@inproceedings{rusak-etal-2023-catching,
title = "Catching Misdiagnosed Limb Fractures in the Emergency Department Using Cross-institution Transfer Learning",
author = "Rusak, Filip and
Koopman, Bevan and
Brown, Nathan J. and
Chu, Kevin and
Liu, Jinghui and
Nguyen, Anthony",
editor = "Muresan, Smaranda and
Chen, Vivian and
Casey, Kennington and
David, Vandyke and
Nina, Dethlefs and
Koji, Inoue and
Erik, Ekstedt and
Stefan, Ultes",
booktitle = "Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association",
month = nov,
year = "2023",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.alta-1.8/",
pages = "78--87",
abstract = "We investigated the development of a Machine Learning (ML)-based classifier to identify abnormalities in radiology reports from Emergency Departments (EDs) that can help automate the radiology report reconciliation process. Often, radiology reports become available to the ED only after the patient has been treated and discharged, following ED clinician interpretation of the X-ray. However, occasionally ED clinicians misdiagnose or fail to detect subtle abnormalities on X-rays, so they conduct a manual radiology report reconciliation process as a safety net. Previous studies addressed this problem of automated reconciliation using ML-based classification solutions that require data samples from the target institution that is heavily based on feature engineering, implying lower transferability between hospitals. In this paper, we investigated the benefits of using pre-trained BERT models for abnormality classification in a cross-institutional setting where data for fine-tuning was unavailable from the target institution. We also examined how the inclusion of synthetically generated radiology reports from ChatGPT affected the performance of the BERT models. Our findings suggest that BERT-like models outperform previously proposed ML-based methods in cross-institutional scenarios, and that adding ChatGPT-generated labelled radiology reports can improve the classifier`s performance by reducing the number of misdiagnosed discharged patients."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rusak-etal-2023-catching">
<titleInfo>
<title>Catching Misdiagnosed Limb Fractures in the Emergency Department Using Cross-institution Transfer Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Rusak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bevan</namePart>
<namePart type="family">Koopman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Brown</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Chu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinghui</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anthony</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivian</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kennington</namePart>
<namePart type="family">Casey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vandyke</namePart>
<namePart type="family">David</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dethlefs</namePart>
<namePart type="family">Nina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Inoue</namePart>
<namePart type="family">Koji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekstedt</namePart>
<namePart type="family">Erik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ultes</namePart>
<namePart type="family">Stefan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigated the development of a Machine Learning (ML)-based classifier to identify abnormalities in radiology reports from Emergency Departments (EDs) that can help automate the radiology report reconciliation process. Often, radiology reports become available to the ED only after the patient has been treated and discharged, following ED clinician interpretation of the X-ray. However, occasionally ED clinicians misdiagnose or fail to detect subtle abnormalities on X-rays, so they conduct a manual radiology report reconciliation process as a safety net. Previous studies addressed this problem of automated reconciliation using ML-based classification solutions that require data samples from the target institution that is heavily based on feature engineering, implying lower transferability between hospitals. In this paper, we investigated the benefits of using pre-trained BERT models for abnormality classification in a cross-institutional setting where data for fine-tuning was unavailable from the target institution. We also examined how the inclusion of synthetically generated radiology reports from ChatGPT affected the performance of the BERT models. Our findings suggest that BERT-like models outperform previously proposed ML-based methods in cross-institutional scenarios, and that adding ChatGPT-generated labelled radiology reports can improve the classifier‘s performance by reducing the number of misdiagnosed discharged patients.</abstract>
<identifier type="citekey">rusak-etal-2023-catching</identifier>
<location>
<url>https://aclanthology.org/2023.alta-1.8/</url>
</location>
<part>
<date>2023-11</date>
<extent unit="page">
<start>78</start>
<end>87</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Catching Misdiagnosed Limb Fractures in the Emergency Department Using Cross-institution Transfer Learning
%A Rusak, Filip
%A Koopman, Bevan
%A Brown, Nathan J.
%A Chu, Kevin
%A Liu, Jinghui
%A Nguyen, Anthony
%Y Muresan, Smaranda
%Y Chen, Vivian
%Y Casey, Kennington
%Y David, Vandyke
%Y Nina, Dethlefs
%Y Koji, Inoue
%Y Erik, Ekstedt
%Y Stefan, Ultes
%S Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association
%D 2023
%8 November
%I Association for Computational Linguistics
%C Melbourne, Australia
%F rusak-etal-2023-catching
%X We investigated the development of a Machine Learning (ML)-based classifier to identify abnormalities in radiology reports from Emergency Departments (EDs) that can help automate the radiology report reconciliation process. Often, radiology reports become available to the ED only after the patient has been treated and discharged, following ED clinician interpretation of the X-ray. However, occasionally ED clinicians misdiagnose or fail to detect subtle abnormalities on X-rays, so they conduct a manual radiology report reconciliation process as a safety net. Previous studies addressed this problem of automated reconciliation using ML-based classification solutions that require data samples from the target institution that is heavily based on feature engineering, implying lower transferability between hospitals. In this paper, we investigated the benefits of using pre-trained BERT models for abnormality classification in a cross-institutional setting where data for fine-tuning was unavailable from the target institution. We also examined how the inclusion of synthetically generated radiology reports from ChatGPT affected the performance of the BERT models. Our findings suggest that BERT-like models outperform previously proposed ML-based methods in cross-institutional scenarios, and that adding ChatGPT-generated labelled radiology reports can improve the classifier‘s performance by reducing the number of misdiagnosed discharged patients.
%U https://aclanthology.org/2023.alta-1.8/
%P 78-87
Markdown (Informal)
[Catching Misdiagnosed Limb Fractures in the Emergency Department Using Cross-institution Transfer Learning](https://aclanthology.org/2023.alta-1.8/) (Rusak et al., ALTA 2023)
ACL