@inproceedings{li-wu-2020-exploiting,
title = "Exploiting {W}ord{N}et Synset and Hypernym Representations for Answer Selection",
author = "Li, Weikang and
Wu, Yunfang",
editor = "Wong, Kam-Fai and
Knight, Kevin and
Wu, Hua",
booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing",
month = dec,
year = "2020",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.aacl-main.14/",
doi = "10.18653/v1/2020.aacl-main.14",
pages = "106--115",
abstract = "Answer selection (AS) is an important subtask of document-based question answering (DQA). In this task, the candidate answers come from the same document, and each answer sentence is semantically related to the given question, which makes it more challenging to select the true answer. WordNet provides powerful knowledge about concepts and their semantic relations so we employ WordNet to enrich the abilities of paraphrasing and reasoning of the network-based question answering model. Specifically, we exploit the synset and hypernym concepts to enrich the word representation and incorporate the similarity scores of two concepts that share the synset or hypernym relations into the attention mechanism. The proposed WordNet-enhanced hierarchical model (WEHM) consists of four modules, including WordNet-enhanced word representation, sentence encoding, WordNet-enhanced attention mechanism, and hierarchical document encoding. Extensive experiments on the public WikiQA and SelQA datasets demonstrate that our proposed model significantly improves the baseline system and outperforms all existing state-of-the-art methods by a large margin."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-wu-2020-exploiting">
<titleInfo>
<title>Exploiting WordNet Synset and Hypernym Representations for Answer Selection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weikang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunfang</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kam-Fai</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Knight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Answer selection (AS) is an important subtask of document-based question answering (DQA). In this task, the candidate answers come from the same document, and each answer sentence is semantically related to the given question, which makes it more challenging to select the true answer. WordNet provides powerful knowledge about concepts and their semantic relations so we employ WordNet to enrich the abilities of paraphrasing and reasoning of the network-based question answering model. Specifically, we exploit the synset and hypernym concepts to enrich the word representation and incorporate the similarity scores of two concepts that share the synset or hypernym relations into the attention mechanism. The proposed WordNet-enhanced hierarchical model (WEHM) consists of four modules, including WordNet-enhanced word representation, sentence encoding, WordNet-enhanced attention mechanism, and hierarchical document encoding. Extensive experiments on the public WikiQA and SelQA datasets demonstrate that our proposed model significantly improves the baseline system and outperforms all existing state-of-the-art methods by a large margin.</abstract>
<identifier type="citekey">li-wu-2020-exploiting</identifier>
<identifier type="doi">10.18653/v1/2020.aacl-main.14</identifier>
<location>
<url>https://aclanthology.org/2020.aacl-main.14/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>106</start>
<end>115</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploiting WordNet Synset and Hypernym Representations for Answer Selection
%A Li, Weikang
%A Wu, Yunfang
%Y Wong, Kam-Fai
%Y Knight, Kevin
%Y Wu, Hua
%S Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing
%D 2020
%8 December
%I Association for Computational Linguistics
%C Suzhou, China
%F li-wu-2020-exploiting
%X Answer selection (AS) is an important subtask of document-based question answering (DQA). In this task, the candidate answers come from the same document, and each answer sentence is semantically related to the given question, which makes it more challenging to select the true answer. WordNet provides powerful knowledge about concepts and their semantic relations so we employ WordNet to enrich the abilities of paraphrasing and reasoning of the network-based question answering model. Specifically, we exploit the synset and hypernym concepts to enrich the word representation and incorporate the similarity scores of two concepts that share the synset or hypernym relations into the attention mechanism. The proposed WordNet-enhanced hierarchical model (WEHM) consists of four modules, including WordNet-enhanced word representation, sentence encoding, WordNet-enhanced attention mechanism, and hierarchical document encoding. Extensive experiments on the public WikiQA and SelQA datasets demonstrate that our proposed model significantly improves the baseline system and outperforms all existing state-of-the-art methods by a large margin.
%R 10.18653/v1/2020.aacl-main.14
%U https://aclanthology.org/2020.aacl-main.14/
%U https://doi.org/10.18653/v1/2020.aacl-main.14
%P 106-115
Markdown (Informal)
[Exploiting WordNet Synset and Hypernym Representations for Answer Selection](https://aclanthology.org/2020.aacl-main.14/) (Li & Wu, AACL 2020)
ACL