2024
pdf
bib
abs
MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction
Jun-Hyung Park
|
Yeachan Kim
|
Mingyu Lee
|
Hyuntae Park
|
SangKeun Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Chemical representation learning has gained increasing interest due to the limited availability of supervised data in fields such as drug and materials design. This interest particularly extends to chemical language representation learning, which involves pre-training Transformers on SMILES sequences - textual descriptors of molecules. Despite its success in molecular property prediction, current practices often lead to overfitting and limited scalability due to early convergence. In this paper, we introduce a novel chemical language representation learning framework, called MolTRES, to address these issues. MolTRES incorporates generator-discriminator training, allowing the model to learn from more challenging examples that require structural understanding. In addition, we enrich molecular representations by transferring knowledge from scientific literature by integrating external materials embedding. Experimental results show that our model outperforms existing state-of-the-art models on popular molecular property prediction tasks.
pdf
bib
abs
Moleco: Molecular Contrastive Learning with Chemical Language Models for Molecular Property Prediction
Jun-Hyung Park
|
Hyuntae Park
|
Yeachan Kim
|
Woosang Lim
|
SangKeun Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track
Pre-trained chemical language models (CLMs) excel in the field of molecular property prediction, utilizing string-based molecular descriptors such as SMILES for learning universal representations. However, such string-based descriptors implicitly contain limited structural information, which is closely associated with molecular property prediction. In this work, we introduce Moleco, a novel contrastive learning framework to enhance the understanding of molecular structures within CLMs. Based on the similarity of fingerprint vectors among different molecules, we train CLMs to distinguish structurally similar and dissimilar molecules in a contrastive manner. Experimental results demonstrate that Moleco significantly improves the molecular property prediction performance of CLMs, outperforming state-of-the-art models. Moreover, our in-depth analysis with diverse Moleco variants verifies that fingerprint vectors are highly effective features in improving CLMs’ understanding of the structural information of molecules.
pdf
bib
abs
SEED: Semantic Knowledge Transfer for Language Model Adaptation to Materials Science
Yeachan Kim
|
Jun-Hyung Park
|
SungHo Kim
|
Juhyeong Park
|
Sangyun Kim
|
SangKeun Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track
Materials science is an interdisciplinary field focused on studying and discovering materials around us. However, due to the vast space of materials, datasets in this field are typically scarce and have limited coverage. This inherent limitation makes current adaptation methods less effective when adapting pre-trained language models (PLMs) to materials science, as these methods rely heavily on the frequency information from limited downstream datasets. In this paper, we propose Semantic Knowledge Transfer (SEED), a novel vocabulary expansion method to adapt the pre-trained language models for materials science. The core strategy of SEED is to transfer the materials knowledge of lightweight embeddings into the PLMs. To this end, we introduce knowledge bridge networks, which learn to transfer the latent knowledge of the materials embeddings into ones compatible with PLMs. By expanding the embedding layer of PLMs with these transformed embeddings, PLMs can comprehensively understand the complex terminology associated with materials science. We conduct extensive experiments across a broad range of materials-related benchmarks. Comprehensive evaluation results convincingly demonstrate that SEED mitigates the mentioned limitations of previous adaptation methods, showcasing the efficacy of transferring embedding knowledge into PLMs.
pdf
bib
abs
KOMBO: Korean Character Representations Based on the Combination Rules of Subcharacters
SungHo Kim
|
Juhyeong Park
|
Yeachan Kim
|
SangKeun Lee
Findings of the Association for Computational Linguistics: ACL 2024
The Korean writing system, Hangeul, has a unique character representation rigidly following the invention principles recorded in Hunminjeongeum. However, existing pre-trained language models (PLMs) for Korean have overlooked these principles. In this paper, we introduce a novel framework for Korean PLMs called KOMBO, which firstly brings the invention principles of Hangeul to represent character. Our proposed method, KOMBO, exhibits notable experimental proficiency across diverse NLP tasks. In particular, our method outperforms the state-of-the-art Korean PLM by an average of 2.11% in five Korean natural language understanding tasks. Furthermore, extensive experiments demonstrate that our proposed method is suitable for comprehending the linguistic features of the Korean language. Consequently, we shed light on the superiority of using subcharacters over the typical subword-based approach for Korean PLMs. Our code is available at: https://github.com/SungHo3268/KOMBO.
