Due to the excellent capacities of large language models (LLMs), it becomes feasible to develop LLM-based agents for reliable user simulation. Considering the scarcity and limit (e.g., privacy issues) of real user data, in this paper, we conduct large-scale user simulations for the web search scenario to improve the analysis and modeling of user search behavior. Specially, we propose BASES, a novel user simulation framework with LLM-based agents, designed to facilitate comprehensive simulations of web search user behaviors. Our simulation framework can generate unique user profiles at scale, which subsequently leads to diverse search behaviors. To demonstrate the effectiveness of BASES, we conduct evaluation experiments based on two human benchmarks in both Chinese and English, demonstrating that BASES can effectively simulate large-scale human-like search behaviors. To further accommodate the research on web search, we develop WARRIORS, a new large-scale dataset encompassing web search user behaviors, including both Chinese and English versions, which can greatly bolster research in the field of information retrieval.
Consistency regularization methods, such as R-Drop (Liang et al., 2021) and CrossConST (Gao et al., 2023), have achieved impressive supervised and zero-shot performance in the neural machine translation (NMT) field. Can we also boost end-to-end (E2E) speech-to-text translation (ST) by leveraging consistency regularization? In this paper, we conduct empirical studies on intra-modal and cross-modal consistency and propose two training strategies, SimRegCR and SimZeroCR, for E2E ST in regular and zero-shot scenarios. Experiments on the MuST-C benchmark show that our approaches achieve state-of-the-art (SOTA) performance in most translation directions. The analyses prove that regularization brought by the intra-modal consistency, instead of the modality gap, is crucial for the regular E2E ST, and the cross-modal consistency could close the modality gap and boost the zero-shot E2E ST performance.
Many open-domain dialogue models pre-trained with social media comments can generate coherent replies but have difficulties producing engaging responses. This phenomenon might mainly result from the deficiency of annotated human-human conversations and the misalignment with human preference. In this paper, we propose a novel and efficient framework Diamante to boost the open-domain chatbot, where two kinds of human feedback (including explicit demonstration and implicit preference) are collected and leveraged. By asking annotators to select or amend the model-generated candidate responses, Diamante efficiently collects the human demonstrated responses and constructs a Chinese chit-chat dataset. To enhance the alignment with human preference, Diamante leverages the implicit preference in the data collection process and introduces the generation-evaluation joint training. Comprehensive experiments indicate that the Diamante dataset and joint training paradigm can significantly boost the performance of pre-trained dialogue models. The overall engagingness of the previous state-of-the-art model has been improved remarkably by 50% in Chinese open-domain conversations.
Recently, model-based retrieval has emerged as a new paradigm in text retrieval that discards the index in the traditional retrieval model and instead memorizes the candidate corpora using model parameters. This design employs a sequence-to-sequence paradigm to generate document identifiers, which enables the complete capture of the relevance between queries and documents and simplifies the classic index-retrieval-rerank pipeline. Despite its attractive qualities, there remain several major challenges in model-based retrieval, including the discrepancy between pre-training and fine-tuning, and the discrepancy between training and inference. To deal with the above challenges, we propose a novel two-stage model-based retrieval approach called TOME, which makes two major technical contributions, including the utilization of tokenized URLs as identifiers and the design of a two-stage generation architecture. We also propose a number of training strategies to deal with the training difficulty as the corpus size increases. Extensive experiments and analysis on MS MARCO and Natural Questions demonstrate the effectiveness of our proposed approach, and we investigate the scaling laws of TOME by examining various influencing factors.
High-quality datasets are significant to the development of dialogue models. However, most existing datasets for open-domain dialogue modeling are limited to a single language. The absence of multilingual open-domain dialog datasets not only limits the research on multilingual or cross-lingual transfer learning, but also hinders the development of robust open-domain dialog systems that can be deployed in other parts of the world. In this paper, we provide a multilingual parallel open-domain dialog dataset, XDailyDialog, to enable researchers to explore the challenging task of multilingual and cross-lingual open-domain dialog. XDailyDialog includes 13K dialogues aligned across 4 languages (52K dialogues and 410K utterances in total). We then propose a dialog generation model, kNN-Chat, which has a novel kNN-search mechanism to support unified response retrieval for monolingual, multilingual, and cross-lingual dialogue. Experiment results show the effectiveness of this framework. We will make XDailyDialog and kNN-Chat publicly available soon.
Much work has been done to improve persona consistency by finetuning a pretrained dialogue model on high-quality human-annoated persona datasets. However, these methods still face the challenges of high cost and poor scalability. To this end, we propose a simple-yet-effective approach to significantly improve zero-shot persona consistency via in-context learning. Specifically, we first pre-train a persona-augmented dialogue generation model and then utilize in-context prompting mechanism to realize zero-shot persona customization. Experimental results demonstrate that our method can dramatically improve persona consistency without compromising coherence and informativeness in zero-shot settings.
The multilingual neural machine translation (NMT) model has a promising capability of zero-shot translation, where it could directly translate between language pairs unseen during training. For good transfer performance from supervised directions to zero-shot directions, the multilingual NMT model is expected to learn universal representations across different languages. This paper introduces a cross-lingual consistency regularization, CrossConST, to bridge the representation gap among different languages and boost zero-shot translation performance. The theoretical analysis shows that CrossConST implicitly maximizes the probability distribution for zero-shot translation, and the experimental results on both low-resource and high-resource benchmarks show that CrossConST consistently improves the translation performance. The experimental analysis also proves that CrossConST could close the sentence representation gap and better align the representation space. Given the universality and simplicity of CrossConST, we believe it can serve as a strong baseline for future multilingual NMT research.
