HW-TSC’s Submission for the WMT22 Efficiency Task
Hengchao Shang, Ting Hu, Daimeng Wei, Zongyao Li, Xianzhi Yu, Jianfei Feng, Ting Zhu, Lizhi Lei, Shimin Tao, Hao Yang, Ying Qin, Jinlong Yang, Zhiqiang Rao, Zhengzhe Yu
Abstract
This paper presents the submission of Huawei Translation Services Center (HW-TSC) to WMT 2022 Efficiency Shared Task. For this year’s task, we still apply sentence-level distillation strategy to train small models with different configurations. Then, we integrate the average attention mechanism into the lightweight RNN model to pursue more efficient decoding. We tried adding a retrain step to our 8-bit and 4-bit models to achieve a balance between model size and quality. We still use Huawei Noah’s Bolt for INT8 inference and 4-bit storage. Coupled with Bolt’s support for batch inference and multi-core parallel computing, we finally submit models with different configurations to the CPU latency and throughput tracks to explore the Pareto frontiers.- Anthology ID:
- 2022.wmt-1.66
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 677–681
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.66
- DOI:
- Bibkey:
- Cite (ACL):
- Hengchao Shang, Ting Hu, Daimeng Wei, Zongyao Li, Xianzhi Yu, Jianfei Feng, Ting Zhu, Lizhi Lei, Shimin Tao, Hao Yang, Ying Qin, Jinlong Yang, Zhiqiang Rao, and Zhengzhe Yu. 2022. HW-TSC’s Submission for the WMT22 Efficiency Task. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 677–681, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- HW-TSC’s Submission for the WMT22 Efficiency Task (Shang et al., WMT 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.wmt-1.66.pdf
Export citation
@inproceedings{shang-etal-2022-hw, title = "{HW}-{TSC}{'}s Submission for the {WMT}22 Efficiency Task", author = "Shang, Hengchao and Hu, Ting and Wei, Daimeng and Li, Zongyao and Yu, Xianzhi and Feng, Jianfei and Zhu, Ting and Lei, Lizhi and Tao, Shimin and Yang, Hao and Qin, Ying and Yang, Jinlong and Rao, Zhiqiang and Yu, Zhengzhe", editor = {Koehn, Philipp and Barrault, Lo{\"\i}c and Bojar, Ond{\v{r}}ej and Bougares, Fethi and Chatterjee, Rajen and Costa-juss{\`a}, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Freitag, Markus and Graham, Yvette and Grundkiewicz, Roman and Guzman, Paco and Haddow, Barry and Huck, Matthias and Jimeno Yepes, Antonio and Kocmi, Tom and Martins, Andr{\'e} and Morishita, Makoto and Monz, Christof and Nagata, Masaaki and Nakazawa, Toshiaki and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Popel, Martin and Turchi, Marco and Zampieri, Marcos}, booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wmt-1.66", pages = "677--681", abstract = "This paper presents the submission of Huawei Translation Services Center (HW-TSC) to WMT 2022 Efficiency Shared Task. For this year{'}s task, we still apply sentence-level distillation strategy to train small models with different configurations. Then, we integrate the average attention mechanism into the lightweight RNN model to pursue more efficient decoding. We tried adding a retrain step to our 8-bit and 4-bit models to achieve a balance between model size and quality. We still use Huawei Noah{'}s Bolt for INT8 inference and 4-bit storage. Coupled with Bolt{'}s support for batch inference and multi-core parallel computing, we finally submit models with different configurations to the CPU latency and throughput tracks to explore the Pareto frontiers.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="shang-etal-2022-hw"> <titleInfo> <title>HW-TSC’s Submission for the WMT22 Efficiency Task</title> </titleInfo> <name type="personal"> <namePart type="given">Hengchao</namePart> <namePart type="family">Shang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ting</namePart> <namePart type="family">Hu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Daimeng</namePart> <namePart type="family">Wei</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zongyao</namePart> <namePart type="family">Li</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Xianzhi</namePart> <namePart type="family">Yu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jianfei</namePart> <namePart type="family">Feng</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ting</namePart> <namePart type="family">Zhu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lizhi</namePart> <namePart type="family">Lei</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Shimin</namePart> <namePart