pdf
bib
abs
MELT: Materials-aware Continued Pre-training for Language Model Adaptation to Materials Science
Junho Kim
|
Yeachan Kim
|
Jun-Hyung Park
|
Yerim Oh
|
Suho Kim
|
SangKeun Lee
Findings of the Association for Computational Linguistics: EMNLP 2024
We introduce a novel continued pre-training method, MELT (MatEriaLs-aware continued pre-Training), specifically designed to efficiently adapt the pre-trained language models (PLMs) for materials science. Unlike previous adaptation strategies that solely focus on constructing domain-specific corpus, MELT comprehensively considers both the corpus and the training strategy, given that materials science corpus has distinct characteristics from other domains. To this end, we first construct a comprehensive materials knowledge base from the scientific corpus by building semantic graphs. Leveraging this extracted knowledge, we integrate a curriculum into the adaptation process that begins with familiar and generalized concepts and progressively moves toward more specialized terms. We conduct extensive experiments across diverse benchmarks to verify the effectiveness and generality of MELT. A comprehensive evaluation convincingly supports the strength of MELT, demonstrating superior performance compared to existing continued pre-training methods. In-depth analysis also shows that MELT enables PLMs to effectively represent materials entities compared to the existing adaptation methods, thereby highlighting its broad applicability across a wide spectrum of materials science.
pdf
bib
abs
Zero-shot Commonsense Reasoning over Machine Imagination
Hyuntae Park
|
Yeachan Kim
|
Jun-Hyung Park
|
SangKeun Lee
Findings of the Association for Computational Linguistics: EMNLP 2024
Recent approaches to zero-shot commonsense reasoning have enabled Pre-trained Language Models (PLMs) to learn a broad range of commonsense knowledge without being tailored to specific situations. However, they often suffer from human reporting bias inherent in textual commonsense knowledge, leading to discrepancies in understanding between PLMs and humans. In this work, we aim to bridge this gap by introducing an additional information channel to PLMs. We propose Imagine (Machine Imagination-based Reasoning), a novel zero-shot commonsense reasoning framework designed to complement textual inputs with visual signals derived from machine-generated images. To achieve this, we enhance PLMs with imagination capabilities by incorporating an image generator into the reasoning process. To guide PLMs in effectively leveraging machine imagination, we create a synthetic pre-training dataset that simulates visual question-answering. Our extensive experiments on diverse reasoning benchmarks and analysis show that Imagine outperforms existing methods by a large margin, highlighting the strength of machine imagination in mitigating reporting bias and enhancing generalization capabilities.
pdf
bib
abs
Towards Robust and Generalized Parameter-Efficient Fine-Tuning for Noisy Label Learning
Yeachan Kim
|
Junho Kim
|
SangKeun Lee
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Parameter-efficient fine-tuning (PEFT) has enabled the efficient optimization of cumbersome language models in real-world settings. However, as datasets in such environments often contain noisy labels that adversely affect performance, PEFT methods are inevitably exposed to noisy labels. Despite this challenge, the adaptability of PEFT to noisy environments remains underexplored. To bridge this gap, we investigate various PEFT methods under noisy labels. Interestingly, our findings reveal that PEFT has difficulty in memorizing noisy labels due to its inherently limited capacity, resulting in robustness. However, we also find that such limited capacity simultaneously makes PEFT more vulnerable to interference of noisy labels, impeding the learning of clean samples. To address this issue, we propose Clean Routing (CleaR), a novel routing-based PEFT approach that adaptively activates PEFT modules. In CleaR, PEFT modules are preferentially exposed to clean data while bypassing the noisy ones, thereby minimizing the noisy influence. To verify the efficacy of CleaR, we perform extensive experiments on diverse configurations of noisy labels. The results convincingly demonstrate that CleaR leads to substantially improved performance in noisy environments
pdf
bib
abs
SparseFlow: Accelerating Transformers by Sparsifying Information Flows
Yeachan Kim
|
SangKeun Lee
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Transformers have become the de-facto standard for natural language processing. However, dense information flows within transformers pose significant challenges for real-time and resource-constrained devices, as computational complexity grows quadratically with sequence length. To counteract such dense information flows, we propose SparseFlow, a novel efficient method designed to sparsify the dense pathways of token representations across all transformer blocks. To this end, SparseFlow parameterizes the information flows linking token representations to transformer blocks. These parameterized information flows are optimized to be sparse, allowing only the salient information to pass through into the blocks. To validate the efficacy of SparseFlow, we conduct comprehensive experiments across diverse benchmarks (understanding and generation), scales (ranging from millions to billions), architectures (including encoders, decoders, and seq-to-seq models), and modalities (such as language-only and vision-language). The results convincingly demonstrate that sparsifying the dense information flows leads to substantial speedup gains without compromising task accuracy. For instance, SparseFlow reduces computational costs by half on average, without a significant loss in accuracy.
