Nothing Special   »   [go: up one dir, main page]

Bo Cai


2022

pdf bib
Entity-centered Cross-document Relation Extraction
Fengqi Wang | Fei Li | Hao Fei | Jingye Li | Shengqiong Wu | Fangfang Su | Wenxuan Shi | Donghong Ji | Bo Cai
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Relation Extraction (RE) is a fundamental task of information extraction, which has attracted a large amount of research attention. Previous studies focus on extracting the relations within a sentence or document, while currently researchers begin to explore cross-document RE. However, current cross-document RE methods directly utilize text snippets surrounding target entities in multiple given documents, which brings considerable noisy and non-relevant sentences. Moreover, they utilize all the text paths in a document bag in a coarse-grained way, without considering the connections between these text paths.In this paper, we aim to address both of these shortages and push the state-of-the-art for cross-document RE. First, we focus on input construction for our RE model and propose an entity-based document-context filter to retain useful information in the given documents by using the bridge entities in the text paths. Second, we propose a cross-document RE model based on cross-path entity relation attention, which allow the entity relations across text paths to interact with each other. We compare our cross-document RE method with the state-of-the-art methods in the dataset CodRED. Our method outperforms them by at least 10% in F1, thus demonstrating its effectiveness.