ALICE mission

ALICE is optimized to study the collisions of nuclei at the ultra-relativistic energies provided by the LHC. The aim is to study the physics of strongly interacting matter at the highest energy densities reached so far in the laboratory. In such conditions, an extreme phase of matter - called the quark-gluon plasma - is formed. Our universe is thought to have been in such a primordial state for the first few millionths of a second after the Big Bang, before quarks and gluons were bound together to form protons and neutrons. Recreating this primordial state of matter in the laboratory and understanding how it evolves will allow us to shed light on questions about how matter is organized and the mechanisms that confine quarks and gluons. For this purpose, we are carrying out a comprehensive study of the hadrons, electrons, muons, and photons produced in the collisions of heavy nuclei (208Pb). ALICE is also studying proton-proton and proton-nucleus collisions both as a comparison with nucleus-nucleus collisions and in their own right. In 2021, ALICE completed a significant upgrade of its detectors to further enhance its capabilities and continue its scientific journey at the LHC in Run 3 and 4, until the end of 2032. At the same time,  upgrade plans are being made for ALICE 3, the next-generation experiment for LHC Runs 5 and 6.

Latest ALICE Submissions

Direct-photon production in inelastic and high-multiplicity proton-proton collisions at $\sqrt{s} =$ 13 TeV In this letter, we present the first measurement of direct photons at the transverse momentum of $ 1 < ~ p_{\rm T} < ~ 6$ GeV/$c$ at midrapidity $|\eta| < ~ 0.8$ in inelastic and high-multiplicity proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. The fraction of virtual direct photons in the inclusive virtual photon spectrum is obtained from a fit to the dielectron invariant mass spectrum. In the limit of zero invariant mass, this fraction is equal to the relative contribution of real direct photons in the inclusive real photon spectrum. Contributions from decays of light-flavour neutral mesons are estimated using independent measurements in proton-proton collisions at the same energy and the same event class. The yield of direct photons in inelastic pp collisions is compared to perturbative QCD calculations. The integrated photon yield is studied as a function of charged-particle multiplicity and is compared to the results from other experiments and theoretical calculations. The results show a significant increase of direct-photon yield with charged-particle multiplicity.
2411.14366
Studying charm hadronisation into baryons with azimuthal correlations of $Λ_{\rm c}^{+}$ with charged particles in pp collisions at $\mathbf{\sqrt{s} = 13}$ TeV The distribution of angular correlations between prompt charm hadrons and primary charged particles in pp collisions is sensitive to the charm-quark hadronisation process. In this letter, charm-baryon correlations are measured for the first time by studying the azimuthal-angle difference between charged particles and prompt $\Lambda_{\rm c}^+$ baryons produced in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, with the ALICE detector. $\Lambda_{\rm c}^+$ baryons are reconstructed at midrapidity ($|y| < ~ 0.5$) in the transverse-momentum interval $3 < ~ p_{\rm T} < ~ 16$ GeV/$c$, and correlated with charged particles with $p_{\rm T} > 0.3$ GeV/$c$ and pseudorapidity $|\eta| < ~ 0.8$. For $3 < ~ p_{\rm T}^{\Lambda_{\rm c}^+,{\rm D}} < ~ 5$ GeV/$c$, the comparison with published measurements of D-meson and charged-particle correlations in the same collision system hints at a larger number of low-momentum particles associated with $\Lambda_{\rm c}^+$-baryon triggers than with D-meson triggers, both in the collinear and opposite directions with respect to the trigger particle. These differences can be quantified by the comparison of the properties of the near- and away-side correlation peaks, and are not reproduced by predictions of various Monte Carlo event generators, generally underpredicting the associated particle yields at $p_{\rm T}^{\rm assoc} < ~ 1$ GeV/$c$. This tension between $\Lambda_{\rm c}^+$-baryon and D-meson associated peak yields could suggest a modified fragmentation of the charm quark, or a different hadronisation process, when a charm baryon is produced in the final state.
2411.10104
