Nothing Special   »   [go: up one dir, main page]

Kangil Kim


2024

pdf bib
Structural Optimization Ambiguity and Simplicity Bias in Unsupervised Neural Grammar Induction
Jinwook Park | Kangil Kim
Findings of the Association for Computational Linguistics: ACL 2024

Neural parameterization has significantly advanced unsupervised grammar induction. However, training these models with a traditional likelihood loss for all possible parses exacerbates two issues: 1) *structural optimization ambiguity* that arbitrarily selects one among structurally ambiguous optimal grammars despite the specific preference of gold parses, and 2) *structural simplicity bias* that leads a model to underutilize rules to compose parse trees. These challenges subject unsupervised neural grammar induction (UNGI) to inevitable prediction errors, high variance, and the necessity for extensive grammars to achieve accurate predictions. This paper tackles these issues, offering a comprehensive analysis of their origins. As a solution, we introduce *sentence-wise parse-focusing* to reduce the parse pool per sentence for loss evaluation, using the structural bias from pre-trained parsers on the same dataset.In unsupervised parsing benchmark tests, our method significantly improves performance while effectively reducing variance and bias toward overly simplistic parses. Our research promotes learning more compact, accurate, and consistent explicit grammars, facilitating better interpretability.

2017

pdf bib
Concept Equalization to Guide Correct Training of Neural Machine Translation
Kangil Kim | Jong-Hun Shin | Seung-Hoon Na | SangKeun Jung
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Neural machine translation decoders are usually conditional language models to sequentially generate words for target sentences. This approach is limited to find the best word composition and requires help of explicit methods as beam search. To help learning correct compositional mechanisms in NMTs, we propose concept equalization using direct mapping distributed representations of source and target sentences. In a translation experiment from English to French, the concept equalization significantly improved translation quality by 3.00 BLEU points compared to a state-of-the-art NMT model.