Nothing Special   »   [go: up one dir, main page]

Ali Ghodsi


2024

pdf bib
QDyLoRA: Quantized Dynamic Low-Rank Adaptation for Efficient Large Language Model Tuning
Hossein Rajabzadeh | Mojtaba Valipour | Tianshu Zhu | Marzieh S. Tahaei | Hyock Ju Kwon | Ali Ghodsi | Boxing Chen | Mehdi Rezagholizadeh
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Finetuning large language models requires huge GPU memory, restricting the choice to acquire Larger models. While the quantized version of the Low-Rank Adaptation technique, named QLoRA, significantly alleviates this issue, finding the efficient LoRA rank is still challenging. Moreover, QLoRA is trained on a pre-defined rank and, therefore, cannot be reconfigured for its lower ranks without requiring further fine-tuning steps. This paper proposes QDyLoRA -Quantized Dynamic Low-Rank Adaptation-, as an efficient quantization approach for dynamic low-rank adaptation. Motivated by Dynamic LoRA, QDyLoRA is able to efficiently finetune LLMs on a set of pre-defined LoRA ranks. QDyLoRA enables fine-tuning Falcon-40b for ranks 1 to 64 on a single 32 GB V100-GPU through one round of fine-tuning. Experimental results show that QDyLoRA is competitive to QLoRA and outperforms when employing its optimal rank.

pdf bib
Sorted LLaMA: Unlocking the Potential of Intermediate Layers of Large Language Models for Dynamic Inference
Parsa Kavehzadeh | Mojtaba Valipour | Marzieh Tahaei | Ali Ghodsi | Boxing Chen | Mehdi Rezagholizadeh
Findings of the Association for Computational Linguistics: EACL 2024

Large language models (LLMs) have revolutionized natural language processing (NLP) by excelling at understanding and generating human-like text. However, their widespread deployment can be prohibitively expensive. SortedNet is a recent training technique for enabling dynamic inference by leveraging the modularity in networks and sorting sub-models based on computation/accuracy in a nested manner. We extend SortedNet to generative NLP tasks, making large language models dynamic without any Pre-Training and by only replacing Standard Fine-Tuning (SFT) with Sorted Fine-Tuning (SoFT). Our approach boosts model efficiency, eliminating the need for multiple models for various scenarios during inference. We show that this approach can unlock the potential of intermediate layers of transformers in generating the target output. Our sub-models remain integral components of the original model, minimizing storage requirements and transition costs between different computational/latency budgets. The efficacy of our proposed method was demonstrated by applying it to tune LLaMA 2 13B on the Stanford Alpaca dataset for instruction following and TriviaQA for closed-book question answering. Our results show the superior performance of sub-models in comparison to Standard Fine-Tuning and SFT+ICT (Early-Exit), all achieved with very efficient tuning and without additional memory usage during inference.

pdf bib
Efficient Citer: Tuning Large Language Models for Enhanced Answer Quality and Verification
Marzieh Tahaei | Aref Jafari | Ahmad Rashid | David Alfonso-Hermelo | Khalil Bibi | Yimeng Wu | Ali Ghodsi | Boxing Chen | Mehdi Rezagholizadeh
Findings of the Association for Computational Linguistics: NAACL 2024

In recent years, there has been a growing interest in utilizing external knowledge to reduce hallucinations in large language models (LLMs) and provide them with updated information. Despite this improvement, a major challenge lies in the lack of explicit citations, which hampers the ability to verify the information generated by these models.This paper focuses on providing models with citation capabilities efficiently. By constructing a dataset of citations, we train two model architectures: an FID-style FLAN-T5 model for efficient answer composition and a 13B model known for its success in instruction following after tuning. Evaluation on fluency, correctness, and citation quality is conducted through human assessment and the newly introduced Automatic LLMs’ Citation Evaluation (ALCE) benchmark.Results demonstrate significant improvements in answer quality and efficiency, surpassing the performance of the popular ChatGPT on some of the metrics. The models exhibit exceptional out-of-domain generalization in both human and automatic evaluation. Notably, the FID-style FLAN-T5 model with only 3B parameters performs impressively compared to the 13B model.