Recent years have witnessed the significant advance in dense retrieval (DR) based on powerful pre-trained language models (PLM). DR models have achieved excellent performance in several benchmark datasets, while they are shown to be not as competitive as traditional sparse retrieval models (e.g., BM25) in a zero-shot retrieval setting. However, in the related literature, there still lacks a detailed and comprehensive study on zero-shot retrieval. In this paper, we present the first thorough examination of the zero-shot capability of DR models. We aim to identify the key factors and analyze how they affect zero-shot retrieval performance. In particular, we discuss the effect of several key factors related to source training set, analyze the potential bias from the target dataset, and review and compare existing zero-shot DR models. Our findings provide important evidence to better understand and develop zero-shot DR models.
Multilingual sentence representations are the foundation for similarity-based bitext mining, which is crucial for scaling multilingual neural machine translation (NMT) system to more languages. In this paper, we introduce MuSR: a one-for-all Multilingual Sentence Representation model that supports 223 languages. Leveraging billions of English-centric parallel corpora, we train a multilingual Transformer encoder, coupled with an auxiliary Transformer decoder, by adopting a multilingual NMT framework with CrossConST, a cross-lingual consistency regularization technique proposed in Gao et al. (2023). Experimental results on multilingual similarity search and bitext mining tasks show the effectiveness of our approach. Specifically, MuSR achieves superior performance over LASER3 (Heffernan et al., 2022) which consists of 148 independent multilingual sentence encoders.
While there is increasing concern about the interpretability of neural models, the evaluation of interpretability remains an open problem, due to the lack of proper evaluation datasets and metrics. In this paper, we present a novel benchmark to evaluate the interpretability of both neural models and saliency methods. This benchmark covers three representative NLP tasks: sentiment analysis, textual similarity and reading comprehension, each provided with both English and Chinese annotated data. In order to precisely evaluate the interpretability, we provide token-level rationales that are carefully annotated to be sufficient, compact and comprehensive. We also design a new metric, i.e., the consistency between the rationales before and after perturbations, to uniformly evaluate the interpretability on different types of tasks. Based on this benchmark, we conduct experiments on three typical models with three saliency methods, and unveil their strengths and weakness in terms of interpretability. We will release this benchmark (https://www.luge.ai/#/luge/task/taskDetail?taskId=15) and hope it can facilitate the research in building trustworthy systems.
We introduce Bi-SimCut: a simple but effective training strategy to boost neural machine translation (NMT) performance. It consists of two procedures: bidirectional pretraining and unidirectional finetuning. Both procedures utilize SimCut, a simple regularization method that forces the consistency between the output distributions of the original and the cutoff sentence pairs. Without leveraging extra dataset via back-translation or integrating large-scale pretrained model, Bi-SimCut achieves strong translation performance across five translation benchmarks (data sizes range from 160K to 20.2M): BLEU scores of 31.16 for en→de and 38.37 for de→en on the IWSLT14 dataset, 30.78 for en→de and 35.15 for de→en on the WMT14 dataset, and 27.17 for zh→en on the WMT17 dataset. SimCut is not a new method, but a version of Cutoff (Shen et al., 2020) simplified and adapted for NMT, and it could be considered as a perturbation-based method. Given the universality and simplicity of Bi-SimCut and SimCut, we believe they can serve as strong baselines for future NMT research.
This paper reports the results of the shared task we hosted on the Third Workshop of Automatic Simultaneous Translation (AutoSimTrans). The shared task aims to promote the development of text-to-text and speech-to-text simultaneous translation, and includes Chinese-English and English-Spanish tracks. The number of systems submitted this year has increased fourfold compared with last year. Additionally, the top 1 ranked system in the speech-to-text track is the first end-to-end submission we have received in the past three years, which has shown great potential. This paper reports the results and descriptions of the 14 participating teams, compares different evaluation metrics, and revisits the ranking method.
Most dialog systems posit that users have figured out clear and specific goals before starting an interaction. For example, users have determined the departure, the destination, and the travel time for booking a flight. However, in many scenarios, limited by experience and knowledge, users may know what they need, but still struggle to figure out clear and specific goals by determining all the necessary slots. In this paper, we identify this challenge, and make a step forward by collecting a new human-to-human mixed-type dialog corpus. It contains 5k dialog sessions and 168k utterances for 4 dialog types and 5 domains. Within each session, an agent first provides user-goal-related knowledge to help figure out clear and specific goals, and then help achieve them. Furthermore, we propose a mixed-type dialog model with a novel Prompt-based continual learning mechanism. Specifically, the mechanism enables the model to continually strengthen its ability on any specific type by utilizing existing dialog corpora effectively.
End-to-end simultaneous speech-to-text translation aims to directly perform translation from streaming source speech to target text with high translation quality and low latency. A typical simultaneous translation (ST) system consists of a speech translation model and a policy module, which determines when to wait and when to translate. Thus the policy is crucial to balance translation quality and latency. Conventional methods usually adopt fixed policies, e.g. segmenting the source speech with a fixed length and generating translation. However, this method ignores contextual information and suffers from low translation quality. This paper proposes an adaptive segmentation policy for end-to-end ST. Inspired by human interpreters, the policy learns to segment the source streaming speech into meaningful units by considering both acoustic features and translation history, maintaining consistency between the segmentation and translation. Experimental results on English-German and Chinese-English show that our method achieves a good accuracy-latency trade-off over recently proposed state-of-the-art methods.
In this paper, we present DuReader-retrieval, a large-scale Chinese dataset for passage retrieval. DuReader-retrieval contains more than 90K queries and over 8M unique passages from a commercial search engine. To alleviate the shortcomings of other datasets and ensure the quality of our benchmark, we (1) reduce the false negatives in development and test sets by manually annotating results pooled from multiple retrievers, and (2) remove the training queries that are semantically similar to the development and testing queries. Additionally, we provide two out-of-domain testing sets for cross-domain evaluation, as well as a set of human translated queries for for cross-lingual retrieval evaluation. The experiments demonstrate that DuReader-retrieval is challenging and a number of problems remain unsolved, such as the salient phrase mismatch and the syntactic mismatch between queries and paragraphs. These experiments also show that dense retrievers do not generalize well across domains, and cross-lingual retrieval is essentially challenging. DuReader-retrieval is publicly available at https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval.
