This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 17 teams whose submissions are documented in 27 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Human evaluation is a critical component in machine translation system development and has received much attention in text translation research. However, little prior work exists on the topic of human evaluation for speech translation, which adds additional challenges such as noisy data and segmentation mismatches. We take the first steps to fill this gap by conducting a comprehensive human evaluation of the results of several shared tasks from the last International Workshop on Spoken Language Translation (IWSLT 2023). We propose an effective evaluation strategy based on automatic resegmentation and direct assessment with segment context. Our analysis revealed that: 1) the proposed evaluation strategy is robust and scores well-correlated with other types of human judgements; 2) automatic metrics are usually, but not always, well-correlated with direct assessment scores; and 3) COMET as a slightly stronger automatic metric than chrF, despite the segmentation noise introduced by the resegmentation step systems. We release the collected human-annotated data in order to encourage further investigation.
ESPnet-ST-v2 is a revamp of the open-source ESPnet-ST toolkit necessitated by the broadening interests of the spoken language translation community. ESPnet-ST-v2 supports 1) offline speech-to-text translation (ST), 2) simultaneous speech-to-text translation (SST), and 3) offline speech-to-speech translation (S2ST) – each task is supported with a wide variety of approaches, differentiating ESPnet-ST-v2 from other open source spoken language translation toolkits. This toolkit offers state-of-the-art architectures such as transducers, hybrid CTC/attention, multi-decoders with searchable intermediates, time-synchronous blockwise CTC/attention, Translatotron models, and direct discrete unit models. In this paper, we describe the overall design, example models for each task, and performance benchmarking behind ESPnet-ST-v2, which is publicly available at https://github.com/espnet/espnet.
This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
In this paper, we describe our submission to the Simultaneous Track at IWSLT 2023. This year, we continue with the successful setup from the last year, however, we adopt the latest methods that further improve the translation quality. Additionally, we propose a novel online policy for attentional encoder-decoder models. The policy prevents the model to generate translation beyond the current speech input by using an auxiliary CTC output layer. We show that the proposed simultaneous policy can be applied to both streaming blockwise models and offline encoder-decoder models. We observe significant improvements in quality (up to 1.1 BLEU) and the computational footprint (up to 45% relative RTF).
Automatic speech translation is sensitive to speech recognition errors, but in a multilingual scenario, the same content may be available in various languages via simultaneous interpreting, dubbing or subtitling. In this paper, we hypothesize that leveraging multiple sources will improve translation quality if the sources complement one another in terms of correct information they contain. To this end, we first show that on a 10-hour ESIC corpus, the ASR errors in the original English speech and its simultaneous interpreting into German and Czech are mutually independent. We then use two sources, English and German, in a multi-source setting for translation into Czech to establish its robustness to ASR errors. Furthermore, we observe this robustness when translating both noisy sources together in a simultaneous translation setting. Our results show that multi-source neural machine translation has the potential to be useful in a real-time simultaneous translation setting, thereby motivating further investigation in this area.
Summarization is a challenging problem, and even more challenging is to manually create, correct, and evaluate the summaries. The severity of the problem grows when the inputs are multi-party dialogues in a meeting setup. To facilitate the research in this area, we present ALIGNMEET, a comprehensive tool for meeting annotation, alignment, and evaluation. The tool aims to provide an efficient and clear interface for fast annotation while mitigating the risk of introducing errors. Moreover, we add an evaluation mode that enables a comprehensive quality evaluation of meeting minutes. To the best of our knowledge, there is no such tool available. We release the tool as open source. It is also directly installable from PyPI.
In this paper, we describe our submission to the Simultaneous Speech Translation at IWSLT 2022. We explore strategies to utilize an offline model in a simultaneous setting without the need to modify the original model. In our experiments, we show that our onlinization algorithm is almost on par with the offline setting while being 3x faster than offline in terms of latency on the test set. We also show that the onlinized offline model outperforms the best IWSLT2021 simultaneous system in medium and high latency regimes and is almost on par in the low latency regime. We make our system publicly available.
This paper describes our participating system in the shared task Explainable quality estimation of 2nd Workshop on Evaluation & Comparison of NLP Systems. The task of quality estimation (QE, a.k.a. reference-free evaluation) is to predict the quality of MT output at inference time without access to reference translations. In this proposed work, we first build a word-level quality estimation model, then we finetune this model for sentence-level QE. Our proposed models achieve near state-of-the-art results. In the word-level QE, we place 2nd and 3rd on the supervised Ro-En and Et-En test sets. In the sentence-level QE, we achieve a relative improvement of 8.86% (Ro-En) and 10.6% (Et-En) in terms of the Pearson correlation coefficient over the baseline model.
This paper presents an automatic speech translation system aimed at live subtitling of conference presentations. We describe the overall architecture and key processing components. More importantly, we explain our strategy for building a complex system for end-users from numerous individual components, each of which has been tested only in laboratory conditions. The system is a working prototype that is routinely tested in recognizing English, Czech, and German speech and presenting it translated simultaneously into 42 target languages.
We present a large corpus of Czech parliament plenary sessions. The corpus consists of approximately 1200 hours of speech data and corresponding text transcriptions. The whole corpus has been segmented to short audio segments making it suitable for both training and evaluation of automatic speech recognition (ASR) systems. The source language of the corpus is Czech, which makes it a valuable resource for future research as only a few public datasets are available in the Czech language. We complement the data release with experiments of two baseline ASR systems trained on the presented data: the more traditional approach implemented in the Kaldi ASRtoolkit which combines hidden Markov models and deep neural networks (NN) and a modern ASR architecture implemented in Jaspertoolkit which uses deep NNs in an end-to-end fashion.
In this paper, we present our submission to the Non-Native Speech Translation Task for IWSLT 2020. Our main contribution is a proposed speech recognition pipeline that consists of an acoustic model and a phoneme-to-grapheme model. As an intermediate representation, we utilize phonemes. We demonstrate that the proposed pipeline surpasses commercially used automatic speech recognition (ASR) and submit it into the ASR track. We complement this ASR with off-the-shelf MT systems to take part also in the speech translation track.