File:Fimmu-11-579250-g004.jpg

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (893 × 686 pixels, file size: 319 KB, MIME type: image/jpeg)

Captions

Captions

Vaccine platforms being employed for SARS-CoV-2 vaccine design.

Summary

[edit]
Description
English: Vaccine platforms being employed for SARS-CoV-2 vaccine design. This figure illustrates the different vaccine approaches being taken for the design of human SARS-CoV-2 vaccines. Whole virus vaccines include both attenuated and inactivated forms of the virus and subunits of inactivated virus can also be used. Protein and peptide subunit vaccines are usually combined with an adjuvant in order to enhance immunogenicity. The main emphasis in SARS-CoV-2 vaccine development has been on using the whole spike protein in its trimeric form or components of it, such as the RBD region. Multiple non-replicating viral vector vaccines have been developed, particularly focused on adenovirus; while there has been less emphasis on the replicating viral vector constructs. Nucleic acid-based approaches include DNA and mRNA vaccines, often packaged into nanocarriers such as virus-like particles (VLPs) and lipid nanoparticles (LNPs). Nanoparticle and VLP vaccines can also have antigen attached to their surface or combined in their core. The immune cell therapy approach uses genetically modified SARS-CoV-2-specific cytotoxic T cells and dendritic cells expressing viral antigens to protect against SARS-CoV-2 infection. Each of these vaccine approaches has benefits and disadvantages in terms of cost and ease of production, safety profile and immunogenicity, and it remains to be seen which of the many candidates in development protect against COVID-19.
Date
Source

Flanagan KL, Best E, Crawford NW, Giles M, Koirala A, Macartney K, Russell F, Teh BW and Wen SCH (2020) Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Front. Immunol. 11:579250.

https://doi.org/10.3389/fimmu.2020.579250
Author Katie L. Flanagan, Emma Best, Nigel W. Crawford, Michelle Giles, Archana Koirala, Kristine Macartney, Fiona Russell, Benjamin W. Teh, and Sophie CH Wen, on behalf of the Australasian Society for Infectious Diseases (ASID) Vaccination Special Interest group (VACSIG)

Licensing

[edit]
w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current14:30, 1 February 2021Thumbnail for version as of 14:30, 1 February 2021893 × 686 (319 KB)Guest2625 (talk | contribs)Uploaded a work by Katie L. Flanagan, Emma Best, Nigel W. Crawford, Michelle Giles, Archana Koirala, Kristine Macartney, Fiona Russell, Benjamin W. Teh, and Sophie CH Wen, on behalf of the Australasian Society for Infectious Diseases (ASID) Vaccination Special Interest group (VACSIG) from Flanagan KL, Best E, Crawford NW, Giles M, Koirala A, Macartney K, Russell F, Teh BW and Wen SCH (2020) Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Front. Immunol. 11:579...

There are no pages that use this file.

File usage on other wikis

The following other wikis use this file:

Metadata