In this paper, we focus on the robustness evaluation of Chinese Question Matching (QM) models. Most of the previous work on analyzing robustness issues focus on just one or a few types of artificial adversarial examples. Instead, we argue that a comprehensive evaluation should be conducted on natural texts, which takes into account the fine-grained linguistic capabilities of QM models. For this purpose, we create a Chinese dataset namely DuQM which contains natural questions with linguistic perturbations to evaluate the robustness of QM models. DuQM contains 3 categories and 13 subcategories with 32 linguistic perturbations. The extensive experiments demonstrate that DuQM has a better ability to distinguish different models. Importantly, the detailed breakdown of evaluation by the linguistic phenomena in DuQM helps us easily diagnose the strength and weakness of different models. Additionally, our experiment results show that the effect of artificial adversarial examples does not work on natural texts. Our baseline codes and a leaderboard are now publicly available.
Online advertisement text generation aims at generating attractive and persuasive text ads to appeal to users clicking ads or purchasing products. While pretraining-based models have achieved remarkable success in generating high-quality text ads, some challenges still remain, such as ad generation in low-resource scenarios and training efficiency for multiple ad tasks. In this paper, we propose a novel unified text ad generation framework with multi-task prompt learning, called PLATO-Ad, totackle these problems. Specifically, we design a three-phase transfer learning mechanism to tackle the low-resource ad generation problem. Furthermore, we present a novel multi-task prompt learning mechanism to efficiently utilize a single lightweight model to solve multiple ad generation tasks without loss of performance compared to training a separate model for each task. Finally, we conduct offline and online evaluations and experiment results show that PLATO-Ad significantly outperforms the state-of-the-art on both offline and online metrics. PLATO-Ad has been deployed in a leading advertising platform with 3.5% CTR improvement on search ad descriptions and 10.4% CTR improvement on feed ad titles.
Open-domain question answering has been used in a wide range of applications, such as web search and enterprise search, which usually takes clean texts extracted from various formats of documents (e.g., web pages, PDFs, or Word documents) as the information source. However, designing different text extraction approaches is time-consuming and not scalable. In order to reduce human cost and improve the scalability of QA systems, we propose and study an Open-domainDocument Visual Question Answering (Open-domain DocVQA) task, which requires answering questions based on a collection of document images directly instead of only document texts, utilizing layouts and visual features additionally. Towards this end, we introduce the first Chinese Open-domain DocVQA dataset called DuReadervis, containing about 15K question-answering pairs and 158K document images from the Baidu search engine. There are three main challenges in DuReadervis: (1) long document understanding, (2) noisy texts, and (3) multi-span answer extraction. The extensive experiments demonstrate that the dataset is challenging. Additionally, we propose a simple approach that incorporates the layout and visual features, and the experimental results show the effectiveness of the proposed approach. The dataset and code will be publicly available at https://github.com/baidu/DuReader/tree/master/DuReader-vis.
Most of the open-domain dialogue models tend to perform poorly in the setting of long-term human-bot conversations. The possible reason is that they lack the capability of understanding and memorizing long-term dialogue history information. To address this issue, we present a novel task of Long-term Memory Conversation (LeMon) and then build a new dialogue dataset DuLeMon and a dialogue generation framework with Long-Term Memory (LTM) mechanism (called PLATO-LTM). This LTM mechanism enables our system to accurately extract and continuously update long-term persona memory without requiring multiple-session dialogue datasets for model training. To our knowledge, this is the first attempt to conduct real-time dynamic management of persona information of both parties, including the user and the bot. Results on DuLeMon indicate that PLATO-LTM can significantly outperform baselines in terms of long-term dialogue consistency, leading to better dialogue engagingness.
Vision-Language Pre-training (VLP) has achieved impressive performance on various cross-modal downstream tasks. However, most existing methods can only learn from aligned image-caption data and rely heavily on expensive regional features, which greatly limits their scalability and performance. In this paper, we propose an end-to-end unified-modal pre-training framework, namely UNIMO-2, for joint learning on both aligned image-caption data and unaligned image-only and text-only corpus. We build a unified Transformer model to jointly learn visual representations, textual representations and semantic alignment between images and texts. In particular, we propose to conduct grounded learning on both images and texts via a sharing grounded space, which helps bridge unaligned images and texts, and align the visual and textual semantic spaces on different types of corpora. The experiments show that our grounded learning method can improve textual and visual semantic alignment for improving performance on various cross-modal tasks. Moreover, benefiting from effective joint modeling of different types of corpora, our model also achieves impressive performance on single-modal visual and textual tasks. Our code and models are public at the UNIMO project page https://unimo-ptm.github.io/.
To explore the limit of dialogue generation pre-training, we present the models of PLATO-XL with up to 11 billion parameters, trained on both Chinese and English social media conversations. To train such large models, we adopt the architecture of unified transformer with high computation and parameter efficiency. In addition, we carry out multi-party aware pre-training to better distinguish the characteristic information in social media conversations. With such designs, PLATO-XL successfully achieves superior performances as compared to other approaches in both Chinese and English chitchat. We further explore the capacity of PLATO-XL on other conversational tasks, such as knowledge grounded dialogue and task-oriented conversation. The experimental results indicate that PLATO-XL obtains state-of-the-art results across multiple conversational tasks, verifying its potential as a foundation model of conversational AI.
