@inproceedings{min-etal-2023-yishu,
title = "Yishu: Yishu at {WMT}2023 Translation Task",
author = "Min, Luo and
Tan, Yixin and
Chen, Qiulin",
editor = "Koehn, Philipp and
Haddow, Barry and
Kocmi, Tom and
Monz, Christof",
booktitle = "Proceedings of the Eighth Conference on Machine Translation",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.wmt-1.11",
doi = "10.18653/v1/2023.wmt-1.11",
pages = "143--149",
abstract = "This paper introduces the Dtranx AI translation system, developed for the WMT 2023 Universal Translation Shared Task. Our team participated in two language directions: English to Chinese and Chinese to English. Our primary focus was on enhancing the effectiveness of the Chinese-to-English model through the implementation of bilingual models. Our approach involved various techniques such as data corpus filtering, model size scaling, sparse expert models (especially the Transformer model with adapters), large-scale back-translation, and language model reordering. According to automatic evaluation, our system secured the first place in the English-to-Chinese category and the second place in the Chinese-to-English category.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="min-etal-2023-yishu">
<titleInfo>
<title>Yishu: Yishu at WMT2023 Translation Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luo</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixin</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiulin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Conference on Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Kocmi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces the Dtranx AI translation system, developed for the WMT 2023 Universal Translation Shared Task. Our team participated in two language directions: English to Chinese and Chinese to English. Our primary focus was on enhancing the effectiveness of the Chinese-to-English model through the implementation of bilingual models. Our approach involved various techniques such as data corpus filtering, model size scaling, sparse expert models (especially the Transformer model with adapters), large-scale back-translation, and language model reordering. According to automatic evaluation, our system secured the first place in the English-to-Chinese category and the second place in the Chinese-to-English category.</abstract>
<identifier type="citekey">min-etal-2023-yishu</identifier>
<identifier type="doi">10.18653/v1/2023.wmt-1.11</identifier>
<location>
<url>https://aclanthology.org/2023.wmt-1.11</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>143</start>
<end>149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Yishu: Yishu at WMT2023 Translation Task
%A Min, Luo
%A Tan, Yixin
%A Chen, Qiulin
%Y Koehn, Philipp
%Y Haddow, Barry
%Y Kocmi, Tom
%Y Monz, Christof
%S Proceedings of the Eighth Conference on Machine Translation
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F min-etal-2023-yishu
%X This paper introduces the Dtranx AI translation system, developed for the WMT 2023 Universal Translation Shared Task. Our team participated in two language directions: English to Chinese and Chinese to English. Our primary focus was on enhancing the effectiveness of the Chinese-to-English model through the implementation of bilingual models. Our approach involved various techniques such as data corpus filtering, model size scaling, sparse expert models (especially the Transformer model with adapters), large-scale back-translation, and language model reordering. According to automatic evaluation, our system secured the first place in the English-to-Chinese category and the second place in the Chinese-to-English category.
%R 10.18653/v1/2023.wmt-1.11
%U https://aclanthology.org/2023.wmt-1.11
%U https://doi.org/10.18653/v1/2023.wmt-1.11
%P 143-149
Markdown (Informal)
[Yishu: Yishu at WMT2023 Translation Task](https://aclanthology.org/2023.wmt-1.11) (Min et al., WMT 2023)
ACL
- Luo Min, Yixin Tan, and Qiulin Chen. 2023. Yishu: Yishu at WMT2023 Translation Task. In Proceedings of the Eighth Conference on Machine Translation, pages 143–149, Singapore. Association for Computational Linguistics.