Nothing Special   »   [go: up one dir, main page]

Liang Wang


2024

pdf bib
LongEmbed: Extending Embedding Models for Long Context Retrieval
Dawei Zhu | Liang Wang | Nan Yang | Yifan Song | Wenhao Wu | Furu Wei | Sujian Li
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Embedding models play a pivotal role in modern NLP applications such as document retrieval. However, existing embedding models are limited to encoding short documents of typically 512 tokens, restrained from application scenarios requiring long inputs. This paper explores context window extension of existing embedding models, pushing their input length to a maximum of 32,768. We begin by evaluating the performance of existing embedding models using our newly constructed LongEmbed benchmark, which includes two synthetic and four real-world tasks, featuring documents of varying lengths and dispersed target information. The benchmarking results highlight huge opportunities for enhancement in current models. Via comprehensive experiments, we demonstrate that training-free context window extension strategies can effectively increase the input length of these models by several folds. Moreover, comparison of models using Absolute Position Encoding (APE) and Rotary Position Encoding (RoPE) reveals the superiority of RoPE-based embedding models in context window extension, offering empirical guidance for future models. Our benchmark, code and trained models will be released to advance the research in long context embedding models.

pdf bib
BlendSQL: A Scalable Dialect for Unifying Hybrid Question Answering in Relational Algebra
Parker Glenn | Parag Dakle | Liang Wang | Preethi Raghavan
Findings of the Association for Computational Linguistics: ACL 2024

Many existing end-to-end systems for hybrid question answering tasks can often be boiled down to a “prompt-and-pray” paradigm, where the user has limited control and insight into the intermediate reasoning steps used to achieve the final result. Additionally, due to the context size limitation of many transformer-based LLMs, it is often not reasonable to expect that the full structured and unstructured context will fit into a given prompt in a zero-shot setting, let alone a few-shot setting. We introduce BlendSQL, a superset of SQLite to act as a unified dialect for orchestrating reasoning across both unstructured and structured data. For hybrid question answering tasks involving multi-hop reasoning, we encode the full decomposed reasoning roadmap into a single interpretable BlendSQL query. Notably, we show that BlendSQL can scale to massive datasets and improve the performance of end-to-end systems while using 35% fewer tokens. Our code is available and installable as a package at https://github.com/parkervg/blendsql.

pdf bib
Logical Closed Loop: Uncovering Object Hallucinations in Large Vision-Language Models
Junfei Wu | Qiang Liu | Ding Wang | Jinghao Zhang | Shu Wu | Liang Wang | Tieniu Tan
Findings of the Association for Computational Linguistics: ACL 2024

pdf bib
EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification
Huanhuan Ma | Weizhi Xu | Yifan Wei | Liuji Chen | Liang Wang | Qiang Liu | Shu Wu | Liang Wang
Findings of the Association for Computational Linguistics: ACL 2024

Fact verification aims to automatically probe the veracity of a claim based on several pieces of evidence. Existing works are always engaging in accuracy improvement, let alone explainability, a critical capability of fact verification systems.Constructing an explainable fact verification system in a complex multi-hop scenario is consistently impeded by the absence of a relevant, high-quality dataset. Previous datasets either suffer from excessive simplification or fail to incorporate essential considerations for explainability. To address this, we present EX-FEVER, a pioneering dataset for multi-hop explainable fact verification. With over 60,000 claims involving 2-hop and 3-hop reasoning, each is created by summarizing and modifying information from hyperlinked Wikipedia documents. Each instance is accompanied by a veracity label and an explanation that outlines the reasoning path supporting the veracity classification. Additionally, we demonstrate a novel baseline system on our EX-FEVER dataset, showcasing document retrieval, explanation generation, and claim verification, and validate the significance of our dataset. Furthermore, we highlight the potential of utilizing Large Language Models in the fact verification task. We hope our dataset could make a significant contribution by providing ample opportunities to explore the integration of natural language explanations in the domain of fact verification.

pdf bib
EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification
Huanhuan Ma | Weizhi Xu | Yifan Wei | Liuji Chen | Liang Wang | Qiang Liu | Shu Wu | Liang Wang
Findings of the Association for Computational Linguistics: ACL 2024