Derivative-free prompt learning has emerged as a lightweight alternative to prompt tuning, which only requires model inference to optimize the prompts. However, existing work did not take full advantage of the over-parameterized characteristics of large pre-trained language models (PLMs). In this paper, we propose Clip-Tuning, a simple yet effective method that adopts diverse frozen “thinned” networks of PLMs to obtain *a mixture of rewards* and thus advance the derivative-free prompt learning. The thinned networks consist of all the hidden units that survive a stationary dropout strategy, whose inference predictions reflect an ensemble of partial views over prompted training samples. Our method outperforms previous gradient-free prompt learning methods and achieves parity with gradient-based counterparts on seven language understanding benchmarks under few-shot settings.
Recent years have witnessed the rise and success of pre-training techniques in visually-rich document understanding. However, most existing methods lack the systematic mining and utilization of layout-centered knowledge, leading to sub-optimal performances. In this paper, we propose ERNIE-Layout, a novel document pre-training solution with layout knowledge enhancement in the whole workflow, to learn better representations that combine the features from text, layout, and image. Specifically, we first rearrange input sequences in the serialization stage, and then present a correlative pre-training task, reading order prediction, to learn the proper reading order of documents. To improve the layout awareness of the model, we integrate a spatial-aware disentangled attention into the multi-modal transformer and a replaced regions prediction task into the pre-training phase. Experimental results show that ERNIE-Layout achieves superior performance on various downstream tasks, setting new state-of-the-art on key information extraction, document image classification, and document question answering datasets. The code and models are publicly available at PaddleNLP.
Learning discrete dialog structure graph from human-human dialogs yields basic insights into the structure of conversation, and also provides background knowledge to facilitate dialog generation. However, this problem is less studied in open-domain dialogue. In this paper, we conduct unsupervised discovery of discrete dialog structure from chitchat corpora, and then leverage it to facilitate coherent dialog generation in downstream systems. To this end, we present an unsupervised model, Discrete Variational Auto-Encoder with Graph Neural Network (DVAE-GNN), to discover discrete hierarchical latent dialog states (at the level of both session and utterance) and their transitions from corpus as a dialog structure graph. Then we leverage it as background knowledge to facilitate dialog management in a RL based dialog system. Experimental results on two benchmark corpora confirm that DVAE-GNN can discover meaningful dialog structure graph, and the use of dialog structure as background knowledge can significantly improve multi-turn coherence.
Existed pre-training methods either focus on single-modal tasks or multi-modal tasks, and cannot effectively adapt to each other. They can only utilize single-modal data (i.e., text or image) or limited multi-modal data (i.e., image-text pairs). In this work, we propose a UNIfied-MOdal pre-training architecture, namely UNIMO, which can effectively adapt to both single-modal and multi-modal understanding and generation tasks. Large scale of free text corpus and image collections are utilized to improve the capability of visual and textual understanding, and cross-modal contrastive learning (CMCL) is leveraged to align the textual and visual information into a unified semantic space, over a corpus of image-text pairs augmented with related images and texts. With the help of rich non-paired single-modal data, our model is able to learn more generalizable representations, by allowing textual knowledge and visual knowledge to enhance each other in the unified semantic space. The experimental results show that UNIMO greatly improves the performance of several single-modal and multi-modal downstream tasks. Our code and pre-trained models are public at https://github.com/PaddlePaddle/Research/tree/master/NLP/UNIMO.
Transformers are not suited for processing long documents, due to their quadratically increasing memory and time consumption. Simply truncating a long document or applying the sparse attention mechanism will incur the context fragmentation problem or lead to an inferior modeling capability against comparable model sizes. In this paper, we propose ERNIE-Doc, a document-level language pretraining model based on Recurrence Transformers. Two well-designed techniques, namely the retrospective feed mechanism and the enhanced recurrence mechanism, enable ERNIE-Doc, which has a much longer effective context length, to capture the contextual information of a complete document. We pretrain ERNIE-Doc to explicitly learn the relationships among segments with an additional document-aware segment-reordering objective. Various experiments were conducted on both English and Chinese document-level tasks. ERNIE-Doc improved the state-of-the-art language modeling result of perplexity to 16.8 on WikiText-103. Moreover, it outperformed competitive pretraining models by a large margin on most language understanding tasks, such as text classification and question answering.
Abstractive summarization for long-document or multi-document remains challenging for the Seq2Seq architecture, as Seq2Seq is not good at analyzing long-distance relations in text. In this paper, we present BASS, a novel framework for Boosting Abstractive Summarization based on a unified Semantic graph, which aggregates co-referent phrases distributing across a long range of context and conveys rich relations between phrases. Further, a graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process by leveraging the graph structure. Specifically, several graph augmentation methods are designed to encode both the explicit and implicit relations in the text while the graph-propagation attention mechanism is developed in the decoder to select salient content into the summary. Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
Machine reading comprehension (MRC) is a crucial task in natural language processing and has achieved remarkable advancements. However, most of the neural MRC models are still far from robust and fail to generalize well in real-world applications. In order to comprehensively verify the robustness and generalization of MRC models, we introduce a real-world Chinese dataset – DuReader_robust . It is designed to evaluate the MRC models from three aspects: over-sensitivity, over-stability and generalization. Comparing to previous work, the instances in DuReader_robust are natural texts, rather than the altered unnatural texts. It presents the challenges when applying MRC models to real-world applications. The experimental results show that MRC models do not perform well on the challenge test set. Moreover, we analyze the behavior of existing models on the challenge test set, which may provide suggestions for future model development. The dataset and codes are publicly available at https://github.com/baidu/DuReader.
Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT’s Masked Language Modeling (MLM) from masking individual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.
In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for semantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever.
