Nothing Special   »   [go: up one dir, main page]

Jessica Zosa Forde


2024

pdf bib
Re-Evaluating Evaluation for Multilingual Summarization
Jessica Zosa Forde | Ruochen Zhang | Lintang Sutawika | Alham Fikri Aji | Samuel Cahyawijaya | Genta Indra Winata | Minghao Wu | Carsten Eickhoff | Stella Biderman | Ellie Pavlick
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Automatic evaluation approaches (ROUGE, BERTScore, LLM-based evaluators) have been widely used to evaluate summarization tasks. Despite the complexities of script differences and tokenization, these approaches have been indiscriminately applied to summarization across multiple languages. While previous works have argued that these approaches correlate strongly with human ratings in English, it remains unclear whether the conclusion holds for other languages. To answer this question, we construct a small-scale pilot dataset containing article-summary pairs and human ratings in English, Chinese and Indonesian. To measure the strength of summaries, our ratings are measured as head-to-head comparisons with resulting Elo scores across four dimensions. Our analysis reveals that standard metrics are unreliable measures of quality, and that these problems are exacerbated in Chinese and Indonesian. We advocate for more nuanced and careful considerations in designing a robust evaluation framework for multiple languages.

2023

pdf bib
Current Status of NLP in South East Asia with Insights from Multilingualism and Language Diversity
Alham Fikri Aji | Jessica Zosa Forde | Alyssa Marie Loo | Lintang Sutawika | Skyler Wang | Genta Indra Winata | Zheng-Xin Yong | Ruochen Zhang | A. Seza Doğruöz | Yin Lin Tan | Jan Christian Blaise Cruz
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: Tutorial Abstract

pdf bib
Efficient Methods for Natural Language Processing: A Survey
Marcos Treviso | Ji-Ung Lee | Tianchu Ji | Betty van Aken | Qingqing Cao | Manuel R. Ciosici | Michael Hassid | Kenneth Heafield | Sara Hooker | Colin Raffel | Pedro H. Martins | André F. T. Martins | Jessica Zosa Forde | Peter Milder | Edwin Simpson | Noam Slonim | Jesse Dodge | Emma Strubell | Niranjan Balasubramanian | Leon Derczynski | Iryna Gurevych | Roy Schwartz
Transactions of the Association for Computational Linguistics, Volume 11

Recent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.