2023
pdf
bib
abs
Client-Customized Adaptation for Parameter-Efficient Federated Learning
Yeachan Kim
|
Junho Kim
|
Wing-Lam Mok
|
Jun-Hyung Park
|
SangKeun Lee
Findings of the Association for Computational Linguistics: ACL 2023
Despite the versatility of pre-trained language models (PLMs) across domains, their large memory footprints pose significant challenges in federated learning (FL), where the training model has to be distributed between a server and clients. One potential solution to bypass such constraints might be the use of parameter-efficient fine-tuning (PEFT) in the context of FL. However, we have observed that typical PEFT tends to severely suffer from heterogeneity among clients in FL scenarios, resulting in unstable and slow convergence. In this paper, we propose Client-Customized Adaptation (C2A), a novel hypernetwork-based FL framework that generates client-specific adapters by conditioning the client information. With the effectiveness of the hypernetworks in generating customized weights through learning to adopt the different characteristics of inputs, C2A can maximize the utility of shared model parameters while minimizing the divergence caused by client heterogeneity. To verify the efficacy of C2A, we perform extensive evaluations on FL scenarios involving heterogeneity in label and language distributions. Comprehensive evaluation results clearly support the superiority of C2A in terms of both efficiency and effectiveness in FL scenarios.
pdf
bib
abs
Improving Bias Mitigation through Bias Experts in Natural Language Understanding
Eojin Jeon
|
Mingyu Lee
|
Juhyeong Park
|
Yeachan Kim
|
Wing-Lam Mok
|
SangKeun Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Biases in the dataset often enable the model to achieve high performance on in-distribution data, while poorly performing on out-of-distribution data. To mitigate the detrimental effect of the bias on the networks, previous works have proposed debiasing methods that down-weight the biased examples identified by an auxiliary model, which is trained with explicit bias labels. However, finding a type of bias in datasets is a costly process. Therefore, recent studies have attempted to make the auxiliary model biased without the guidance (or annotation) of bias labels, by constraining the model’s training environment or the capability of the model itself. Despite the promising debiasing results of recent works, the multi-class learning objective, which has been naively used to train the auxiliary model, may harm the bias mitigation effect due to its regularization effect and competitive nature across classes. As an alternative, we propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model, coined bias experts. Specifically, each bias expert is trained on a binary classification task derived from the multi-class classification task via the One-vs-Rest approach. Experimental results demonstrate that our proposed strategy improves the bias identification ability of the auxiliary model. Consequently, our debiased model consistently outperforms the state-of-the-art on various challenge datasets.
pdf
bib
abs
Leap-of-Thought: Accelerating Transformers via Dynamic Token Routing
Yeachan Kim
|
Junho Kim
|
Jun-Hyung Park
|
Mingyu Lee
|
SangKeun Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Computational inefficiency in transformers has been a long-standing challenge, hindering the deployment in resource-constrained or real-time applications. One promising approach to mitigate this limitation is to progressively remove less significant tokens, given that the sequence length strongly contributes to the inefficiency. However, this approach entails a potential risk of losing crucial information due to the irrevocable nature of token removal. In this paper, we introduce Leap-of-Thought (LoT), a novel token reduction approach that dynamically routes tokens within layers. Unlike previous work that irrevocably discards tokens, LoT enables tokens to ‘leap’ across layers. This ensures that all tokens remain accessible in subsequent layers while reducing the number of tokens processed within layers. We achieve this by pairing the transformer with dynamic token routers, which learn to selectively process tokens essential for the task. Evaluation results clearly show that LoT achieves a substantial improvement in computational efficiency. Specifically, LoT attains up to 25x faster inference time without a significant loss in accuracy
2022
pdf
bib
abs
Context-based Virtual Adversarial Training for Text Classification with Noisy Labels
Do-Myoung Lee
|
Yeachan Kim
|
Chang gyun Seo
Proceedings of the Thirteenth Language Resources and Evaluation Conference
Deep neural networks (DNNs) have a high capacity to completely memorize noisy labels given sufficient training time, and its memorization unfortunately leads to performance degradation. Recently, virtual adversarial training (VAT) attracts attention as it could further improve the generalization of DNNs in semi-supervised learning. The driving force behind VAT is to prevent the models from overffiting to data points by enforcing consistency between the inputs and the perturbed inputs. These strategy could be helpful in learning from noisy labels if it prevents neural models from learning noisy samples while encouraging the models to generalize clean samples. In this paper, we propose context-based virtual adversarial training (ConVAT) to prevent a text classifier from overfitting to noisy labels. Unlike the previous works, the proposed method performs the adversarial training in the context level rather than the inputs. It makes the classifier not only learn its label but also its contextual neighbors, which alleviate the learning from noisy labels by preserving contextual semantics on each data point. We conduct extensive experiments on four text classification datasets with two types of label noises. Comprehensive experimental results clearly show that the proposed method works quite well even with extremely noisy settings.