Diverse machine translation aims at generating various target language translations for a given source language sentence. To leverage the linear relationship in the sentence latent space introduced by the mixup training, we propose a novel method, MixDiversity, to generate different translations for the input sentence by linearly interpolating it with different sentence pairs sampled from the training corpus during decoding. To further improve the faithfulness and diversity of the translations, we propose two simple but effective approaches to select diverse sentence pairs in the training corpus and adjust the interpolation weight for each pair correspondingly. Moreover, by controlling the interpolation weight, our method can achieve the trade-off between faithfulness and diversity without any additional training, which is required in most of the previous methods. Experiments on WMT’16 en-ro, WMT’14 en-de, and WMT’17 zh-en are conducted to show that our method substantially outperforms all previous diverse machine translation methods.
Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is generally acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose Ernie-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that Ernie-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. The codes and pre-trained models will be made publicly available.
In various natural language processing tasks, passage retrieval and passage re-ranking are two key procedures in finding and ranking relevant information. Since both the two procedures contribute to the final performance, it is important to jointly optimize them in order to achieve mutual improvement. In this paper, we propose a novel joint training approach for dense passage retrieval and passage reranking. A major contribution is that we introduce the dynamic listwise distillation, where we design a unified listwise training approach for both the retriever and the re-ranker. During the dynamic distillation, the retriever and the re-ranker can be adaptively improved according to each other’s relevance information. We also propose a hybrid data augmentation strategy to construct diverse training instances for listwise training approach. Extensive experiments show the effectiveness of our approach on both MSMARCO and Natural Questions datasets. Our code is available at https://github.com/PaddlePaddle/RocketQA.
Most of existing extractive multi-document summarization (MDS) methods score each sentence individually and extract salient sentences one by one to compose a summary, which have two main drawbacks: (1) neglecting both the intra and cross-document relations between sentences; (2) neglecting the coherence and conciseness of the whole summary. In this paper, we propose a novel MDS framework (SgSum) to formulate the MDS task as a sub-graph selection problem, in which source documents are regarded as a relation graph of sentences (e.g., similarity graph or discourse graph) and the candidate summaries are its sub-graphs. Instead of selecting salient sentences, SgSum selects a salient sub-graph from the relation graph as the summary. Comparing with traditional methods, our method has two main advantages: (1) the relations between sentences are captured by modeling both the graph structure of the whole document set and the candidate sub-graphs; (2) directly outputs an integrate summary in the form of sub-graph which is more informative and coherent. Extensive experiments on MultiNews and DUC datasets show that our proposed method brings substantial improvements over several strong baselines. Human evaluation results also demonstrate that our model can produce significantly more coherent and informative summaries compared with traditional MDS methods. Moreover, the proposed architecture has strong transfer ability from single to multi-document input, which can reduce the resource bottleneck in MDS tasks.
In this paper, we provide a bilingual parallel human-to-human recommendation dialog dataset (DuRecDial 2.0) to enable researchers to explore a challenging task of multilingual and cross-lingual conversational recommendation. The difference between DuRecDial 2.0 and existing conversational recommendation datasets is that the data item (Profile, Goal, Knowledge, Context, Response) in DuRecDial 2.0 is annotated in two languages, both English and Chinese, while other datasets are built with the setting of a single language. We collect 8.2k dialogs aligned across English and Chinese languages (16.5k dialogs and 255k utterances in total) that are annotated by crowdsourced workers with strict quality control procedure. We then build monolingual, multilingual, and cross-lingual conversational recommendation baselines on DuRecDial 2.0. Experiment results show that the use of additional English data can bring performance improvement for Chinese conversational recommendation, indicating the benefits of DuRecDial 2.0. Finally, this dataset provides a challenging testbed for future studies of monolingual, multilingual, and cross-lingual conversational recommendation.
Data augmentation has attracted a lot of research attention in the deep learning era for its ability in alleviating data sparseness. The lack of labeled data for unseen evaluation databases is exactly the major challenge for cross-domain text-to-SQL parsing. Previous works either require human intervention to guarantee the quality of generated data, or fail to handle complex SQL queries. This paper presents a simple yet effective data augmentation framework. First, given a database, we automatically produce a large number of SQL queries based on an abstract syntax tree grammar. For better distribution matching, we require that at least 80% of SQL patterns in the training data are covered by generated queries. Second, we propose a hierarchical SQL-to-question generation model to obtain high-quality natural language questions, which is the major contribution of this work. Finally, we design a simple sampling strategy that can greatly improve training efficiency given large amounts of generated data. Experiments on three cross-domain datasets, i.e., WikiSQL and Spider in English, and DuSQL in Chinese, show that our proposed data augmentation framework can consistently improve performance over strong baselines, and the hierarchical generation component is the key for the improvement.
Large-scale conversation models are turning to leveraging external knowledge to improve the factual accuracy in response generation. Considering the infeasibility to annotate the external knowledge for large-scale dialogue corpora, it is desirable to learn the knowledge selection and response generation in an unsupervised manner. In this paper, we propose PLATO-KAG (Knowledge-Augmented Generation), an unsupervised learning approach for end-to-end knowledge-grounded conversation modeling. For each dialogue context, the top-k relevant knowledge elements are selected and then employed in knowledge-grounded response generation. The two components of knowledge selection and response generation are optimized jointly and effectively under a balanced objective. Experimental results on two publicly available datasets validate the superiority of PLATO-KAG.
This paper presents BSTC (Baidu Speech Translation Corpus), a large-scale Chinese-English speech translation dataset. This dataset is constructed based on a collection of licensed videos of talks or lectures, including about 68 hours of Mandarin data, their manual transcripts and translations into English, as well as automated transcripts by an automatic speech recognition (ASR) model. We have further asked three experienced interpreters to simultaneously interpret the testing talks in a mock conference setting. This corpus is expected to promote the research of automatic simultaneous translation as well as the development of practical systems. We have organized simultaneous translation tasks and used this corpus to evaluate automatic simultaneous translation systems.
