Nothing Special   »   [go: up one dir, main page]

Mboning Tchiaze Elvis


2023

pdf bib
MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African languages
Cheikh M. Bamba Dione | David Ifeoluwa Adelani | Peter Nabende | Jesujoba Alabi | Thapelo Sindane | Happy Buzaaba | Shamsuddeen Hassan Muhammad | Chris Chinenye Emezue | Perez Ogayo | Anuoluwapo Aremu | Catherine Gitau | Derguene Mbaye | Jonathan Mukiibi | Blessing Sibanda | Bonaventure F. P. Dossou | Andiswa Bukula | Rooweither Mabuya | Allahsera Auguste Tapo | Edwin Munkoh-Buabeng | Victoire Memdjokam Koagne | Fatoumata Ouoba Kabore | Amelia Taylor | Godson Kalipe | Tebogo Macucwa | Vukosi Marivate | Tajuddeen Gwadabe | Mboning Tchiaze Elvis | Ikechukwu Onyenwe | Gratien Atindogbe | Tolulope Adelani | Idris Akinade | Olanrewaju Samuel | Marien Nahimana | Théogène Musabeyezu | Emile Niyomutabazi | Ester Chimhenga | Kudzai Gotosa | Patrick Mizha | Apelete Agbolo | Seydou Traore | Chinedu Uchechukwu | Aliyu Yusuf | Muhammad Abdullahi | Dietrich Klakow
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we present AfricaPOS, the largest part-of-speech (POS) dataset for 20 typologically diverse African languages. We discuss the challenges in annotating POS for these languages using the universal dependencies (UD) guidelines. We conducted extensive POS baseline experiments using both conditional random field and several multilingual pre-trained language models. We applied various cross-lingual transfer models trained with data available in the UD. Evaluating on the AfricaPOS dataset, we show that choosing the best transfer language(s) in both single-source and multi-source setups greatly improves the POS tagging performance of the target languages, in particular when combined with parameter-fine-tuning methods. Crucially, transferring knowledge from a language that matches the language family and morphosyntactic properties seems to be more effective for POS tagging in unseen languages.

2022

pdf bib
MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition
David Adelani | Graham Neubig | Sebastian Ruder | Shruti Rijhwani | Michael Beukman | Chester Palen-Michel | Constantine Lignos | Jesujoba Alabi | Shamsuddeen Muhammad | Peter Nabende | Cheikh M. Bamba Dione | Andiswa Bukula | Rooweither Mabuya | Bonaventure F. P. Dossou | Blessing Sibanda | Happy Buzaaba | Jonathan Mukiibi | Godson Kalipe | Derguene Mbaye | Amelia Taylor | Fatoumata Kabore | Chris Chinenye Emezue | Anuoluwapo Aremu | Perez Ogayo | Catherine Gitau | Edwin Munkoh-Buabeng | Victoire Memdjokam Koagne | Allahsera Auguste Tapo | Tebogo Macucwa | Vukosi Marivate | Mboning Tchiaze Elvis | Tajuddeen Gwadabe | Tosin Adewumi | Orevaoghene Ahia | Joyce Nakatumba-Nabende
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

African languages are spoken by over a billion people, but they are under-represented in NLP research and development. Multiple challenges exist, including the limited availability of annotated training and evaluation datasets as well as the lack of understanding of which settings, languages, and recently proposed methods like cross-lingual transfer will be effective. In this paper, we aim to move towards solutions for these challenges, focusing on the task of named entity recognition (NER). We present the creation of the largest to-date human-annotated NER dataset for 20 African languages. We study the behaviour of state-of-the-art cross-lingual transfer methods in an Africa-centric setting, empirically demonstrating that the choice of source transfer language significantly affects performance. While much previous work defaults to using English as the source language, our results show that choosing the best transfer language improves zero-shot F1 scores by an average of 14% over 20 languages as compared to using English.