2024
pdf
bib
abs
Program-Aided Reasoners (Better) Know What They Know
Anubha Kabra
|
Sanketh Rangreji
|
Yash Mathur
|
Aman Madaan
|
Emmy Liu
|
Graham Neubig
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Prior work shows that program-aided reasoning, in which large language models (LLMs) are combined with programs written in programming languages such as Python, can significantly improve accuracy on various reasoning tasks. However, while accuracy is essential, it is also important for such reasoners to “know what they know”, which can be quantified through the calibration of the model. In this paper, we compare the calibration of Program Aided Language Models (PAL) and text-based Chain-of-thought (COT) prompting techniques over 5 datasets and 2 model types - LLaMA models and OpenAI models. Our results indicate that PAL leads to improved calibration in 75% of the instances. Our analysis uncovers that prompting styles that produce lesser diversity in generations also have more calibrated results, and thus we also experiment with inducing lower generation diversity using temperature scaling and find that for certain temperatures, PAL is not only more accurate but is also more calibrated than COT. Overall, we demonstrate that, in the majority of cases, program-aided reasoners better know what they know than text-based counterparts.
2023
pdf
bib
abs
Long-Horizon Dialogue Understanding for Role Identification in the Game of Avalon with Large Language Models
Simon Stepputtis
|
Joseph Campbell
|
Yaqi Xie
|
Zhengyang Qi
|
Wenxin Zhang
|
Ruiyi Wang
|
Sanketh Rangreji
|
Charles Lewis
|
Katia Sycara
Findings of the Association for Computational Linguistics: EMNLP 2023
Deception and persuasion play a critical role in long-horizon dialogues between multiple parties, especially when the interests, goals, and motivations of the participants are not aligned. Such complex tasks pose challenges for current Large Language Models (LLM) as deception and persuasion can easily mislead them, especially in long-horizon multi-party dialogues. To this end, we explore the game of Avalon: The Resistance, a social deduction game in which players must determine each other’s hidden identities to complete their team’s objective. We introduce an online testbed and a dataset containing 20 carefully collected and labeled games among human players that exhibit long-horizon deception in a cooperative-competitive setting. We discuss the capabilities of LLMs to utilize deceptive long-horizon conversations between six human players to determine each player’s goal and motivation. Particularly, we discuss the multimodal integration of the chat between the players and the game’s state that grounds the conversation, providing further insights into the true player identities. We find that even current state-of-the-art LLMs do not reach human performance, making our dataset a compelling benchmark to investigate the decision-making and language-processing capabilities of LLMs. Our dataset and online testbed can be found at our project website: https://sstepput.github.io/Avalon-NLU/
pdf
bib
abs
SummQA at MEDIQA-Chat 2023: In-Context Learning with GPT-4 for Medical Summarization
Yash Mathur
|
Sanketh Rangreji
|
Raghav Kapoor
|
Medha Palavalli
|
Amanda Bertsch
|
Matthew Gormley
Proceedings of the 5th Clinical Natural Language Processing Workshop
Medical dialogue summarization is challenging due to the unstructured nature of medical conversations, the use of medical terminologyin gold summaries, and the need to identify key information across multiple symptom sets. We present a novel system for the Dialogue2Note Medical Summarization tasks in the MEDIQA 2023 Shared Task. Our approach for sectionwise summarization (Task A) is a two-stage process of selecting semantically similar dialogues and using the top-k similar dialogues as in-context examples for GPT-4. For full-note summarization (Task B), we use a similar solution with k=1. We achieved 3rd place in Task A (2nd among all teams), 4th place in Task B Division Wise Summarization (2nd among all teams), 15th place in Task A Section Header Classification (9th among all teams), and 8th place among all teams in Task B. Our results highlight the effectiveness of few-shot prompting for this task, though we also identify several weaknesses of prompting-based approaches. We compare GPT-4 performance with several finetuned baselines. We find that GPT-4 summaries are more abstractive and shorter. We make our code publicly available.