This paper presents the results of the shared task of the 2nd Workshop on Automatic Simultaneous Translation (AutoSimTrans). The task includes two tracks, one for text-to-text translation and one for speech-to-text, requiring participants to build systems to translate from either the source text or speech into the target text. Different from traditional machine translation, the AutoSimTrans shared task evaluates not only translation quality but also latency. We propose a metric “Monotonic Optimal Sequence” (MOS) considering both quality and latency to rank the submissions. We also discuss some important open issues in simultaneous translation.
Pre-training models have been proved effective for a wide range of natural language processing tasks. Inspired by this, we propose a novel dialogue generation pre-training framework to support various kinds of conversations, including chit-chat, knowledge grounded dialogues, and conversational question answering. In this framework, we adopt flexible attention mechanisms to fully leverage the bi-directional context and the uni-directional characteristic of language generation. We also introduce discrete latent variables to tackle the inherent one-to-many mapping problem in response generation. Two reciprocal tasks of response generation and latent act recognition are designed and carried out simultaneously within a shared network. Comprehensive experiments on three publicly available datasets verify the effectiveness and superiority of the proposed framework.
We focus on the study of conversational recommendation in the context of multi-type dialogs, where the bots can proactively and naturally lead a conversation from a non-recommendation dialog (e.g., QA) to a recommendation dialog, taking into account user’s interests and feedback. To facilitate the study of this task, we create a human-to-human Chinese dialog dataset DuRecDial (about 10k dialogs, 156k utterances), where there are multiple sequential dialogs for a pair of a recommendation seeker (user) and a recommender (bot). In each dialog, the recommender proactively leads a multi-type dialog to approach recommendation targets and then makes multiple recommendations with rich interaction behavior. This dataset allows us to systematically investigate different parts of the overall problem, e.g., how to naturally lead a dialog, how to interact with users for recommendation. Finally we establish baseline results on DuRecDial for future studies.
To address the challenge of policy learning in open-domain multi-turn conversation, we propose to represent prior information about dialog transitions as a graph and learn a graph grounded dialog policy, aimed at fostering a more coherent and controllable dialog. To this end, we first construct a conversational graph (CG) from dialog corpora, in which there are vertices to represent “what to say” and “how to say”, and edges to represent natural transition between a message (the last utterance in a dialog context) and its response. We then present a novel CG grounded policy learning framework that conducts dialog flow planning by graph traversal, which learns to identify a what-vertex and a how-vertex from the CG at each turn to guide response generation. In this way, we effectively leverage the CG to facilitate policy learning as follows: (1) it enables more effective long-term reward design, (2) it provides high-quality candidate actions, and (3) it gives us more control over the policy. Results on two benchmark corpora demonstrate the effectiveness of this framework.
Recently, sentiment analysis has seen remarkable advance with the help of pre-training approaches. However, sentiment knowledge, such as sentiment words and aspect-sentiment pairs, is ignored in the process of pre-training, despite the fact that they are widely used in traditional sentiment analysis approaches. In this paper, we introduce Sentiment Knowledge Enhanced Pre-training (SKEP) in order to learn a unified sentiment representation for multiple sentiment analysis tasks. With the help of automatically-mined knowledge, SKEP conducts sentiment masking and constructs three sentiment knowledge prediction objectives, so as to embed sentiment information at the word, polarity and aspect level into pre-trained sentiment representation. In particular, the prediction of aspect-sentiment pairs is converted into multi-label classification, aiming to capture the dependency between words in a pair. Experiments on three kinds of sentiment tasks show that SKEP significantly outperforms strong pre-training baseline, and achieves new state-of-the-art results on most of the test datasets. We release our code at https://github.com/baidu/Senta.
Graphs that capture relations between textual units have great benefits for detecting salient information from multiple documents and generating overall coherent summaries. In this paper, we develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents such as similarity graph and discourse graph, to more effectively process multiple input documents and produce abstractive summaries. Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents. Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries. Furthermore, pre-trained language models can be easily combined with our model, which further improve the summarization performance significantly. Empirical results on the WikiSum and MultiNews dataset show that the proposed architecture brings substantial improvements over several strong baselines.
Balancing accuracy and latency is a great challenge for simultaneous translation. To achieve high accuracy, the model usually needs to wait for more streaming text before translation, which results in increased latency. However, keeping low latency would probably hurt accuracy. Therefore, it is essential to segment the ASR output into appropriate units for translation. Inspired by human interpreters, we propose a novel adaptive segmentation policy for simultaneous translation. The policy learns to segment the source text by considering possible translations produced by the translation model, maintaining consistency between the segmentation and translation. Experimental results on Chinese-English and German-English translation show that our method achieves a better accuracy-latency trade-off over recently proposed state-of-the-art methods.
Due to the lack of labeled data, previous research on text-to-SQL parsing mainly focuses on English. Representative English datasets include ATIS, WikiSQL, Spider, etc. This paper presents DuSQL, a larges-scale and pragmatic Chinese dataset for the cross-domain text-to-SQL task, containing 200 databases, 813 tables, and 23,797 question/SQL pairs. Our new dataset has three major characteristics. First, by manually analyzing questions from several representative applications, we try to figure out the true distribution of SQL queries in real-life needs. Second, DuSQL contains a considerable proportion of SQL queries involving row or column calculations, motivated by our analysis on the SQL query distributions. Finally, we adopt an effective data construction framework via human-computer collaboration. The basic idea is automatically generating SQL queries based on the SQL grammar and constrained by the given database. This paper describes in detail the construction process and data statistics of DuSQL. Moreover, we present and compare performance of several open-source text-to-SQL parsers with minor modification to accommodate Chinese, including a simple yet effective extension to IRNet for handling calculation SQL queries.