type="family">Tao</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hao</namePart> <namePart type="family">Yang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ying</namePart> <namePart type="family">Qin</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jinlong</namePart> <namePart type="family">Yang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhiqiang</namePart> <namePart type="family">Rao</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhengzhe</namePart> <namePart type="family">Yu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-12</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title> </titleInfo> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Loïc</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussà</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Markus</namePart> <namePart type="family">Freitag</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Roman</namePart> <namePart type="family">Grundkiewicz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="family">Jimeno Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tom</namePart> <namePart type="family">Kocmi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Popel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marcos</namePart> <namePart type="family">Zampieri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This paper presents the submission of Huawei Translation Services Center (HW-TSC) to WMT 2022 Efficiency Shared Task. For this year’s task, we still apply sentence-level distillation strategy to train small models with different configurations. Then, we integrate the average attention mechanism into the lightweight RNN model to pursue more efficient decoding. We tried adding a retrain step to our 8-bit and 4-bit models to achieve a balance between model size and quality. We still use Huawei Noah’s Bolt for INT8 inference and 4-bit storage. Coupled with Bolt’s support for batch inference and multi-core parallel computing, we finally submit models with different configurations to the CPU latency and throughput tracks to explore the Pareto frontiers.</abstract> <identifier type="citekey">shang-etal-2022-hw</identifier> <location> <url>https://aclanthology.org/2022.wmt-1.66</url> </location> <part> <date>2022-12</date> <extent unit="page"> <start>677</start> <end>681</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T HW-TSC’s Submission for the WMT22 Efficiency Task %A Shang, Hengchao %A Hu, Ting %A Wei, Daimeng %A Li, Zongyao %A Yu, Xianzhi %A Feng, Jianfei %A Zhu, Ting %A Lei, Lizhi %A Tao, Shimin %A Yang, Hao %A Qin, Ying %A Yang, Jinlong %A Rao, Zhiqiang %A Yu, Zhengzhe %Y Koehn, Philipp %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Jimeno Yepes, Antonio %Y Kocmi, Tom %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Popel, Martin %Y Turchi, Marco %Y Zampieri, Marcos %S Proceedings of the Seventh Conference on Machine Translation (WMT) %D 2022 %8 December %I Association for Computational Linguistics %C Abu Dhabi, United Arab Emirates (Hybrid) %F shang-etal-2022-hw %X This paper presents the submission of Huawei Translation Services Center (HW-TSC) to WMT 2022 Efficiency Shared Task. For this year’s task, we still apply sentence-level distillation strategy to train small models with different configurations. Then, we integrate the average attention mechanism into the lightweight RNN model to pursue more efficient decoding. We tried adding a retrain step to our 8-bit and 4-bit models to achieve a balance between model size and quality. We still use Huawei Noah’s Bolt for INT8 inference and 4-bit storage. Coupled with Bolt’s support for batch inference and multi-core parallel computing, we finally submit models with different configurations to the CPU latency and throughput tracks to explore the Pareto frontiers. %U https://aclanthology.org/2022.wmt-1.66 %P 677-681
Markdown (Informal)
[HW-TSC’s Submission for the WMT22 Efficiency Task](https://aclanthology.org/2022.wmt-1.66) (Shang et al., WMT 2022)
- HW-TSC’s Submission for the WMT22 Efficiency Task (Shang et al., WMT 2022)
ACL
- Hengchao Shang, Ting Hu, Daimeng Wei, Zongyao Li, Xianzhi Yu, Jianfei Feng, Ting Zhu, Lizhi Lei, Shimin Tao, Hao Yang, Ying Qin, Jinlong Yang, Zhiqiang Rao, and Zhengzhe Yu. 2022. HW-TSC’s Submission for the WMT22 Efficiency Task. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 677–681, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.