Fact verification aims to automatically probe the veracity of a claim based on several pieces of evidence. Existing works are always engaging in accuracy improvement, let alone explainability, a critical capability of fact verification systems.Constructing an explainable fact verification system in a complex multi-hop scenario is consistently impeded by the absence of a relevant, high-quality dataset. Previous datasets either suffer from excessive simplification or fail to incorporate essential considerations for explainability. To address this, we present EX-FEVER, a pioneering dataset for multi-hop explainable fact verification. With over 60,000 claims involving 2-hop and 3-hop reasoning, each is created by summarizing and modifying information from hyperlinked Wikipedia documents. Each instance is accompanied by a veracity label and an explanation that outlines the reasoning path supporting the veracity classification. Additionally, we demonstrate a novel baseline system on our EX-FEVER dataset, showcasing document retrieval, explanation generation, and claim verification, and validate the significance of our dataset. Furthermore, we highlight the potential of utilizing Large Language Models in the fact verification task. We hope our dataset could make a significant contribution by providing ample opportunities to explore the integration of natural language explanations in the domain of fact verification.

pdf bib
Chain-of-History Reasoning for Temporal Knowledge Graph Forecasting
Yuwei Xia | Ding Wang | Qiang Liu | Liang Wang | Shu Wu | Xiao-Yu Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Temporal Knowledge Graph (TKG) forecasting aims to predict future facts based on given histories. Most recent graph-based models excel at capturing structural information within TKGs but lack semantic comprehension abilities. Nowadays, with the surge of LLMs, the LLM-based TKG prediction model has emerged. However, the existing LLM-based model exhibits three shortcomings: (1) It only focuses on the first-order history for prediction while ignoring high-order historical information, resulting in the provided information for LLMs being extremely limited. (2) LLMs struggle with optimal reasoning performance under heavy historical information loads. (3) For TKG prediction, the temporal reasoning capability of LLM alone is limited. To address the first two challenges, we propose Chain-of-History (CoH) reasoning which explores high-order histories step-by-step, achieving effective utilization of high-order historical information for LLMs on TKG prediction. To address the third issue, we design CoH as a plug-and-play module to enhance the performance of graph-based models for TKG prediction. Extensive experiments on three datasets and backbones demonstrate the effectiveness of CoH.

pdf bib
Learning to Retrieve In-Context Examples for Large Language Models
Liang Wang | Nan Yang | Furu Wei
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have demonstrated their ability to learn in-context, allowing them to perform various tasks based on a few input-output examples. However, the effectiveness of in-context learning is heavily reliant on the quality of the selected examples. In this paper, we propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples for LLMs. Our framework initially trains a reward model based on LLM feedback to evaluate the quality of candidate examples, followed by knowledge distillation to train a bi-encoder based dense retriever. Our experiments on a suite of 30 tasks demonstrate that our framework significantly enhances in-context learning performance. Furthermore, we show the generalization ability of our framework to unseen tasks during training. An in-depth analysis reveals that our model improves performance by retrieving examples with similar patterns, and the gains are consistent across LLMs of varying sizes.

pdf bib
Jetsons at FinNLP 2024: Towards Understanding the ESG Impact of a News Article Using Transformer-based Models
Parag Pravin Dakle | Alolika Gon | Sihan Zha | Liang Wang | Sai Krishna Rallabandi | Preethi Raghavan
Proceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing

In this paper, we describe the different approaches explored by the Jetsons team for the Multi-Lingual ESG Impact Duration Inference (ML-ESG-3) shared task. The shared task focuses on predicting the duration and type of the ESG impact of a news article. The shared task dataset consists of 2,059 news titles and articles in English, French, Korean, and Japanese languages. For the impact duration classification task, we fine-tuned XLM-RoBERTa with a custom fine-tuning strategy and using self-training and DeBERTa-v3 using only English translations. These models individually ranked first on the leaderboard for Korean and Japanese and in an ensemble for the English language, respectively. For the impact type classification task, our XLM-RoBERTa model fine-tuned using a custom fine-tuning strategy ranked first for the English language.

