Nothing Special   »   [go: up one dir, main page]

Eunice Akani


2024

pdf bib
Approche multitâche pour l’amélioration de la fiabilité des systèmes de résumé automatique de conversation
Eunice Akani | Benoit Favre | Frederic Bechet | Romain Gemignani
Actes de la 31ème Conférence sur le Traitement Automatique des Langues Naturelles, volume 1 : articles longs et prises de position

Le résumé de dialogue consiste à générer un résumé bref et cohérent d’une conversation ou d’un dialogue entre deux ou plusieurs locuteurs. Même si les modèles de langue les plus récents ont permis des progrès remarquables dans ce domaine, générer un résumé fidèle au dialogue de départ reste un défi car cela nécessite de prendre en compte l’interaction entre les locuteurs pour conserver les informations les plus pertinentes du dialogue. Nous nous plaçons dans le cadre des dialogues humain-humain avec but. Ce cadre nous permet d’intégrer des informations relatives à la tâche dans le cadre du résumé de dialogue afin d’aider le système à générer des résumés plus fidèles sémantiquement. Nous évaluons dans cette étude des approches multitâches permettant de lier la tâche de résumé à des tâches de compréhension du langage comme la détection de motifs d’appels. Les informations liées à la tâche nous permettent également de proposer des nouvelles méthodes de sélection de résumés basées sur l’analyse sémantique du dialogue ainsi que des métriques d’évaluation basées également sur cette même analyse. Nous avons testé ces méthodes sur DECODA, un corpus français de dialogue collecté dans le centre d’appel de la RATP entre des usagers et des téléconseillers. Nous montrons que l’ajout d’informations liées à la tâche augmente la fiabilité des résumés générés.

2023

pdf bib
Étude de la fidélité des entités dans les résumés par abstraction
Eunice Akani
Actes de CORIA-TALN 2023. Actes des 16e Rencontres Jeunes Chercheurs en RI (RJCRI) et 25e Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL)

L’un des problèmes majeurs dans le résumé automatique de texte par abstraction est la fidélité du résumé généré vis-à-vis du document. Les systèmes peuvent produire des informations incohérentes vis-à-vis du document. Ici, nous mettons l’accent sur ce phénomène en restant focalisé sur les entités nommées. L’objectif est de réduire les hallucinations sur celles-ci. Ainsi, nous avons généré des résumés par sampling et avons sélectionné, à l’aide d’un critère basé sur le risque d’hallucination sur les entités et les performances du modèle, ceux qui minimisent les hallucinations sur les entités. Une étude empirique du critère montre son adaptabilité pour la sélection de résumé. Nous avons proposé des heuristiques pour la détection des entités qui sont des variations ou flexions d’autres entités. Les résultats obtenus montrent que le critère réduit les hallucinations sur les entités nommées en gardant un score ROUGE comparable pour CNN/DM.

pdf bib
Reducing named entity hallucination risk to ensure faithful summary generation
Eunice Akani | Benoit Favre | Frederic Bechet | Romain Gemignani
Proceedings of the 16th International Natural Language Generation Conference

The faithfulness of abstractive text summarization at the named entities level is the focus of this study. We propose to add a new criterion to the summary selection method based on the “risk” of generating entities that do not belong to the source document. This method is based on the assumption that Out-Of-Document entities are more likely to be hallucinations. This assumption was verified by a manual annotation of the entities occurring in a set of generated summaries on the CNN/DM corpus. This study showed that only 29% of the entities outside the source document were inferrable by the annotators, leading to 71% of hallucinations among OOD entities. We test our selection method on the CNN/DM corpus and show that it significantly reduces the hallucination risk on named entities while maintaining competitive results with respect to automatic evaluation metrics like ROUGE.

2022

pdf bib
Abstraction ou hallucination ? État des lieux et évaluation du risque pour les modèles de génération de résumés automatiques de type séquence-à-séquence (Abstraction or Hallucination ? Status and Risk assessment for sequence-to-sequence Automatic)
Eunice Akani | Benoit Favre | Frederic Bechet
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

La génération de texte a récemment connu un très fort intérêt au vu des avancées notables dans le domaine des modèles de langage neuronaux. Malgré ces avancées, cette tâche reste difficile quand il s’agit d’un résumé automatique de texte par abstraction. Certains systèmes de résumés génèrent des textes qui ne sont pas forcément fidèles au document source. C’est sur cette thématique que porte notre étude. Nous présentons une typologie d’erreurs pour les résumés automatique et ainsi qu’une caractérisation du phénomène de l’abstraction pour les résumés de référence afin de mieux comprendre l’ampleur de ces différents phénomènes sur les entités nommées. Nous proposons également une mesure d’évaluation du risque d’erreur lorsqu’un système tente de faire des abstractions sur les entités nommées d’un document.