2023

pdf bib
Do we need Label Regularization to Fine-tune Pre-trained Language Models?
Ivan Kobyzev | Aref Jafari | Mehdi Rezagholizadeh | Tianda Li | Alan Do-Omri | Peng Lu | Pascal Poupart | Ali Ghodsi
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Knowledge Distillation (KD) is a prominent neural model compression technique that heavily relies on teacher network predictions to guide the training of a student model. Considering the ever-growing size of pre-trained language models (PLMs), KD is often adopted in many NLP tasks involving PLMs. However, it is evident that in KD, deploying the teacher network during training adds to the memory and computational requirements of training. In the computer vision literature, the necessity of the teacher network is put under scrutiny by showing that KD is a label regularization technique that can be replaced with lighter teacher-free variants such as the label-smoothing technique. However, to the best of our knowledge, this issue is not investigated in NLP. Therefore, this work concerns studying different label regularization techniques and whether we actually need them to improve the fine-tuning of smaller PLM networks on downstream tasks. In this regard, we did a comprehensive set of experiments on different PLMs such as BERT, RoBERTa, and GPT with more than 600 distinct trials and ran each configuration five times. This investigation led to a surprising observation that KD and other label regularization techniques do not play any meaningful role over regular fine-tuning when the student model is pre-trained. We further explore this phenomenon in different settings of NLP and computer vision tasks and demonstrate that pre-training itself acts as a kind of regularization, and additional label regularization is unnecessary.

pdf bib
DyLoRA: Parameter-Efficient Tuning of Pre-trained Models using Dynamic Search-Free Low-Rank Adaptation
Mojtaba Valipour | Mehdi Rezagholizadeh | Ivan Kobyzev | Ali Ghodsi
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

With the ever-growing size of pretrained models (PMs), fine-tuning them has become more expensive and resource-hungry. As a remedy, low-rank adapters (LoRA) keep the main pretrained weights of the model frozen and just introduce some learnable truncated SVD modules (so-called LoRA blocks) to the model. While LoRA blocks are parameter-efficient, they suffer from two major problems: first, the size of these blocks is fixed and cannot be modified after training (for example, if we need to change the rank of LoRA blocks, then we need to re-train them from scratch); second, optimizing their rank requires an exhaustive search and effort. In this work, we introduce a dynamic low-rank adaptation (DyLoRA) technique to address these two problems together. Our DyLoRA method trains LoRA blocks for a range of ranks instead of a single rank by sorting the representation learned by the adapter module at different ranks during training. We evaluate our solution on different natural language understanding (GLUE benchmark) and language generation tasks (E2E, DART and WebNLG) using different pretrained models such as RoBERTa and GPT with different sizes. Our results show that we can train dynamic search-free models with DyLoRA at least 4 to 7 times (depending to the task) faster than LoRA without significantly compromising performance. Moreover, our models can perform consistently well on a much larger range of ranks compared to LoRA.

2022

pdf bib
KroneckerBERT: Significant Compression of Pre-trained Language Models Through Kronecker Decomposition and Knowledge Distillation
Marzieh Tahaei | Ella Charlaix | Vahid Nia | Ali Ghodsi | Mehdi Rezagholizadeh
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The development of over-parameterized pre-trained language models has made a significant contribution toward the success of natural language processing. While over-parameterization of these models is the key to their generalization power, it makes them unsuitable for deployment on low-capacity devices. We push the limits of state-of-the-art Transformer-based pre-trained language model compression using Kronecker decomposition. We present our KroneckerBERT, a compressed version of the BERT_BASE model obtained by compressing the embedding layer and the linear mappings in the multi-head attention, and the feed-forward network modules in the Transformer layers. Our KroneckerBERT is trained via a very efficient two-stage knowledge distillation scheme using far fewer data samples than state-of-the-art models like MobileBERT and TinyBERT. We evaluate the performance of KroneckerBERT on well-known NLP benchmarks. We show that our KroneckerBERT with compression factors of 7.7x and 21x outperforms state-of-the-art compression methods on the GLUE and SQuAD benchmarks. In particular, using only 13% of the teacher model parameters, it retain more than 99% of the accuracy on the majority of GLUE tasks.

pdf bib
When Chosen Wisely, More Data Is What You Need: A Universal Sample-Efficient Strategy For Data Augmentation
Ehsan Kamalloo | Mehdi Rezagholizadeh | Ali Ghodsi
Findings of the Association for Computational Linguistics: ACL 2022

Data Augmentation (DA) is known to improve the generalizability of deep neural networks. Most existing DA techniques naively add a certain number of augmented samples without considering the quality and the added computational cost of these samples. To tackle this problem, a common strategy, adopted by several state-of-the-art DA methods, is to adaptively generate or re-weight augmented samples with respect to the task objective during training. However, these adaptive DA methods: (1) are computationally expensive and not sample-efficient, and (2) are designed merely for a specific setting. In this work, we present a universal DA technique, called Glitter, to overcome both issues. Glitter can be plugged into any DA method, making training sample-efficient without sacrificing performance. From a pre-generated pool of augmented samples, Glitter adaptively selects a subset of worst-case samples with maximal loss, analogous to adversarial DA. Without altering the training strategy, the task objective can be optimized on the selected subset. Our thorough experiments on the GLUE benchmark, SQuAD, and HellaSwag in three widely used training setups including consistency training, self-distillation and knowledge distillation reveal that Glitter is substantially faster to train and achieves a competitive performance, compared to strong baselines.

