boosts Segmentation Accuracy. 631-639 - Yanning Zhou, Hao Chen, Jiaqi Xu, Qi Dou, Pheng-Ann Heng:
IRNet: Instance Relation Network for Overlapping Cervical Cell Segmentation. 640-648 - Kazuya Nishimura, Dai Fei Elmer Ker, Ryoma Bise:
Weakly Supervised Cell Instance Segmentation by Propagating from Detection Response. 649-657 - Neel Dey, Jeffrey Messinger, R. Theodore Smith, Christine A. Curcio, Guido Gerig:
Robust Non-negative Tensor Factorization, Diffeomorphic Motion Correction, and Functional Statistics to Understand Fixation in Fluorescence Microscopy. 658-666 - Yeman Brhane Hagos, Priya Lakshmi Narayanan, Ayse U. Akarca, Teresa Marafioti, Yinyin Yuan:
ConCORDe-Net: Cell Count Regularized Convolutional Neural Network for Cell Detection in Multiplex Immunohistochemistry Images. 667-675 - Tingying Peng, Melanie Boxberg, Wilko Weichert, Nassir Navab, Carsten Marr:
Multi-task Learning of a Deep K-Nearest Neighbour Network for Histopathological Image Classification and Retrieval. 676-684 - Ario Sadafi, Niklas Koehler, Asya Makhro, Anna Bogdanova, Nassir Navab, Carsten Marr, Tingying Peng:
Multiclass Deep Active Learning for Detecting Red Blood Cell Subtypes in Brightfield Microscopy. 685-693 - Niyun Zhou, De Cai, Xiao Han, Jianhua Yao:
Enhanced Cycle-Consistent Generative Adversarial Network for Color Normalization of H&E Stained Images. 694-702 - Qingbo Kang, Qicheng Lao, Thomas Fevens:
Nuclei Segmentation in Histopathological Images Using Two-Stage Learning. 703-711 - Yanhao Zhu, Zhineng Chen, Shuai Zhao, Hongtao Xie, Wenming Guo, Yongdong Zhang:
ACE-Net: Biomedical Image Segmentation with Augmented Contracting and Expansive Paths. 712-720 - Lei Mou, Yitian Zhao, Li Chen, Jun Cheng, Zaiwang Gu, Huaying Hao, Hong Qi, Yalin Zheng, Alejandro F. Frangi, Jiang Liu:
CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation. 721-730 - Inwan Yoo, Donggeun Yoo, Kyunghyun Paeng:
PseudoEdgeNet: Nuclei Segmentation only with Point Annotations. 731-739 - Fuyong Xing, Tell Bennett, Debashis Ghosh:
Adversarial Domain Adaptation and Pseudo-Labeling for Cross-Modality Microscopy Image Quantification. 740-749 - Jie Zhao, Xuejin Chen, Zhiwei Xiong, Dong Liu, Junjie Zeng, Yueyi Zhang, Zheng-Jun Zha, Guoqiang Bi, Feng Wu:
Progressive Learning for Neuronal Population Reconstruction from Optical Microscopy Images. 750-759 - Lydia Neary-Zajiczek, Clara Essmann, Neil Clancy, Aiman Haider, Elena Miranda, Michael J. Shaw, Amir Gander, Brian R. Davidson, Delmiro Fernandez-Reyes, Vijay Pawar, Danail Stoyanov:
Whole-Sample Mapping of Cancerous and Benign Tissue Properties. 760-768 - Wenao Ma, Shuang Yu, Kai Ma, Jiexiang Wang, Xinghao Ding, Yefeng Zheng:
Multi-task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein Classification. 769-778 - Kyoung Jin Noh, Sang Jun Park, Soochahn Lee:
Fine-Scale Vessel Extraction in Fundus Images by Registration with Fluorescein Angiography. 779-787 - Xiaodong He, Yi Zhou, Boyang Wang, Shanshan Cui, Ling Shao:
DME-Net: Diabetic Macular Edema Grading by Auxiliary Task Learning. 788-796 - Shihao Zhang, Huazhu Fu, Yuguang Yan, Yubing Zhang, Qingyao Wu, Ming Yang, Mingkui Tan, Yanwu Xu:
Attention Guided Network for Retinal Image Segmentation. 797-805 - Carolina Pacheco, René Vidal:
An Unsupervised Domain Adaptation Approach to Classification of Stem Cell-Derived Cardiomyocytes. 806-814
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.