pdf bib
Stealthy Attack on Large Language Model based Recommendation
Jinghao Zhang | Yuting Liu | Qiang Liu | Shu Wu | Guibing Guo | Liang Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, the powerful large language models (LLMs) have been instrumental in propelling the progress of recommender systems (RS). However, while these systems have flourished, their susceptibility to security threats has been largely overlooked. In this work, we reveal that the introduction of LLMs into recommendation models presents new security vulnerabilities due to their emphasis on the textual content of items. We demonstrate that attackers can significantly boost an item’s exposure by merely altering its textual content during the testing phase, without requiring direct interference with the model’s training process. Additionally, the attack is notably stealthy, as it does not affect the overall recommendation performance and the modifications to the text are subtle, making it difficult for users and platforms to detect. Our comprehensive experiments across four mainstream LLM-based recommendation models demonstrate the superior efficacy and stealthiness of our approach. Our work unveils a significant security gap in LLM-based recommendation systems and paves the way for future research on protecting these systems.

pdf bib
Improving Text Embeddings with Large Language Models
Liang Wang | Nan Yang | Xiaolong Huang | Linjun Yang | Rangan Majumder | Furu Wei
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps. Unlike existing methods that often depend on multi-stage intermediate pre-training with billions of weakly-supervised text pairs, followed by fine-tuning with a few labeled datasets, our method does not require building complex training pipelines or relying on manually collected datasets that are often constrained by task diversity and language coverage. We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across 93 languages. We then fine-tune open-source decoder-only LLMs on the synthetic data using standard contrastive loss. Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data. Furthermore, when fine-tuned with a mixture of synthetic and labeled data, our model sets new state-of-the-art results on the BEIR and MTEB benchmarks.

2023

pdf bib
SimLM: Pre-training with Representation Bottleneck for Dense Passage Retrieval
Liang Wang | Nan Yang | Xiaolong Huang | Binxing Jiao | Linjun Yang | Daxin Jiang | Rangan Majumder | Furu Wei
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we propose SimLM (Similarity matching with Language Model pre-training), a simple yet effective pre-training method for dense passage retrieval. It employs a simple bottleneck architecture that learns to compress the passage information into a dense vector through self-supervised pre-training. We use a replaced language modeling objective, which is inspired by ELECTRA (Clark et al., 2020), to improve the sample efficiency and reduce the mismatch of the input distribution between pre-training and fine-tuning. SimLM only requires access to an unlabeled corpus and is more broadly applicable when there are no labeled data or queries. We conduct experiments on several large-scale passage retrieval datasets and show substantial improvements over strong baselines under various settings. Remarkably, SimLM even outperforms multi-vector approaches such as ColBERTv2 (Santhanam et al., 2021) which incurs significantly more storage cost. Our code and model checkpoints are available at https://github.com/microsoft/unilm/tree/master/simlm .

pdf bib
Multiview Identifiers Enhanced Generative Retrieval
Yongqi Li | Nan Yang | Liang Wang | Furu Wei | Wenjie Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Instead of simply matching a query to pre-existing passages, generative retrieval generates identifier strings of passages as the retrieval target. At a cost, the identifier must be distinctive enough to represent a passage. Current approaches use either a numeric ID or a text piece (such as a title or substrings) as the identifier. However, these identifiers cannot cover a passage’s content well. As such, we are motivated to propose a new type of identifier, synthetic identifiers, that are generated based on the content of a passage and could integrate contextualized information that text pieces lack. Furthermore, we simultaneously consider multiview identifiers, including synthetic identifiers, titles, and substrings. These views of identifiers complement each other and facilitate the holistic ranking of passages from multiple perspectives. We conduct a series of experiments on three public datasets, and the results indicate that our proposed approach performs the best in generative retrieval, demonstrating its effectiveness and robustness.

pdf bib
Counterfactual Debiasing for Fact Verification
Weizhi Xu | Qiang Liu | Shu Wu | Liang Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fact verification aims to automatically judge the veracity of a claim according to several pieces of evidence. Due to the manual construction of datasets, spurious correlations between claim patterns and its veracity (i.e., biases) inevitably exist. Recent studies show that models usually learn such biases instead of understanding the semantic relationship between the claim and evidence. Existing debiasing works can be roughly divided into data-augmentation-based and weight-regularization-based pipeline, where the former is inflexible and the latter relies on the uncertain output on the training stage. Unlike previous works, we propose a novel method from a counterfactual view, namely CLEVER, which is augmentation-free and mitigates biases on the inference stage. Specifically, we train a claim-evidence fusion model and a claim-only model independently. Then, we obtain the final prediction via subtracting output of the claim-only model from output of the claim-evidence fusion model, which counteracts biases in two outputs so that the unbiased part is highlighted. Comprehensive experiments on several datasets have demonstrated the effectiveness of CLEVER.

