Recently, multi-task instruction tuning has been utilized to improve sentence representation learning (SRL). It enables SRL models to generate task-specific representations with the guidance of task instruction, thus exhibiting strong generalization ability on unseen tasks. However, these methods mostly neglect the potential interference problems across different tasks and instances, which may affect the training of the model.To address this issue, we propose a data curriculum method, namely **Data-CUBE**, that arranges the order of all the multi-task data for training, to minimize the interference risks from two aspects.At the task level, we aim to find the optimal task order to minimize the total cross-task interference risk and formulate this problem as the traveling salesman problem, which is further solved by a specially designed simulated annealing algorithm. At the instance level, we propose a measurement method to quantify the difficulty of all instances per task, and then arrange instances in an easy-to-difficult order for training.Experimental results show that our approach can boost the performance of state-of-the-art methods. Our code and data will be publicly released.
Data visualization serves as a critical means for presenting data and mining its valuable insights. The task of chart summarization, through natural language processing techniques, facilitates in-depth data analysis of charts. However, there still are notable deficiencies in terms of visual-language matching and reasoning ability for existing approaches. To address these limitations, this study constructs a large-scale dataset of comprehensive chart-caption pairs and fine-tuning instructions on each chart. Thanks to the broad coverage of various topics and visual styles within this dataset, better matching degree can be achieved from the view of training data. Moreover, we propose an innovative chart summarization method, ChartThinker, which synthesizes deep analysis based on chains of thought and strategies of context retrieval, aiming to improve the logical coherence and accuracy of the generated summaries. Built upon the curated datasets, our trained model consistently exhibits superior performance in chart summarization tasks, surpassing 8 state-of-the-art models over 7 evaluation metrics. Our dataset and codes are publicly accessible.
Despite the superior performance, Large Language Models (LLMs) require significant computational resources for deployment and use. To overcome this issue, quantization methods have been widely applied to reduce the memory footprint of LLMs as well as increase the inference rate. However, a major challenge is that low-bit quantization methods often lead to performance degradation. It is important to understand how quantization impacts the capacity of LLMs. Different from previous studies focused on overall performance, this work aims to investigate the impact of quantization on emergent abilities, which are important characteristics that distinguish LLMs from small language models. Specifically, we examine the abilities of in-context learning, chain-of-thought reasoning, and instruction-following in quantized LLMs. Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation on the test of these abilities. To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning. Our work derives a series of important findings to understand the impact of quantization on emergent abilities and sheds light on the possibilities of extremely low-bit quantization for LLMs.
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources, alleviating privacy concerns that arise from directly sharing local data. However, the lack of model privacy protection in FL becomes an unneglectable challenge, especially when people want to federally finetune models based on a proprietary large language model. In this study, we propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts. These soft prompts, updated and transmitted between the server and clients, assume the role of the global model parameters and serve as messengers to deliver useful knowledge from the local data and global model. As the global model itself is not required to be shared and the local training is conducted based on an auxiliary model with fewer parameters than the global model, the proposed approach provides protection for the global model while reducing communication and computation costs in FL. Extensive experiments show the effectiveness of the proposed approach compared to several baselines. We have released the source code at https://github.com/alibaba/FederatedScope/tree/fedsp/federatedscope/nlp/fedsp.
Question Answering over Knowledge Graph (KGQA) aims to seek answer entities for the natural language question from a large-scale Knowledge Graph (KG). To better perform reasoning on KG, recent work typically adopts a pre-trained language model (PLM) to model the question, and a graph neural network (GNN) based module to perform multi-hop reasoning on the KG. Despite the effectiveness, due to the divergence in model architecture, the PLM and GNN are not closely integrated, limiting the knowledge sharing and fine-grained feature interactions. To solve it, we aim to simplify the above two-module approach, and develop a more capable PLM that can directly support subgraph reasoning for KGQA, namely ReasoningLM. In our approach, we propose a subgraph-aware self-attention mechanism to imitate the GNN for performing structured reasoning, and also adopt an adaptation tuning strategy to adapt the model parameters with 20,000 subgraphs with synthesized questions. After adaptation, the PLM can be parameter-efficient fine-tuned on downstream tasks. Experiments show that ReasoningLM surpasses state-of-the-art models by a large margin, even with fewer updated parameters and less training data. Our codes and data are publicly available at https://github.com/RUCAIBox/ReasoningLM.
Pre-trained language models have been applied to various NLP tasks with considerable performance gains. However, the large model sizes, together with the long inference time, limit the deployment of such models in real-time applications. One line of model compression approaches considers knowledge distillation to distill large teacher models into small student models. Most of these studies focus on single-domain only, which ignores the transferable knowledge from other domains. We notice that training a teacher with transferable knowledge digested across domains can achieve better generalization capability to help knowledge distillation. Hence we propose a Meta-Knowledge Distillation (Meta-KD) framework to build a meta-teacher model that captures transferable knowledge across domains and passes such knowledge to students. Specifically, we explicitly force the meta-teacher to capture transferable knowledge at both instance-level and feature-level from multiple domains, and then propose a meta-distillation algorithm to learn single-domain student models with guidance from the meta-teacher. Experiments on public multi-domain NLP tasks show the effectiveness and superiority of the proposed Meta-KD framework. Further, we also demonstrate the capability of Meta-KD in the settings where the training data is scarce.
