Nothing Special   »   [go: up one dir, main page]

Multilingual Holistic Bias: Extending Descriptors and Patterns to Unveil Demographic Biases in Languages at Scale

Marta Costa-jussà, Pierre Andrews, Eric Smith, Prangthip Hansanti, Christophe Ropers, Elahe Kalbassi, Cynthia Gao, Daniel Licht, Carleigh Wood


Abstract
We introduce a multilingual extension of the HolisticBias dataset, the largest English template-based taxonomy of textual people references: Multilingual HolisticBias. This extension consists of 20,459 sentences in 50 languages distributed across 13 demographic axes. Source sentences are built from combinations of 118 demographic descriptors and three patterns, excluding nonsensical combinations. Multilingual translations include alternatives for gendered languages that cover gendered translations when there is ambiguity in English. Our dataset is intended to uncover demographic imbalances and be the tool to quantify mitigations towards them. Our initial findings show that translation quality for EN-to-XX translations is an average of almost 8 spBLEU better when evaluating with the masculine human reference compared to feminine. In the opposite direction, XX-to-EN, we compare the robustness of the model when the source input only differs in gender (masculine or feminine) and masculine translations are an average of almost 4 spBLEU better than feminine. When embedding sentences to a joint multilingual sentence representations space, we find that for most languages masculine translations are significantly closer to the English neutral sentences when embedded.
Anthology ID:
2023.emnlp-main.874
Volume:
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Month:
December
Year:
2023
Address:
Singapore
Editors:
Houda Bouamor, Juan Pino, Kalika Bali
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
14141–14156
Language:
URL:
https://aclanthology.org/2023.emnlp-main.874
DOI:
10.18653/v1/2023.emnlp-main.874
Bibkey:
Cite (ACL):
Marta Costa-jussà, Pierre Andrews, Eric Smith, Prangthip Hansanti, Christophe Ropers, Elahe Kalbassi, Cynthia Gao, Daniel Licht, and Carleigh Wood. 2023. Multilingual Holistic Bias: Extending Descriptors and Patterns to Unveil Demographic Biases in Languages at Scale. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 14141–14156, Singapore. Association for Computational Linguistics.
Cite (Informal):
Multilingual Holistic Bias: Extending Descriptors and Patterns to Unveil Demographic Biases in Languages at Scale (Costa-jussà et al., EMNLP 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.emnlp-main.874.pdf