pdf bib
Learning Latent Relations for Temporal Knowledge Graph Reasoning
Mengqi Zhang | Yuwei Xia | Qiang Liu | Shu Wu | Liang Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Temporal Knowledge Graph (TKG) reasoning aims to predict future facts based on historical data. However, due to the limitations in construction tools and data sources, many important associations between entities may be omitted in TKG. We refer to these missing associations as latent relations. Most existing methods have some drawbacks in explicitly capturing intra-time latent relations between co-occurring entities and inter-time latent relations between entities that appear at different times. To tackle these problems, we propose a novel Latent relations Learning method for TKG reasoning, namely L2TKG. Specifically, we first utilize a Structural Encoder (SE) to obtain representations of entities at each timestamp. We then design a Latent Relations Learning (LRL) module to mine and exploit the intra- and inter-time latent relations. Finally, we extract the temporal representations from the output of SE and LRL for entity prediction. Extensive experiments on four datasets demonstrate the effectiveness of L2TKG.

pdf bib
Accurate Training of Web-based Question Answering Systems with Feedback from Ranked Users
Liang Wang | Ivano Lauriola | Alessandro Moschitti
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Recent work has shown that large-scale annotated datasets are essential for training state-of-the-art Question Answering (QA) models. Unfortunately, creating this data is expensive and requires a huge amount of annotation work. An alternative and cheaper source of supervision is given by feedback data collected from deployed QA systems. This data can be collected from tens of millions of user with no additional cost, for real-world QA services, e.g., Alexa, Google Home, and etc. The main drawback is the noise affecting feedback on individual examples. Recent literature on QA systems has shown the benefit of training models even with noisy feedback. However, these studies have multiple limitations: (i) they used uniform random noise to simulate feedback responses, which is typically an unrealistic approximation as noise follows specific patterns, depending on target examples and users; and (ii) they do not show how to aggregate feedback for improving training signals. In this paper, we first collect a large scale (16M) QA dataset with real feedback sampled from the QA traffic of a popular Virtual Assistant.Second, we use this data to develop two strategies for filtering unreliable users and thus de-noise feedback: (i) ranking users with an automatic classifier, and (ii) aggregating feedback over similar instances and comparing users between each other. Finally, we train QA models on our filtered feedback data, showing a significant improvement over the state of the art.

pdf bib
Noise-Robust Semi-Supervised Learning for Distantly Supervised Relation Extraction
Xin Sun | Qiang Liu | Shu Wu | Zilei Wang | Liang Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

Distantly supervised relation extraction (DSRE) aims to extract relational facts from texts but suffers from noisy instances. To mitigate the influence of noisy labels, current methods typically use the Multi-Instance-Learning framework to extract relations for each bag. However, these approaches are not capable of extracting relation labels for individual sentences. Several studies have focused on sentence-level DSRE to solve the above problem. These studies primarily aim to develop methods for identifying noisy samples and filtering them out to mitigate the impact of noise. However, discarding noisy samples directly leads to the loss of useful information. To this end, we propose SSLRE, a novel Semi-Supervised-Learning Relation Extraction framework for sentence-level DSRE. We discard only the labels of the noisy samples and utilize these instances without labels as unlabeled samples. Our SSLRE framework utilizes a weighted K-NN graph to select confident samples as labeled data and the rest as unlabeled. We then design a robust semi-supervised learning framework that can efficiently handle remaining label noise present in the labeled dataset, while also making effective use of unlabeled samples. Based on our experiments on two real-world datasets, the SSLRE framework we proposed has achieved significant enhancements in sentence-level relation extraction performance compared to the existing state-of-the-art methods. Moreover, it has also attained a state-of-the-art level of performance in bag-level relation extraction with ONE aggregation strategy.

pdf bib
Query2doc: Query Expansion with Large Language Models
Liang Wang | Nan Yang | Furu Wei
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

This paper introduces a simple yet effective query expansion approach, denoted as query2doc, to improve both sparse and dense retrieval systems. The proposed method first generates pseudo-documents by few-shot prompting large language models (LLMs), and then expands the query with generated pseudo documents. LLMs are trained on web-scale text corpora and are adept at knowledge memorization. The pseudo-documents from LLMs often contain highly relevant information that can aid in query disambiguation and guide the retrievers. Experimental results demonstrate that query2doc boosts the performance of BM25 by 3% to 15% on ad-hoc IR datasets, such as MS-MARCO and TREC DL, without any model fine-tuning. Furthermore, our method also benefits state-of-the-art dense retrievers in terms of both in-domain and out-of-domain results.

