@inproceedings{kong-etal-2024-swapmoe,
title = "{S}wap{M}o{E}: Serving Off-the-shelf {M}o{E}-based Large Language Models with Tunable Memory Budget",
author = "Kong, Rui and
Li, Yuanchun and
Feng, Qingtian and
Wang, Weijun and
Ye, Xiaozhou and
Ouyang, Ye and
Kong, Linghe and
Liu, Yunxin",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.363",
doi = "10.18653/v1/2024.acl-long.363",
pages = "6710--6720",
abstract = "Mixture of experts (MoE) is a popular technique to improve capacity of Large Language Models (LLMs) with conditionally-activated parallel experts. However, serving MoE models on memory-constrained devices is challenging due to the large parameter size. Typical solutions such as memory swapping or expert pruning may lead to significantly higher latency or severe accuracy loss.In this paper, we introduce SwapMoE, a framework for efficient serving of MoE-based large language models with tunable memory budgets. The main idea of SwapMoE is to keep a small dynamic set of important experts, namely Virtual Experts, in the main memory for inference, while seamlessly maintaining how the Virtual Experts map to the actual experts. Experiments have shown that SwapMoE can reduce the memory footprint while maintaining reasonable accuracy. For example, on text summarization tasks with Switch Transformer, SwapMoE can reduce the memory consumption from 14.2 GiB to 4.7 GiB, together with 50{\%} latency reduction and a slight Rouge-2 score drop of 0.041.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kong-etal-2024-swapmoe">
<titleInfo>
<title>SwapMoE: Serving Off-the-shelf MoE-based Large Language Models with Tunable Memory Budget</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Kong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanchun</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qingtian</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weijun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaozhou</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ye</namePart>
<namePart type="family">Ouyang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linghe</namePart>
<namePart type="family">Kong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunxin</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Mixture of experts (MoE) is a popular technique to improve capacity of Large Language Models (LLMs) with conditionally-activated parallel experts. However, serving MoE models on memory-constrained devices is challenging due to the large parameter size. Typical solutions such as memory swapping or expert pruning may lead to significantly higher latency or severe accuracy loss.In this paper, we introduce SwapMoE, a framework for efficient serving of MoE-based large language models with tunable memory budgets. The main idea of SwapMoE is to keep a small dynamic set of important experts, namely Virtual Experts, in the main memory for inference, while seamlessly maintaining how the Virtual Experts map to the actual experts. Experiments have shown that SwapMoE can reduce the memory footprint while maintaining reasonable accuracy. For example, on text summarization tasks with Switch Transformer, SwapMoE can reduce the memory consumption from 14.2 GiB to 4.7 GiB, together with 50% latency reduction and a slight Rouge-2 score drop of 0.041.</abstract>
<identifier type="citekey">kong-etal-2024-swapmoe</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.363</identifier>
<location>
<url>https://aclanthology.org/2024.acl-long.363</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>6710</start>
<end>6720</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SwapMoE: Serving Off-the-shelf MoE-based Large Language Models with Tunable Memory Budget
%A Kong, Rui
%A Li, Yuanchun
%A Feng, Qingtian
%A Wang, Weijun
%A Ye, Xiaozhou
%A Ouyang, Ye
%A Kong, Linghe
%A Liu, Yunxin
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F kong-etal-2024-swapmoe
%X Mixture of experts (MoE) is a popular technique to improve capacity of Large Language Models (LLMs) with conditionally-activated parallel experts. However, serving MoE models on memory-constrained devices is challenging due to the large parameter size. Typical solutions such as memory swapping or expert pruning may lead to significantly higher latency or severe accuracy loss.In this paper, we introduce SwapMoE, a framework for efficient serving of MoE-based large language models with tunable memory budgets. The main idea of SwapMoE is to keep a small dynamic set of important experts, namely Virtual Experts, in the main memory for inference, while seamlessly maintaining how the Virtual Experts map to the actual experts. Experiments have shown that SwapMoE can reduce the memory footprint while maintaining reasonable accuracy. For example, on text summarization tasks with Switch Transformer, SwapMoE can reduce the memory consumption from 14.2 GiB to 4.7 GiB, together with 50% latency reduction and a slight Rouge-2 score drop of 0.041.
%R 10.18653/v1/2024.acl-long.363
%U https://aclanthology.org/2024.acl-long.363
%U https://doi.org/10.18653/v1/2024.acl-long.363
%P 6710-6720
Markdown (Informal)
[SwapMoE: Serving Off-the-shelf MoE-based Large Language Models with Tunable Memory Budget](https://aclanthology.org/2024.acl-long.363) (Kong et al., ACL 2024)
ACL
- Rui Kong, Yuanchun Li, Qingtian Feng, Weijun Wang, Xiaozhou Ye, Ye Ouyang, Linghe Kong, and Yunxin Liu. 2024. SwapMoE: Serving Off-the-shelf MoE-based Large Language Models with Tunable Memory Budget. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6710–6720, Bangkok, Thailand. Association for Computational Linguistics.