pdf bib
Improving Generalization of Pre-trained Language Models via Stochastic Weight Averaging
Peng Lu | Ivan Kobyzev | Mehdi Rezagholizadeh | Ahmad Rashid | Ali Ghodsi | Phillippe Langlais
Findings of the Association for Computational Linguistics: EMNLP 2022

Knowledge Distillation (KD) is a commonly used technique for improving the generalization of compact Pre-trained Language Models (PLMs) on downstream tasks. However, such methods impose the additional burden of training a separate teacher model for every new dataset.Alternatively, one may directly work on the improvement of the optimization procedure of the compact model towards better generalization. Recent works observe that the flatness of the local minimum correlates well with better generalization.In this work, we adapt Stochastic Weight Averaging (SWA), a method encouraging convergence to a flatter minimum, to fine-tuning PLMs. We conduct extensive experiments on various NLP tasks (text classification, question answering, and generation) and different model architectures and demonstrate that our adaptation improves the generalization without extra computation cost. Moreover, we observe that this simple optimization technique is able to outperform the state-of-the-art KD methods for compact models.

pdf bib
Continuation KD: Improved Knowledge Distillation through the Lens of Continuation Optimization
Aref Jafari | Ivan Kobyzev | Mehdi Rezagholizadeh | Pascal Poupart | Ali Ghodsi
Findings of the Association for Computational Linguistics: EMNLP 2022

Knowledge Distillation (KD) has been extensively used for natural language understanding (NLU) tasks to improve a small model’s (a student) generalization by transferring the knowledge from a larger model (a teacher). Although KD methods achieve state-of-the-art performance in numerous settings, they suffer from several problems limiting their performance. It is shown in the literature that the capacity gap between the teacher and the student networks can make KD ineffective. Additionally, existing KD techniques do not mitigate the noise in the teacher’s output: modeling the noisy behaviour of the teacher can distract the student from learning more useful features. We propose a new KD method that addresses these problems and facilitates the training compared to previous techniques. Inspired by continuation optimization, we design a training procedure that optimizes the highly non-convex KD objective by starting with the smoothed version of this objective and making it more complex as the training proceeds. Our method (Continuation-KD) achieves state-of-the-art performance across various compact architectures on NLU (GLUE benchmark) and computer vision tasks (CIFAR-10 and CIFAR-100).

pdf bib
Pro-KD: Progressive Distillation by Following the Footsteps of the Teacher
Mehdi Rezagholizadeh | Aref Jafari | Puneeth S.M. Saladi | Pranav Sharma | Ali Saheb Pasand | Ali Ghodsi
Proceedings of the 29th International Conference on Computational Linguistics

With the ever growing scale of neural models, knowledge distillation (KD) attracts more attention as a prominent tool for neural model compression. However, there are counter intuitive observations in the literature showing some challenging limitations of KD. A case in point is that the best performing checkpoint of the teacher might not necessarily be the best teacher for training the student in KD. Therefore, one important question would be how to find the best checkpoint of the teacher for distillation? Searching through the checkpoints of the teacher would be a very tedious and computationally expensive process, which we refer to as the checkpoint-search problem. Moreover, another observation is that larger teachers might not necessarily be better teachers in KD, which is referred to as the capacity-gap problem. To address these challenging problems, in this work, we introduce our progressive knowledge distillation (Pro-KD) technique which defines a smoother training path for the student by following the training footprints of the teacher instead of solely relying on distilling from a single mature fully-trained teacher. We demonstrate that our technique is quite effective in mitigating the capacity-gap problem and the checkpoint search problem. We evaluate our technique using a comprehensive set of experiments on different tasks such as image classification (CIFAR-10 and CIFAR-100), natural language understanding tasks of the GLUE benchmark, and question answering (SQuAD 1.1 and 2.0) using BERT-based models and consistently got superior results over state-of-the-art techniques.

2021

pdf bib
Knowledge Distillation with Noisy Labels for Natural Language Understanding
Shivendra Bhardwaj | Abbas Ghaddar | Ahmad Rashid | Khalil Bibi | Chengyang Li | Ali Ghodsi | Phillippe Langlais | Mehdi Rezagholizadeh
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)

Knowledge Distillation (KD) is extensively used to compress and deploy large pre-trained language models on edge devices for real-world applications. However, one neglected area of research is the impact of noisy (corrupted) labels on KD. We present, to the best of our knowledge, the first study on KD with noisy labels in Natural Language Understanding (NLU). We document the scope of the problem and present two methods to mitigate the impact of label noise. Experiments on the GLUE benchmark show that our methods are effective even under high noise levels. Nevertheless, our results indicate that more research is necessary to cope with label noise under the KD.