2022

pdf bib
CREATER: CTR-driven Advertising Text Generation with Controlled Pre-Training and Contrastive Fine-Tuning
Penghui Wei | Xuanhua Yang | ShaoGuo Liu | Liang Wang | Bo Zheng
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

This paper focuses on automatically generating the text of an ad, and the goal is that the generated text can capture user interest for achieving higher click-through rate (CTR). We propose CREATER, a CTR-driven advertising text generation approach, to generate ad texts based on high-quality user reviews. To incorporate CTR objective, our model learns from online A/B test data with contrastive learning, which encourages the model to generate ad texts that obtain higher CTR. To make use of large-scale unpaired reviews, we design a customized self-supervised objective reducing the gap between pre-training and fine-tuning. Experiments on industrial datasets show that CREATER significantly outperforms current approaches. It has been deployed online in a leading advertising platform and brings uplift on core online metrics.

pdf bib
SimKGC: Simple Contrastive Knowledge Graph Completion with Pre-trained Language Models
Liang Wang | Wei Zhao | Zhuoyu Wei | Jingming Liu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge graph completion (KGC) aims to reason over known facts and infer the missing links. Text-based methods such as KGBERT (Yao et al., 2019) learn entity representations from natural language descriptions, and have the potential for inductive KGC. However, the performance of text-based methods still largely lag behind graph embedding-based methods like TransE (Bordes et al., 2013) and RotatE (Sun et al., 2019b). In this paper, we identify that the key issue is efficient contrastive learning. To improve the learning efficiency, we introduce three types of negatives: in-batch negatives, pre-batch negatives, and self-negatives which act as a simple form of hard negatives. Combined with InfoNCE loss, our proposed model SimKGC can substantially outperform embedding-based methods on several benchmark datasets. In terms of mean reciprocal rank (MRR), we advance the state-of-the-art by +19% on WN18RR, +6.8% on the Wikidata5M transductive setting, and +22% on the Wikidata5M inductive setting. Thorough analyses are conducted to gain insights into each component. Our code is available at https://github.com/intfloat/SimKGC .

pdf bib
Quantized Wasserstein Procrustes Alignment of Word Embedding Spaces
Prince O Aboagye | Yan Zheng | Michael Yeh | Junpeng Wang | Zhongfang Zhuang | Huiyuan Chen | Liang Wang | Wei Zhang | Jeff Phillips
Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)

Motivated by the widespread interest in the cross-lingual transfer of NLP models from high resource to low resource languages, research on Cross-lingual word embeddings (CLWEs) has gained much popularity over the years. Among the most successful and attractive CLWE models are the unsupervised CLWE models. These unsupervised CLWE models pose the alignment task as a Wasserstein-Procrustes problem aiming to estimate a permutation matrix and an orthogonal matrix jointly. Most existing unsupervised CLWE models resort to Optimal Transport (OT) based methods to estimate the permutation matrix. However, linear programming algorithms and approximate OT solvers via Sinkhorn for computing the permutation matrix scale cubically and quadratically, respectively, in the input size. This makes it impractical and infeasible to compute OT distances exactly for larger sample size, resulting in a poor approximation quality of the permutation matrix and subsequently a less robust learned transfer function or mapper. This paper proposes an unsupervised projection-based CLWE model called quantized Wasserstein Procrustes (qWP) that jointly estimates a permutation matrix and an orthogonal matrix. qWP relies on a quantization step to estimate the permutation matrix between two probability distributions or measures. This approach substantially improves the approximation quality of empirical OT solvers given fixed computational cost. We demonstrate that qWP achieves state-of-the-art results on the Bilingual lexicon Induction (BLI) task.

pdf bib
DCT-Centered Temporal Relation Extraction
Liang Wang | Peifeng Li | Sheng Xu
Proceedings of the 29th International Conference on Computational Linguistics

