Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

CERN Document Server Encontrados 7 registros  La búsqueda tardó 0.66 segundos. 
1.
CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation / Krause, Claudius (ed.) (Vienna, OAW ; Heidelberg U.) ; Faucci Giannelli, Michele (ed.) (INFN, Rome2 ; Chalmers U. Tech.) ; Kasieczka, Gregor (ed.) (Hamburg U.) ; Nachman, Benjamin (ed.) (LBNL, Berkeley) ; Salamani, Dalila (ed.) (CERN) ; Shih, David (ed.) (Rutgers U., Piscataway) ; Zaborowska, Anna (ed.) (CERN) ; Amram, Oz (Fermilab) ; Borras, Kerstin (DESY ; Aachen, Tech. Hochsch.) ; Buckley, Matthew R. (Rutgers U., Piscataway) et al.
We present the results of the "Fast Calorimeter Simulation Challenge 2022" - the CaloChallenge. [...]
arXiv:2410.21611 ; HEPHY-ML-24-05 ; FERMILAB-PUB-24-0728-CMS ; TTK-24-43.
- 204.
Fermilab Library Server - Fulltext - Fulltext
2.
Normalizing Flows for High-Dimensional Detector Simulations / Ernst, Florian (U. Heidelberg, ITP ; CERN) ; Favaro, Luigi (U. Heidelberg, ITP) ; Krause, Claudius (U. Heidelberg, ITP ; Vienna, OAW) ; Plehn, Tilman (U. Heidelberg, ITP) ; Shih, David (Rutgers U., Piscataway)
Whenever invertible generative networks are needed for LHC physics, normalizing flows show excellent performance. [...]
arXiv:2312.09290.
- 24 p.
Fulltext
3.
Exploiting Differentiable Programming for the End-to-end Optimization of Detectors / MODE Collaboration
The coming of age of differentiable programming makes possible today to create complete computer models of experimental apparatus that include the stochastic data-generation processes, the full modeling of the reconstruction and inference procedures, and a suitably defined objective function, along with the cost of any given detector configuration, geometry and materials. [...]
2022. - 8 p.
Fulltext
4.
Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning / Shanahan, Phiala (MIT) ; Terao, Kazuhiro (SLAC) ; Whiteson, Daniel (UC, Irvine) ; Aarts, Gert (Swansea U. ; ECT, Trento ; Fond. Bruno Kessler, Trento) ; Adelmann, Andreas (Northeastern U. ; PSI, Villigen) ; Akchurin, N. (Texas Tech.) ; Alexandru, Andrei (George Washington U. ; Maryland U.) ; Amram, Oz (Johns Hopkins U.) ; Andreassen, Anders (Google Inc.) ; Apresyan, Artur (Fermilab) et al.
The rapidly-developing intersection of machine learning (ML) with high-energy physics (HEP) presents both opportunities and challenges to our community. [...]
arXiv:2209.07559 ; FERMILAB-CONF-22-719-ND-PPD-QIS-SCD.
-
Fermilab Library Server - eConf - Fulltext - Fulltext
5.
New developments in fast simulation with machine learning / Krause, Claudius (speaker) (Rutgers University)
2022 - 1438. Conferences; 10th Edition of the Large Hadron Collider Physics Conference External links: Talk details; Event details In : 10th Edition of the Large Hadron Collider Physics Conference
6.
Event Generators for High-Energy Physics Experiments / Campbell, J.M. (Fermilab) ; Diefenthaler, M. (Jefferson Lab) ; Hobbs, T.J. (Fermilab ; IIT, Chicago) ; Höche, Stefan (Fermilab) ; Isaacson, Joshua (Fermilab) ; Kling, Felix (DESY) ; Mrenna, Stephen (Fermilab) ; Reuter, J. (DESY) ; Alioli, S. (Milan Bicocca U. ; INFN, Milan Bicocca) ; Andersen, J.R. (Durham U., IPPP) et al.
We provide an overview of the status of Monte-Carlo event generators for high-energy particle physics. Guided by the experimental needs and requirements, we highlight areas of active development, and opportunities for future improvements. [...]
arXiv:2203.11110; CP3-22-12; DESY-22-042; FERMILAB-PUB-22-116-SCD-T; IPPP/21/51, JLAB-PHY-22-3576; KA-TP-04-2022; LA-UR-22-22126; LU-TP-22-12; MCNET-22-04, OUTP-22-03P; P3H-22-024; PITT-PACC 2207; UCI-TR-2022-02.- 2024-05-24 - 225 p. - Published in : 10.21468/SciPostPhys.16.5.130 Fulltext: jt - PDF; 2203.11110 - PDF; Fulltext from Publisher: PDF; External links: JLab Document Server; Fermilab Library Server; eConf
In : 2021 Snowmass Summer Study, Seattle, WA, United States, 11 - 20 July 2021, pp.
7.
Toward the end-to-end optimization of particle physics instruments with differentiable programming / MODE Collaboration
The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, given the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, "experience-driven" layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized by means of a systematic search of the configuration space. [...]
arXiv:2203.13818.- 2023-05-25 - 56 p. - Published in : Rev. Phys. 10 (2023) 100085 Fulltext: 2203.13818 - PDF; Publication - PDF;

Vea también: autores con nombres similares
6 Krause, C
2 Krause, C.
6 Krause, Christian
2 Krause, Christina
1 Krause, Christina M
10 Krause, Christopher
¿Le interesa recibir alertas sobre nuevos resultados de esta búsqueda?
Defina una alerta personal vía correo electrónico o subscríbase al canal RSS.
¿No ha encontrado lo que estaba buscando? Intente su búsqueda en:
Krause, Claudius en Amazon
Krause, Claudius en CERN EDMS
Krause, Claudius en CERN Intranet
Krause, Claudius en CiteSeer
Krause, Claudius en Google Books
Krause, Claudius en Google Scholar
Krause, Claudius en Google Web
Krause, Claudius en IEC
Krause, Claudius en IHS
Krause, Claudius en INSPIRE
Krause, Claudius en ISO
Krause, Claudius en KISS Books/Journals
Krause, Claudius en KISS Preprints
Krause, Claudius en NEBIS
Krause, Claudius en SLAC Library Catalog
Krause, Claudius en Scirus