Measurement of $ω$ meson production in pp collisions at $\sqrt{s}$ = 13 TeV The $p_{\rm T}$-differential cross section of $\omega$ meson production in pp collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y| < ~0.5$) was measured with the ALICE detector at the LHC, covering an unprecedented transverse-momentum range of $1.6 < ~ p_{\rm T} < ~50$ GeV/$c$. The meson is reconstructed via the $\omega\rightarrow\pi^+\pi^-\pi^0$ decay channel. The results are compared with various theoretical calculations: PYTHIA8.2 with the Monash 2013 tune overestimates the data by up to 50%, whereas good agreement is observed with Next-to-Leading Order (NLO) calculations incorporating $\omega$ fragmentation using a broken SU(3) model. The $\omega/\pi^0$ ratio is presented and compared with theoretical calculations and the available measurements at lower collision energies. The presented data triples the $p_{\rm T}$ ranges of previously available measurements. A constant ratio of $C^{\omega/\pi^0}=0.578\pm0.006~\text{(stat.)}\pm 0.013~\text{(syst.)}$ is found above a transverse momentum of 4 GeV/$c$, which is in agreement with previous findings at lower collision energies within the systematic and statistical uncertainties.
2411.09432
Light neutral-meson production in pp collisions at $\sqrt{s}$ = 13 TeV The momentum-differential invariant cross sections of ${\pi^{0}}$ and $\eta$ mesons are reported for pp collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y| < ~0.8$). The measurement is performed in a broad transverse-momentum range of $0.2 < ~p_{\rm T} < ~200$ GeV/$c$ and $0.4 < ~p_{\rm T} < ~60$ GeV/$c$ for the ${\pi^{0}}$ and $\eta$, respectively, extending the $p_{\rm T}$ coverage of previous measurements. Transverse-mass-scaling violation of up to 60% at low transverse momentum has been observed, agreeing with measurements at lower collision energies. Transverse Bjorken $x$ ($x_{\rm T}$) scaling of the ${\pi^{0}}$ cross sections at LHC energies is fulfilled with a power-law exponent of $n$ = 5.01$\pm$0.05, consistent with values obtained for charged pions at similar collision energies. The data is compared to predictions from next-to-leading order perturbative QCD calculations, where the ${\pi^{0}}$ spectrum is best described using the CT18 parton distribution function and the NNFF1.0 or BDSS fragmentation function. Expectations from PYTHIA8 and EPOS LHC overestimate the spectrum for the ${\pi^{0}}$ and are not able to describe the shape and magnitude of the $\eta$ spectrum. The charged-particle multiplicity dependent ${\pi^{0}}$ and $\eta$ $p_{\rm T}$ spectra show the expected hardening with increasing multiplicity. This is demonstrated across a broad transverse-momentum range and up to events with a charged-particle multiplicity exceeding five times the mean value in minimum bias collisions. The absolute magnitude of the $\eta/\pi^{0}$ ratio shows a dependence on the charged-particle multiplicity for $p_{\rm T} < ~4$ GeV/$c$, qualitatively described by PYTHIA8 and EPOS LHC due to a rising contribution from feed-down of heavier particles to the ${\pi^{0}}$ spectrum.
2411.09560
Observation of partonic flow in proton-proton and proton-nucleus collisionsQuantum Chromodynamics predicts a phase transition from ordinary hadronic matter to the quark-gluon plasma (QGP) at high temperatures and energy densities, where quarks and gluons (partons) are not confined within hadrons. The QGP is generated in ultrarelativistic heavy-ion collisions. Anisotropic flow coefficients, quantifying the anisotropic azimuthal expansion of the produced matter, provide a unique tool to unravel QGP properties. Flow measurements in high-energy heavy-ion collisions show a distinctive grouping of anisotropic flow for baryons and mesons at intermediate transverse momentum, a feature associated with flow being imparted at the quark level, confirming the existence of the QGP. The observation of QGP-like features in relativistic proton-proton and proton-ion collisions has sparked debate about possible QGP formation in smaller collision systems, which remains unresolved. In this article, we demonstrate for the first time the distinctive grouping of anisotropic flow for baryons and mesons in high-multiplicity proton-lead and proton-proton collisions at the Large Hadron Collider (LHC). These results are described by a model that includes hydrodynamic flow followed by hadron formation via quark coalescence, replicating features observed in heavy-ion collisions. This observation is consistent with the formation of a partonic flowing system in proton-proton and proton-lead collisions at the LHC.
2411.09323
See all submissions...

Upcoming Conferences (Next Week)

Diversity and Inclusivity in ALICE

The ALICE Collaboration embraces and values the diversity of its team members and colleagues. We are committed to fostering an inclusive environment for all people regardless of their nationality/culture, profession, age/generation, family situation and gender, as well as individual differences such as but not limited to ethnic origin, sexual orientation, belief, disability, or opinions provided that they are consistent with the Organization’s values.