Most previous work on temporal relation extraction only focused on extracting the temporal relations among events or suffered from the issue of different expressions of events, timexes and Document Creation Time (DCT). Moreover, DCT can act as a hub to semantically connect the other events and timexes in a document. Unfortunately, previous work cannot benefit from such critical information. To address the above issues, we propose a unified DCT-centered Temporal Relation Extraction model DTRE to identify the relations among events, timexes and DCT. Specifically, sentence-style DCT representation is introduced to address the first issue and unify event expressions, timexes and DCT. Then, a DCT-aware graph is applied to obtain their contextual structural representations. Furthermore, a DCT-anchoring multi-task learning framework is proposed to jointly predict three types of temporal relations in a batch. Finally, we apply a DCT-guided global inference to further enhance the global consistency among different relations. Experimental results on three datasets show that our DTRE outperforms several SOTA baselines on E-E, E-T and E-D significantly.

2021

pdf bib
Aligning Cross-lingual Sentence Representations with Dual Momentum Contrast
Liang Wang | Wei Zhao | Jingming Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In this paper, we propose to align sentence representations from different languages into a unified embedding space, where semantic similarities (both cross-lingual and monolingual) can be computed with a simple dot product. Pre-trained language models are fine-tuned with the translation ranking task. Existing work (Feng et al., 2020) uses sentences within the same batch as negatives, which can suffer from the issue of easy negatives. We adapt MoCo (He et al., 2020) to further improve the quality of alignment. As the experimental results show, the sentence representations produced by our model achieve the new state-of-the-art on several tasks, including Tatoeba en-zh similarity search (Artetxe andSchwenk, 2019b), BUCC en-zh bitext mining, and semantic textual similarity on 7 datasets.

2020

pdf bib
Learning distributed sentence vectors with bi-directional 3D convolutions
Bin Liu | Liang Wang | Guosheng Yin
Proceedings of the 28th International Conference on Computational Linguistics

We propose to learn distributed sentence representation using text’s visual features as input. Different from the existing methods that render the words or characters of a sentence into images separately, we further fold these images into a 3-dimensional sentence tensor. Then, multiple 3-dimensional convolutions with different lengths (the third dimension) are applied to the sentence tensor, which act as bi-gram, tri-gram, quad-gram, and even five-gram detectors jointly. Similar to the Bi-LSTM, these n-gram detectors learn both forward and backward distributional semantic knowledge from the sentence tensor. That is, the proposed model using bi-directional convolutions to learn text embedding according to the semantic order of words. The feature maps from the two directions are concatenated for final sentence embedding learning. Our model involves only a single-layer of convolution which makes it easy and fast to train. Finally, we evaluate the sentence embeddings on several downstream Natural Language Processing (NLP) tasks, which demonstrate a surprisingly excellent performance of the proposed model.

pdf bib
Every Document Owns Its Structure: Inductive Text Classification via Graph Neural Networks
Yufeng Zhang | Xueli Yu | Zeyu Cui | Shu Wu | Zhongzhen Wen | Liang Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Text classification is fundamental in natural language processing (NLP) and Graph Neural Networks (GNN) are recently applied in this task. However, the existing graph-based works can neither capture the contextual word relationships within each document nor fulfil the inductive learning of new words. Therefore in this work, to overcome such problems, we propose TextING for inductive text classification via GNN. We first build individual graphs for each document and then use GNN to learn the fine-grained word representations based on their local structure, which can also effectively produce embeddings for unseen words in the new document. Finally, the word nodes are aggregated as the document embedding. Extensive experiments on four benchmark datasets show that our method outperforms state-of-the-art text classification methods.

2019

pdf bib
Improving Grammatical Error Correction via Pre-Training a Copy-Augmented Architecture with Unlabeled Data
Wei Zhao | Liang Wang | Kewei Shen | Ruoyu Jia | Jingming Liu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Neural machine translation systems have become state-of-the-art approaches for Grammatical Error Correction (GEC) task. In this paper, we propose a copy-augmented architecture for the GEC task by copying the unchanged words from the source sentence to the target sentence. Since the GEC suffers from not having enough labeled training data to achieve high accuracy. We pre-train the copy-augmented architecture with a denoising auto-encoder using the unlabeled One Billion Benchmark and make comparisons between the fully pre-trained model and a partially pre-trained model. It is the first time copying words from the source context and fully pre-training a sequence to sequence model are experimented on the GEC task. Moreover, We add token-level and sentence-level multi-task learning for the GEC task. The evaluation results on the CoNLL-2014 test set show that our approach outperforms all recently published state-of-the-art results by a large margin.