pdf bib
Annealing Knowledge Distillation
Aref Jafari | Mehdi Rezagholizadeh | Pranav Sharma | Ali Ghodsi
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Significant memory and computational requirements of large deep neural networks restricts their application on edge devices. Knowledge distillation (KD) is a prominent model compression technique for deep neural networks in which the knowledge of a trained large teacher model is transferred to a smaller student model. The success of knowledge distillation is mainly attributed to its training objective function, which exploits the soft-target information (also known as “dark knowledge”) besides the given regular hard labels in a training set. However, it is shown in the literature that the larger the gap between the teacher and the student networks, the more difficult is their training using knowledge distillation. To address this shortcoming, we propose an improved knowledge distillation method (called Annealing-KD) by feeding the rich information provided by teacher’s soft-targets incrementally and more efficiently. Our Annealing-KD technique is based on a gradual transition over annealed soft-targets generated by the teacher at different temperatures in an iterative process; and therefore, the student is trained to follow the annealed teacher output in a step-by-step manner. This paper includes theoretical and empirical evidence as well as practical experiments to support the effectiveness of our Annealing-KD method. We did a comprehensive set of experiments on different tasks such as image classification (CIFAR-10 and 100) and NLP language inference with BERT-based models on the GLUE benchmark and consistently got superior results.

pdf bib
Not Far Away, Not So Close: Sample Efficient Nearest Neighbour Data Augmentation via MiniMax
Ehsan Kamalloo | Mehdi Rezagholizadeh | Peyman Passban | Ali Ghodsi
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
How to Select One Among All ? An Empirical Study Towards the Robustness of Knowledge Distillation in Natural Language Understanding
Tianda Li | Ahmad Rashid | Aref Jafari | Pranav Sharma | Ali Ghodsi | Mehdi Rezagholizadeh
Findings of the Association for Computational Linguistics: EMNLP 2021

Knowledge Distillation (KD) is a model compression algorithm that helps transfer the knowledge in a large neural network into a smaller one. Even though KD has shown promise on a wide range of Natural Language Processing (NLP) applications, little is understood about how one KD algorithm compares to another and whether these approaches can be complimentary to each other. In this work, we evaluate various KD algorithms on in-domain, out-of-domain and adversarial testing. We propose a framework to assess adversarial robustness of multiple KD algorithms. Moreover, we introduce a new KD algorithm, Combined-KD, which takes advantage of two promising approaches (better training scheme and more efficient data augmentation). Our extensive experimental results show that Combined-KD achieves state-of-the-art results on the GLUE benchmark, out-of-domain generalization, and adversarial robustness compared to competitive methods.

pdf bib
RW-KD: Sample-wise Loss Terms Re-Weighting for Knowledge Distillation
Peng Lu | Abbas Ghaddar | Ahmad Rashid | Mehdi Rezagholizadeh | Ali Ghodsi | Philippe Langlais
Findings of the Association for Computational Linguistics: EMNLP 2021

Knowledge Distillation (KD) is extensively used in Natural Language Processing to compress the pre-training and task-specific fine-tuning phases of large neural language models. A student model is trained to minimize a convex combination of the prediction loss over the labels and another over the teacher output. However, most existing works either fix the interpolating weight between the two losses apriori or vary the weight using heuristics. In this work, we propose a novel sample-wise loss weighting method, RW-KD. A meta-learner, simultaneously trained with the student, adaptively re-weights the two losses for each sample. We demonstrate, on 7 datasets of the GLUE benchmark, that RW-KD outperforms other loss re-weighting methods for KD.

pdf bib
Universal-KD: Attention-based Output-Grounded Intermediate Layer Knowledge Distillation
Yimeng Wu | Mehdi Rezagholizadeh | Abbas Ghaddar | Md Akmal Haidar | Ali Ghodsi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Intermediate layer matching is shown as an effective approach for improving knowledge distillation (KD). However, this technique applies matching in the hidden spaces of two different networks (i.e. student and teacher), which lacks clear interpretability. Moreover, intermediate layer KD cannot easily deal with other problems such as layer mapping search and architecture mismatch (i.e. it requires the teacher and student to be of the same model type). To tackle the aforementioned problems all together, we propose Universal-KD to match intermediate layers of the teacher and the student in the output space (by adding pseudo classifiers on intermediate layers) via the attention-based layer projection. By doing this, our unified approach has three merits: (i) it can be flexibly combined with current intermediate layer distillation techniques to improve their results (ii) the pseudo classifiers of the teacher can be deployed instead of extra expensive teacher assistant networks to address the capacity gap problem in KD which is a common issue when the gap between the size of the teacher and student networks becomes too large; (iii) it can be used in cross-architecture intermediate layer KD. We did comprehensive experiments in distilling BERT-base into BERT-4, RoBERTa-large into DistilRoBERTa and BERT-base into CNN and LSTM-based models. Results on the GLUE tasks show that our approach is able to outperform other KD techniques.