Políedre de Catalan
Aquest article o secció no cita les fonts o necessita més referències per a la seva verificabilitat. |
En geometria, un sòlid de Catalan, o sòlid arquimedià dual és un políedre dual d'un sòlid arquimedià. Els sòlids de Catalan prenen el nom en honor del matemàtic belga Eugène Charles Catalan, qui els va descriure per primer cop el 1865.[1]
Propietats
[modifica]Cares uniformes
[modifica]Tots els sòlids de Catalan són convexos. Com que els sòlids arquimedians tenen els vèrtexs uniformes, i la dualitat intercanvia el paper dels vèrtexs i les cares, els de Catalan tenen les cares uniformes: per a cada parella de cares, hi ha una simetria del sòlid que transforma que trasllada la primera sobre la segona. Per altra banda, com que els sòlids arquimedians no són uniformes respecte de les cares, els de Catalan no ho són respecte dels vèrtexs: de fet hi ha vèrtexs amb diferents plans incidents.
A diferència dels sòlids platònics i dels sòlids arquimedians, les cares dels sòlids de Catalan no són polígons regulars. Tanmateix els polígons que sorgeixen de truncar els vèrtexs són polígons regulars i presenten angles díedres iguals. A més, dos dels sòlids de Catalan, el dodecàedre ròmbic i el triacontàedre ròmbic són uniformes respecte de les arestes.
Quiralitat
[modifica]Igual que per als seus duals els sòlids arquimedians, hi ha dos sòlids de Catalan amb quiralitat: l'icositetràedre pentagonal i l'hexacontàedre pentagonal. Són sòlids que no són equivalents a la seva imatge especular.
Els sòlids
[modifica]A la taula, els grups de simetria Oh, Ih i Td són respectivament el grup de simetria de l'octaedre, icosaedre i tetraedre. Els grups O i I són respectivament els subgrups d'Oh i Ih formats per les simetries que preserven l'orientació.
Enllaços externs
[modifica]- Políedres I Arxivat 2009-05-09 a Wayback Machine. Pàgina 25
- Catalan Solid a MathWorld
- Archimedean duals – a Virtual Reality Polyhedra
Referències
[modifica]- ↑ Catalan, E. «Mémoire sur la Théorie des Polyèdres» (en francès). J. l'École Polytechnique (Paris) 41, 1865, pàg. 1-71.