Simultaneous translation, which translates sentences before they are finished, is use- ful in many scenarios but is notoriously dif- ficult due to word-order differences. While the conventional seq-to-seq framework is only suitable for full-sentence translation, we pro- pose a novel prefix-to-prefix framework for si- multaneous translation that implicitly learns to anticipate in a single translation model. Within this framework, we present a very sim- ple yet surprisingly effective “wait-k” policy trained to generate the target sentence concur- rently with the source sentence, but always k words behind. Experiments show our strat- egy achieves low latency and reasonable qual- ity (compared to full-sentence translation) on 4 directions: zh↔en and de↔en.
Though great progress has been made for human-machine conversation, current dialogue system is still in its infancy: it usually converses passively and utters words more as a matter of response, rather than on its own initiatives. In this paper, we take a radical step towards building a human-like conversational agent: endowing it with the ability of proactively leading the conversation (introducing a new topic or maintaining the current topic). To facilitate the development of such conversation systems, we create a new dataset named Konv where one acts as a conversation leader and the other acts as the follower. The leader is provided with a knowledge graph and asked to sequentially change the discussion topics, following the given conversation goal, and meanwhile keep the dialogue as natural and engaging as possible. Konv enables a very challenging task as the model needs to both understand dialogue and plan over the given knowledge graph. We establish baseline results on this dataset (about 270K utterances and 30k dialogues) using several state-of-the-art models. Experimental results show that dialogue models that plan over the knowledge graph can make full use of related knowledge to generate more diverse multi-turn conversations. The baseline systems along with the dataset are publicly available.
Conventional Neural Machine Translation (NMT) models benefit from the training with an additional agent, e.g., dual learning, and bidirectional decoding with one agent decod- ing from left to right and the other decoding in the opposite direction. In this paper, we extend the training framework to the multi-agent sce- nario by introducing diverse agents in an in- teractive updating process. At training time, each agent learns advanced knowledge from others, and they work together to improve translation quality. Experimental results on NIST Chinese-English, IWSLT 2014 German- English, WMT 2014 English-German and large-scale Chinese-English translation tasks indicate that our approach achieves absolute improvements over the strong baseline sys- tems and shows competitive performance on all tasks.
Two types of knowledge, triples from knowledge graphs and texts from documents, have been studied for knowledge aware open domain conversation generation, in which graph paths can narrow down vertex candidates for knowledge selection decision, and texts can provide rich information for response generation. Fusion of a knowledge graph and texts might yield mutually reinforcing advantages, but there is less study on that. To address this challenge, we propose a knowledge aware chatting machine with three components, an augmented knowledge graph with both triples and texts, knowledge selector, and knowledge aware response generator. For knowledge selection on the graph, we formulate it as a problem of multi-hop graph reasoning to effectively capture conversation flow, which is more explainable and flexible in comparison with previous works. To fully leverage long text information that differentiates our graph from others, we improve a state of the art reasoning algorithm with machine reading comprehension technology. We demonstrate the effectiveness of our system on two datasets in comparison with state-of-the-art models.
In this paper, we introduce a simple system Baidu submitted for MRQA (Machine Reading for Question Answering) 2019 Shared Task that focused on generalization of machine reading comprehension (MRC) models. Our system is built on a framework of pretraining and fine-tuning, namely D-NET. The techniques of pre-trained language models and multi-task learning are explored to improve the generalization of MRC models and we conduct experiments to examine the effectiveness of these strategies. Our system is ranked at top 1 of all the participants in terms of averaged F1 score. Our codes and models will be released at PaddleNLP.
In this paper we introduce the systems Baidu submitted for the WMT19 shared task on Chinese<->English news translation. Our systems are based on the Transformer architecture with some effective improvements. Data selection, back translation, data augmentation, knowledge distillation, domain adaptation, model ensemble and re-ranking are employed and proven effective in our experiments. Our Chinese->English system achieved the highest case-sensitive BLEU score among all constrained submissions, and our English->Chinese system ranked the second in all submissions.
Machine reading comprehension (MRC) on real web data usually requires the machine to answer a question by analyzing multiple passages retrieved by search engine. Compared with MRC on a single passage, multi-passage MRC is more challenging, since we are likely to get multiple confusing answer candidates from different passages. To address this problem, we propose an end-to-end neural model that enables those answer candidates from different passages to verify each other based on their content representations. Specifically, we jointly train three modules that can predict the final answer based on three factors: the answer boundary, the answer content and the cross-passage answer verification. The experimental results show that our method outperforms the baseline by a large margin and achieves the state-of-the-art performance on the English MS-MARCO dataset and the Chinese DuReader dataset, both of which are designed for MRC in real-world settings.
This paper introduces DuReader, a new large-scale, open-domain Chinese machine reading comprehension (MRC) dataset, designed to address real-world MRC. DuReader has three advantages over previous MRC datasets: (1) data sources: questions and documents are based on Baidu Search and Baidu Zhidao; answers are manually generated. (2) question types: it provides rich annotations for more question types, especially yes-no and opinion questions, that leaves more opportunity for the research community. (3) scale: it contains 200K questions, 420K answers and 1M documents; it is the largest Chinese MRC dataset so far. Experiments show that human performance is well above current state-of-the-art baseline systems, leaving plenty of room for the community to make improvements. To help the community make these improvements, both DuReader and baseline systems have been posted online. We also organize a shared competition to encourage the exploration of more models. Since the release of the task, there are significant improvements over the baselines.
