@inproceedings{shridhar-etal-2022-automatic,
title = "Automatic Generation of Socratic Subquestions for Teaching Math Word Problems",
author = "Shridhar, Kumar and
Macina, Jakub and
El-Assady, Mennatallah and
Sinha, Tanmay and
Kapur, Manu and
Sachan, Mrinmaya",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.277",
doi = "10.18653/v1/2022.emnlp-main.277",
pages = "4136--4149",
abstract = "Socratic questioning is an educational method that allows students to discover answers to complex problems by asking them a series of thoughtful questions. Generation of didactically sound questions is challenging, requiring understanding of the reasoning process involved in the problem. We hypothesize that such questioning strategy can not only enhance the human performance, but also assist the math word problem (MWP) solvers.In this work, we explore the ability of large language models (LMs) in generating sequential questions for guiding math word problem-solving. We propose various guided question generation schemes based on input conditioning and reinforcement learning.On both automatic and human quality evaluations, we find that LMs constrained with desirable question properties generate superior questions and improve the overall performance of a math word problem solver. We conduct a preliminary user study to examine the potential value of such question generation models in the education domain. Results suggest that the difficulty level of problems plays an important role in determining whether questioning improves or hinders human performance. We discuss the future of using such questioning strategies in education.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shridhar-etal-2022-automatic">
<titleInfo>
<title>Automatic Generation of Socratic Subquestions for Teaching Math Word Problems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kumar</namePart>
<namePart type="family">Shridhar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Macina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mennatallah</namePart>
<namePart type="family">El-Assady</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmay</namePart>
<namePart type="family">Sinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manu</namePart>
<namePart type="family">Kapur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mrinmaya</namePart>
<namePart type="family">Sachan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Socratic questioning is an educational method that allows students to discover answers to complex problems by asking them a series of thoughtful questions. Generation of didactically sound questions is challenging, requiring understanding of the reasoning process involved in the problem. We hypothesize that such questioning strategy can not only enhance the human performance, but also assist the math word problem (MWP) solvers.In this work, we explore the ability of large language models (LMs) in generating sequential questions for guiding math word problem-solving. We propose various guided question generation schemes based on input conditioning and reinforcement learning.On both automatic and human quality evaluations, we find that LMs constrained with desirable question properties generate superior questions and improve the overall performance of a math word problem solver. We conduct a preliminary user study to examine the potential value of such question generation models in the education domain. Results suggest that the difficulty level of problems plays an important role in determining whether questioning improves or hinders human performance. We discuss the future of using such questioning strategies in education.</abstract>
<identifier type="citekey">shridhar-etal-2022-automatic</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.277</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.277</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>4136</start>
<end>4149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Generation of Socratic Subquestions for Teaching Math Word Problems
%A Shridhar, Kumar
%A Macina, Jakub
%A El-Assady, Mennatallah
%A Sinha, Tanmay
%A Kapur, Manu
%A Sachan, Mrinmaya
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F shridhar-etal-2022-automatic
%X Socratic questioning is an educational method that allows students to discover answers to complex problems by asking them a series of thoughtful questions. Generation of didactically sound questions is challenging, requiring understanding of the reasoning process involved in the problem. We hypothesize that such questioning strategy can not only enhance the human performance, but also assist the math word problem (MWP) solvers.In this work, we explore the ability of large language models (LMs) in generating sequential questions for guiding math word problem-solving. We propose various guided question generation schemes based on input conditioning and reinforcement learning.On both automatic and human quality evaluations, we find that LMs constrained with desirable question properties generate superior questions and improve the overall performance of a math word problem solver. We conduct a preliminary user study to examine the potential value of such question generation models in the education domain. Results suggest that the difficulty level of problems plays an important role in determining whether questioning improves or hinders human performance. We discuss the future of using such questioning strategies in education.
%R 10.18653/v1/2022.emnlp-main.277
%U https://aclanthology.org/2022.emnlp-main.277
%U https://doi.org/10.18653/v1/2022.emnlp-main.277
%P 4136-4149
Markdown (Informal)
[Automatic Generation of Socratic Subquestions for Teaching Math Word Problems](https://aclanthology.org/2022.emnlp-main.277) (Shridhar et al., EMNLP 2022)
ACL