pdf bib
Denoising based Sequence-to-Sequence Pre-training for Text Generation
Liang Wang | Wei Zhao | Ruoyu Jia | Sujian Li | Jingming Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

This paper presents a new sequence-to-sequence (seq2seq) pre-training method PoDA (Pre-training of Denoising Autoencoders), which learns representations suitable for text generation tasks. Unlike encoder-only (e.g., BERT) or decoder-only (e.g., OpenAI GPT) pre-training approaches, PoDA jointly pre-trains both the encoder and decoder by denoising the noise-corrupted text, and it also has the advantage of keeping the network architecture unchanged in the subsequent fine-tuning stage. Meanwhile, we design a hybrid model of Transformer and pointer-generator networks as the backbone architecture for PoDA. We conduct experiments on two text generation tasks: abstractive summarization, and grammatical error correction. Results on four datasets show that PoDA can improve model performance over strong baselines without using any task-specific techniques and significantly speed up convergence.

2018

pdf bib
Multi-Perspective Context Aggregation for Semi-supervised Cloze-style Reading Comprehension
Liang Wang | Sujian Li | Wei Zhao | Kewei Shen | Meng Sun | Ruoyu Jia | Jingming Liu
Proceedings of the 27th International Conference on Computational Linguistics

Cloze-style reading comprehension has been a popular task for measuring the progress of natural language understanding in recent years. In this paper, we design a novel multi-perspective framework, which can be seen as the joint training of heterogeneous experts and aggregate context information from different perspectives. Each perspective is modeled by a simple aggregation module. The outputs of multiple aggregation modules are fed into a one-timestep pointer network to get the final answer. At the same time, to tackle the problem of insufficient labeled data, we propose an efficient sampling mechanism to automatically generate more training examples by matching the distribution of candidates between labeled and unlabeled data. We conduct our experiments on a recently released cloze-test dataset CLOTH (Xie et al., 2017), which consists of nearly 100k questions designed by professional teachers. Results show that our method achieves new state-of-the-art performance over previous strong baselines.

pdf bib
Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational Knowledge for Commonsense Machine Comprehension
Liang Wang | Meng Sun | Wei Zhao | Kewei Shen | Jingming Liu
Proceedings of the 12th International Workshop on Semantic Evaluation

This paper describes our system for SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge. We use Three-way Attentive Networks (TriAN) to model interactions between the passage, question and answers. To incorporate commonsense knowledge, we augment the input with relation embedding from the graph of general knowledge ConceptNet. As a result, our system achieves state-of-the-art performance with 83.95% accuracy on the official test data. Code is publicly available at https://github.com/intfloat/commonsense-rc.

2017

pdf bib
PKU_ICL at SemEval-2017 Task 10: Keyphrase Extraction with Model Ensemble and External Knowledge
Liang Wang | Sujian Li
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper presents a system that participated in SemEval 2017 Task 10 (subtask A and subtask B): Extracting Keyphrases and Relations from Scientific Publications (Augenstein et al., 2017). Our proposed approach utilizes external knowledge to enrich feature representation of candidate keyphrase, including Wikipedia, IEEE taxonomy and pre-trained word embeddings etc. Ensemble of unsupervised models, random forest and linear models are used for candidate keyphrase ranking and keyphrase type classification. Our system achieves the 3rd place in subtask A and 4th place in subtask B.

pdf bib
Learning to Rank Semantic Coherence for Topic Segmentation
Liang Wang | Sujian Li | Yajuan Lv | Houfeng Wang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Topic segmentation plays an important role for discourse parsing and information retrieval. Due to the absence of training data, previous work mainly adopts unsupervised methods to rank semantic coherence between paragraphs for topic segmentation. In this paper, we present an intuitive and simple idea to automatically create a “quasi” training dataset, which includes a large amount of text pairs from the same or different documents with different semantic coherence. With the training corpus, we design a symmetric CNN neural network to model text pairs and rank the semantic coherence within the learning to rank framework. Experiments show that our algorithm is able to achieve competitive performance over strong baselines on several real-world datasets.

2014

pdf bib
Text-level Discourse Dependency Parsing
Sujian Li | Liang Wang | Ziqiang Cao | Wenjie Li
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)