2020
pdf
bib
abs
Representation Learning for Unseen Words by Bridging Subwords to Semantic Networks
Yeachan Kim
|
Kang-Min Kim
|
SangKeun Lee
Proceedings of the Twelfth Language Resources and Evaluation Conference
Pre-trained word embeddings are widely used in various fields. However, the coverage of pre-trained word embeddings only includes words that appeared in corpora where pre-trained embeddings are learned. It means that the words which do not appear in training corpus are ignored in tasks, and it could lead to the limited performance of neural models. In this paper, we propose a simple yet effective method to represent out-of-vocabulary (OOV) words. Unlike prior works that solely utilize subword information or knowledge, our method makes use of both information to represent OOV words. To this end, we propose two stages of representation learning. In the first stage, we learn subword embeddings from the pre-trained word embeddings by using an additive composition function of subwords. In the second stage, we map the learned subwords into semantic networks (e.g., WordNet). We then re-train the subword embeddings by using lexical entries on semantic lexicons that could include newly observed subwords. This two-stage learning makes the coverage of words broaden to a great extent. The experimental results clearly show that our method provides consistent performance improvements over strong baselines that use subwords or lexical resources separately.
pdf
bib
abs
Adaptive Compression of Word Embeddings
Yeachan Kim
|
Kang-Min Kim
|
SangKeun Lee
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Distributed representations of words have been an indispensable component for natural language processing (NLP) tasks. However, the large memory footprint of word embeddings makes it challenging to deploy NLP models to memory-constrained devices (e.g., self-driving cars, mobile devices). In this paper, we propose a novel method to adaptively compress word embeddings. We fundamentally follow a code-book approach that represents words as discrete codes such as (8, 5, 2, 4). However, unlike prior works that assign the same length of codes to all words, we adaptively assign different lengths of codes to each word by learning downstream tasks. The proposed method works in two steps. First, each word directly learns to select its code length in an end-to-end manner by applying the Gumbel-softmax tricks. After selecting the code length, each word learns discrete codes through a neural network with a binary constraint. To showcase the general applicability of the proposed method, we evaluate the performance on four different downstream tasks. Comprehensive evaluation results clearly show that our method is effective and makes the highly compressed word embeddings without hurting the task accuracy. Moreover, we show that our model assigns word to each code-book by considering the significance of tasks.
pdf
bib
abs
Multi-pretraining for Large-scale Text Classification
Kang-Min Kim
|
Bumsu Hyeon
|
Yeachan Kim
|
Jun-Hyung Park
|
SangKeun Lee
Findings of the Association for Computational Linguistics: EMNLP 2020
Deep neural network-based pretraining methods have achieved impressive results in many natural language processing tasks including text classification. However, their applicability to large-scale text classification with numerous categories (e.g., several thousands) is yet to be well-studied, where the training data is insufficient and skewed in terms of categories. In addition, existing pretraining methods usually involve excessive computation and memory overheads. In this paper, we develop a novel multi-pretraining framework for large-scale text classification. This multi-pretraining framework includes both a self-supervised pretraining and a weakly supervised pretraining. We newly introduce an out-of-context words detection task on the unlabeled data as the self-supervised pretraining. It captures the topic-consistency of words used in sentences, which is proven to be useful for text classification. In addition, we propose a weakly supervised pretraining, where labels for text classification are obtained automatically from an existing approach. Experimental results clearly show that both pretraining approaches are effective for large-scale text classification task. The proposed scheme exhibits significant improvements as much as 3.8% in terms of macro-averaging F1-score over strong pretraining methods, while being computationally efficient.
2018
pdf
bib
abs
Learning to Generate Word Representations using Subword Information
Yeachan Kim
|
Kang-Min Kim
|
Ji-Min Lee
|
SangKeun Lee
Proceedings of the 27th International Conference on Computational Linguistics
Distributed representations of words play a major role in the field of natural language processing by encoding semantic and syntactic information of words. However, most existing works on learning word representations typically regard words as individual atomic units and thus are blind to subword information in words. This further gives rise to a difficulty in representing out-of-vocabulary (OOV) words. In this paper, we present a character-based word representation approach to deal with this limitation. The proposed model learns to generate word representations from characters. In our model, we employ a convolutional neural network and a highway network over characters to extract salient features effectively. Unlike previous models that learn word representations from a large corpus, we take a set of pre-trained word embeddings and generalize it to word entries, including OOV words. To demonstrate the efficacy of the proposed model, we perform both an intrinsic and an extrinsic task which are word similarity and language modeling, respectively. Experimental results show clearly that the proposed model significantly outperforms strong baseline models that regard words or their subwords as atomic units. For example, we achieve as much as 18.5% improvement on average in perplexity for morphologically rich languages compared to strong baselines in the language modeling task.