We present a novel multi-task attention based neural network model to address implicit discourse relationship representation and identification through two types of representation learning, an attention based neural network for learning discourse relationship representation with two arguments and a multi-task framework for learning knowledge from annotated and unannotated corpora. The extensive experiments have been performed on two benchmark corpora (i.e., PDTB and CoNLL-2016 datasets). Experimental results show that our proposed model outperforms the state-of-the-art systems on benchmark corpora.
Various treebanks have been released for dependency parsing. Despite that treebanks may belong to different languages or have different annotation schemes, they contain common syntactic knowledge that is potential to benefit each other. This paper presents a universal framework for transfer parsing across multi-typed treebanks with deep multi-task learning. We consider two kinds of treebanks as source: the multilingual universal treebanks and the monolingual heterogeneous treebanks. Knowledge across the source and target treebanks are effectively transferred through multi-level parameter sharing. Experiments on several benchmark datasets in various languages demonstrate that our approach can make effective use of arbitrary source treebanks to improve target parsing models.
Chinese poetry generation is a very challenging task in natural language processing. In this paper, we propose a novel two-stage poetry generating method which first plans the sub-topics of the poem according to the user’s writing intent, and then generates each line of the poem sequentially, using a modified recurrent neural network encoder-decoder framework. The proposed planning-based method can ensure that the generated poem is coherent and semantically consistent with the user’s intent. A comprehensive evaluation with human judgments demonstrates that our proposed approach outperforms the state-of-the-art poetry generating methods and the poem quality is somehow comparable to human poets.
This paper describes a unified neural architecture for identifying and classifying multi-typed semantic relations between words in a sentence. We investigate two typical and well-studied tasks: semantic role labeling (SRL) which identifies the relations between predicates and arguments, and relation classification (RC) which focuses on the relation between two entities or nominals. While mostly studied separately in prior work, we show that the two tasks can be effectively connected and modeled using a general architecture. Experiments on CoNLL-2009 benchmark datasets show that our SRL models significantly outperform state-of-the-art approaches. Our RC models also yield competitive performance with the best published records. Furthermore, we show that the two tasks can be trained jointly with multi-task learning, resulting in additive significant improvements for SRL.
This paper reports on the first participation of TCH (Toshiba (China) Research and Development Center) at the IWSLT evaluation campaign. We participated in all the 5 translation tasks with Chinese as source language or target language. For Chinese-English and English-Chinese translation, we used hybrid systems that combine rule-based machine translation (RBMT) method and statistical machine translation (SMT) method. For Chinese-Spanish translation, phrase-based SMT models were used. For the pivot task, we combined the translations generated by a pivot based statistical translation model and a statistical transfer translation model (firstly, translating from Chinese to English, and then from English to Spanish). Moreover, for better performance of MT, we improved each module in the MT systems as follows: adapting Chinese word segmentation to spoken language translation, selecting out-of-domain corpus to build language models, using bilingual dictionaries to correct word alignment results, handling NE translation and selecting translations from the outputs of multiple systems. According to the automatic evaluation results on the full test sets, we top in all the 5 tasks.
This paper proposes a novel Example-Based Machine Translation (EBMT) method based on Tree String Correspondence (TSC) and statistical generation. In this method, the translation examples are represented as TSC, which consists of three parts: a parse tree in the source language, a string in the target language, and the correspondences between the leaf nodes of the source language tree and the substrings of the target language string. During the translation, the input sentence is first parsed into a tree. Then the TSC forest is searched out if it is best matched with the parse tree. The translation is generated by using a statistical generation model to combine the target language strings in the TSCs. The generation model consists of three parts: the semantic similarity between words, the word translation probability, and the target language model. Based on the above method, we build an English-to-Chinese Machine Translation (ECMT) system. Experimental results indicate that the performance of our system is comparable with that of the state-of-the-art commercial ECMT systems.
This paper proposes an approach to improve statistical word alignment with the boosting method. Applying boosting to word alignment must solve two problems. The first is how to build the reference set for the training data. We propose an approach to automatically build a pseudo reference set, which can avoid manual annotation of the training set. The second is how to calculate the error rate of each individual word aligner. We solve this by calculating the error rate of a manually annotated held-out data set instead of the entire training set. In addition, the final ensemble takes into account the weights of the alignment links produced by the individual word aligners. Experimental results indicate that the boosting method proposed in this paper performs much better than the original word aligner, achieving a large error rate reduction.
This paper describes a generalized translation memory system, which takes advantage of sentence level matching, sub-sentential matching, and pattern-based machine translation technologies. All of the three techniques generate translation suggestions with the assistance of word alignment information. For the sentence level matching, the system generates the translation suggestion by modifying the translations of the most similar example with word alignment information. For sub-sentential matching, the system locates the translation fragments in several examples with word alignment information, and then generates the translation suggestion by combining these translation fragments. For pattern-based machine translation, the system first extracts translation patterns from examples using word alignment information and then generates translation suggestions with pattern matching. This system is compared with a traditional translation memory system without word alignment information in terms of translation efficiency and quality. Evaluation results indicate that our system improves the translation quality and saves about 20% translation time.
In conventional word alignment methods, some employ statistical models or statistical measures, which need large-scale bilingual sentence-aligned training corpora. Others employ dictionaries to guide alignment selection. However, these methods achieve unsatisfactory alignment results when performing word alignment on a small-scale domain-specific bilingual corpus without terminological lexicons. This paper proposes an approach to improve word alignment in a specific domain, in which only a small-scale domain-specific corpus is available, by adapting the word alignment information in the general domain to the specific domain. This approach first trains two statistical word alignment models with the large-scale corpus in the general domain and the small-scale corpus in the specific domain respectively, and then improves the domain-specific word alignment with these two models. Experimental results show a significant improvement in terms of both alignment precision and recall, achieving a relative error rate reduction of 21.96% as compared with state-of-the-art technologies.