Nothing Special   »   [go: up one dir, main page]

Skip to main content

CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

The detection of curvilinear structures in medical images, e.g., blood vessels or nerve fibers, is important in aiding management of many diseases. In this work, we propose a general unifying curvilinear structure segmentation network that works on different medical imaging modalities: optical coherence tomography angiography (OCT-A), color fundus image, and corneal confocal microscopy (CCM). Instead of the U-Net based convolutional neural network, we propose a novel network (CS-Net) which includes a self-attention mechanism in the encoder and decoder. Two types of attention modules are utilized - spatial attention and channel attention, to further integrate local features with their global dependencies adaptively. The proposed network has been validated on five datasets: two color fundus datasets, two corneal nerve datasets and one OCT-A dataset. Experimental results show that our method outperforms state-of-the-art methods, for example, sensitivities of corneal nerve fiber segmentation were at least 2% higher than the competitors. As a complementary output, we made manual annotations of two corneal nerve datasets which have been released for public access.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.isi.uu.nl/Research/Databases/DRIVE/.

  2. 2.

    http://www.ces.clemson.edu/ ahoover/stare/.

  3. 3.

    http://bioimlab.dei.unipd.it/.

  4. 4.

    http://imed.nimte.ac.cn/.

References

  1. Zhao, Y., et al.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imag. 34(9), 1797–1807 (2015)

    Article  Google Scholar 

  2. Zhao, Y., et al.: Automatic 2D/3D vessel enhancement in multiple modality images using a weighted symmetry filter. IEEE Trans. Med. Imag. 37(2), 438–450 (2018)

    Article  Google Scholar 

  3. Fraz, M., et al.: Blood vessel segmentation methodologies in retinal images - a survey. Comput. Meth. Prog. Bio. 108, 407–433 (2012)

    Article  Google Scholar 

  4. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  5. Cetin, S., Unal, G.: A higher-order tensor vessel tractography for segmentation of vascular structures. IEEE Trans. Med. Imag. 34, 2172–2185 (2015)

    Article  Google Scholar 

  6. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imag. 35, 2369–2380 (2016)

    Article  Google Scholar 

  7. Fu, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 132–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_16

    Chapter  Google Scholar 

  8. Alom, M., et al.: Recurrent residual convolutional neural network based on U-net (R2U-Net) for medical image segmentation. arXiv:1802.06955 (2018)

  9. Colonna, A., Scarpa, F., Ruggeri, A.: Segmentation of corneal nerves using a U-Net-based convolutional neural network. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 185–192. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00949-6_22

    Chapter  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Zhao, H., et al.: Pyramid scene parsing network. In: CVPR 2017, pp. 2281–2890 (2017)

    Google Scholar 

  12. Peng, C., et al.: Large kernel matters-improve semantic segmentation by global convolutional network. In: CVPR 2017, pp. 4353–4361 (2017)

    Google Scholar 

  13. Jun, F., et al.: Dual attention network for scene segmentation. In: CVPR 2019, pp. 3146–3154 (2019)

    Google Scholar 

  14. Azzopardi, G., et al.: Trainable cosfire filters for vessel delineation with application to retinal images. Med. Image Anal. 19(1), 46–57 (2015)

    Article  Google Scholar 

  15. Gu Z., et al.: CE-NET: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging (2019)

    Google Scholar 

  16. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-NET. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  17. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  18. Oktay, O., et al.: Attention U-NET: learning where to look for the pancreas. arXiv:1804.03999 (2018)

  19. Guimarães, P., et al.: A fast and efficient technique for the automatic tracing of corneal nerves in confocal microscopy. Trans. Vis. Sci. Technol. 5(5), 7 (2016)

    Article  Google Scholar 

  20. Yokogawa, H., et al.: Mapping of normal corneal K-structures by in vivo laser confocal microscopy. Cornea 27, 879–883 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Science Foundation Program of China (61601029, 61773297), Zhejiang Provincial Natural Science Foundation (LZ19F0 10001), and Ningbo Natural Science Foundation (2018A610055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitian Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mou, L. et al. (2019). CS-Net: Channel and Spatial Attention Network for Curvilinear Structure Segmentation. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_80

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics