@inproceedings{pham-etal-2022-multi,
title = "Multi-Domain Adaptation in Neural Machine Translation with Dynamic Sampling Strategies",
author = "Pham, Minh-Quang and
Crego, Josep and
Yvon, Fran{\c{c}}ois",
editor = {Moniz, Helena and
Macken, Lieve and
Rufener, Andrew and
Barrault, Lo{\"\i}c and
Costa-juss{\`a}, Marta R. and
Declercq, Christophe and
Koponen, Maarit and
Kemp, Ellie and
Pilos, Spyridon and
Forcada, Mikel L. and
Scarton, Carolina and
Van den Bogaert, Joachim and
Daems, Joke and
Tezcan, Arda and
Vanroy, Bram and
Fonteyne, Margot},
booktitle = "Proceedings of the 23rd Annual Conference of the European Association for Machine Translation",
month = jun,
year = "2022",
address = "Ghent, Belgium",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2022.eamt-1.4",
pages = "13--22",
abstract = "Building effective Neural Machine Translation models often implies accommodating diverse sets of heterogeneous data so as to optimize performance for the domain(s) of interest. Such multi-source / multi-domain adaptation problems are typically approached through instance selection or reweighting strategies, based on a static assessment of the relevance of training instances with respect to the task at hand. In this paper, we study dynamic data selection strategies that are able to automatically re-evaluate the usefulness of data samples and to evolve a data selection policy in the course of training. Based on the results of multiple experiments, we show that such methods constitute a generic framework to automatically and effectively handle a variety of real-world situations, from multi-source domain adaptation to multi-domain learning and unsupervised domain adaptation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pham-etal-2022-multi">
<titleInfo>
<title>Multi-Domain Adaptation in Neural Machine Translation with Dynamic Sampling Strategies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minh-Quang</namePart>
<namePart type="family">Pham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josep</namePart>
<namePart type="family">Crego</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Yvon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Annual Conference of the European Association for Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lieve</namePart>
<namePart type="family">Macken</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Rufener</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loïc</namePart>
<namePart type="family">Barrault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christophe</namePart>
<namePart type="family">Declercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarit</namePart>
<namePart type="family">Koponen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ellie</namePart>
<namePart type="family">Kemp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spyridon</namePart>
<namePart type="family">Pilos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Forcada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolina</namePart>
<namePart type="family">Scarton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joachim</namePart>
<namePart type="family">Van den Bogaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joke</namePart>
<namePart type="family">Daems</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arda</namePart>
<namePart type="family">Tezcan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bram</namePart>
<namePart type="family">Vanroy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Margot</namePart>
<namePart type="family">Fonteyne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Ghent, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Building effective Neural Machine Translation models often implies accommodating diverse sets of heterogeneous data so as to optimize performance for the domain(s) of interest. Such multi-source / multi-domain adaptation problems are typically approached through instance selection or reweighting strategies, based on a static assessment of the relevance of training instances with respect to the task at hand. In this paper, we study dynamic data selection strategies that are able to automatically re-evaluate the usefulness of data samples and to evolve a data selection policy in the course of training. Based on the results of multiple experiments, we show that such methods constitute a generic framework to automatically and effectively handle a variety of real-world situations, from multi-source domain adaptation to multi-domain learning and unsupervised domain adaptation.</abstract>
<identifier type="citekey">pham-etal-2022-multi</identifier>
<location>
<url>https://aclanthology.org/2022.eamt-1.4</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>13</start>
<end>22</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Domain Adaptation in Neural Machine Translation with Dynamic Sampling Strategies
%A Pham, Minh-Quang
%A Crego, Josep
%A Yvon, François
%Y Moniz, Helena
%Y Macken, Lieve
%Y Rufener, Andrew
%Y Barrault, Loïc
%Y Costa-jussà, Marta R.
%Y Declercq, Christophe
%Y Koponen, Maarit
%Y Kemp, Ellie
%Y Pilos, Spyridon
%Y Forcada, Mikel L.
%Y Scarton, Carolina
%Y Van den Bogaert, Joachim
%Y Daems, Joke
%Y Tezcan, Arda
%Y Vanroy, Bram
%Y Fonteyne, Margot
%S Proceedings of the 23rd Annual Conference of the European Association for Machine Translation
%D 2022
%8 June
%I European Association for Machine Translation
%C Ghent, Belgium
%F pham-etal-2022-multi
%X Building effective Neural Machine Translation models often implies accommodating diverse sets of heterogeneous data so as to optimize performance for the domain(s) of interest. Such multi-source / multi-domain adaptation problems are typically approached through instance selection or reweighting strategies, based on a static assessment of the relevance of training instances with respect to the task at hand. In this paper, we study dynamic data selection strategies that are able to automatically re-evaluate the usefulness of data samples and to evolve a data selection policy in the course of training. Based on the results of multiple experiments, we show that such methods constitute a generic framework to automatically and effectively handle a variety of real-world situations, from multi-source domain adaptation to multi-domain learning and unsupervised domain adaptation.
%U https://aclanthology.org/2022.eamt-1.4
%P 13-22
Markdown (Informal)
[Multi-Domain Adaptation in Neural Machine Translation with Dynamic Sampling Strategies](https://aclanthology.org/2022.eamt-1.4) (Pham et al., EAMT 2022)
ACL