In recent years, conversational recommender systems (CRSs) have drawn a wide attention in the research community, which focus on providing high-quality recommendations to users via natural language conversations. However, due to diverse scenarios and data formats, existing studies on CRSs lack unified and standardized implementation or comparison. To tackle this challenge, we release an open-source toolkit CRSLab, which provides a unified and extensible framework with highly-decoupled modules to develop CRSs. Based on this framework, we collect 6 commonly used human-annotated CRS datasets and implement 19 models that include advanced techniques such as graph neural networks and pre-training models. Besides, our toolkit provides a series of automatic evaluation protocols and a human-machine interaction interface to evaluate and compare different CRS methods. The project and documents are released at https://github.com/RUCAIBox/CRSLab.
Despite significant progress has been achieved in text summarization, factual inconsistency in generated summaries still severely limits its practical applications. Among the key factors to ensure factual consistency, a reliable automatic evaluation metric is the first and the most crucial one. However, existing metrics either neglect the intrinsic cause of the factual inconsistency or rely on auxiliary tasks, leading to an unsatisfied correlation with human judgments or increasing the inconvenience of usage in practice. In light of these challenges, we propose a novel metric to evaluate the factual consistency in text summarization via counterfactual estimation, which formulates the causal relationship among the source document, the generated summary, and the language prior. We remove the effect of language prior, which can cause factual inconsistency, from the total causal effect on the generated summary, and provides a simple yet effective way to evaluate consistency without relying on other auxiliary tasks. We conduct a series of experiments on three public abstractive text summarization datasets, and demonstrate the advantages of the proposed metric in both improving the correlation with human judgments and the convenience of usage. The source code is available at https://github.com/xieyxclack/factual_coco.
On many natural language processing tasks, large pre-trained language models (PLMs) have shown overwhelming performances compared with traditional neural network methods. Nevertheless, their huge model size and low inference speed have hindered the deployment on resource-limited devices in practice. In this paper, we target to compress PLMs with knowledge distillation, and propose a hierarchical relational knowledge distillation (HRKD) method to capture both hierarchical and domain relational information. Specifically, to enhance the model capability and transferability, we leverage the idea of meta-learning and set up domain-relational graphs to capture the relational information across different domains. And to dynamically select the most representative prototypes for each domain, we propose a hierarchical compare-aggregate mechanism to capture hierarchical relationships. Extensive experiments on public multi-domain datasets demonstrate the superior performance of our HRKD method as well as its strong few-shot learning ability. For reproducibility, we release the code at https://github.com/cheneydon/hrkd.
Seq2seq models have demonstrated their incredible effectiveness in a large variety of applications. However, recent research has shown that inappropriate language in training samples and well-designed testing cases can induce seq2seq models to output profanity. These outputs may potentially hurt the usability of seq2seq models and make the end-users feel offended. To address this problem, we propose a training framework with certified robustness to eliminate the causes that trigger the generation of profanity. The proposed training framework leverages merely a short list of profanity examples to prevent seq2seq models from generating a broader spectrum of profanity. The framework is composed of a pattern-eliminating training component to suppress the impact of language patterns with profanity in the training set, and a trigger-resisting training component to provide certified robustness for seq2seq models against intentionally injected profanity-triggering expressions in test samples. In the experiments, we consider two representative NLP tasks that seq2seq can be applied to, i.e., style transfer and dialogue generation. Extensive experimental results show that the proposed training framework can successfully prevent the NLP models from generating profanity.
Transfer learning (TL) seeks to improve the learning of a data-scarce target domain by using information from source domains. However, the source and target domains usually have different data distributions, which may lead to negative transfer. To alleviate this issue, we propose a Wasserstein Selective Transfer Learning (WSTL) method. Specifically, the proposed method considers a reinforced selector to select helpful data for transfer learning. We further use a Wasserstein-based discriminator to maximize the empirical distance between the selected source data and target data. The TL module is then trained to minimize the estimated Wasserstein distance in an adversarial manner and provides domain invariant features for the reinforced selector. We adopt an evaluation metric based on the performance of the TL module as delayed reward and a Wasserstein-based metric as immediate rewards to guide the reinforced selector learning. Compared with the competing TL approaches, the proposed method selects data samples that are closer to the target domain. It also provides better state features and reward signals that lead to better performance with faster convergence. Extensive experiments on three real-world text mining tasks demonstrate the effectiveness of the proposed method.
Distant supervision based methods for entity and relation extraction have received increasing popularity due to the fact that these methods require light human annotation efforts. In this paper, we consider the problem of shifted label distribution, which is caused by the inconsistency between the noisy-labeled training set subject to external knowledge graph and the human-annotated test set, and exacerbated by the pipelined entity-then-relation extraction manner with noise propagation. We propose a joint extraction approach to address this problem by re-labeling noisy instances with a group of cooperative multiagents. To handle noisy instances in a fine-grained manner, each agent in the cooperative group evaluates the instance by calculating a continuous confidence score from its own perspective; To leverage the correlations between these two extraction tasks, a confidence consensus module is designed to gather the wisdom of all agents and re-distribute the noisy training set with confidence-scored labels. Further, the confidences are used to adjust the training losses of extractors. Experimental results on two real-world datasets verify the benefits of re-labeling noisy instance, and show that the proposed model significantly outperforms the state-of-the-art entity and relation extraction methods.
This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.
Being able to recognize words as slots and detect the intent of an utterance has been a keen issue in natural language understanding. The existing works either treat slot filling and intent detection separately in a pipeline manner, or adopt joint models which sequentially label slots while summarizing the utterance-level intent without explicitly preserving the hierarchical relationship among words, slots, and intents. To exploit the semantic hierarchy for effective modeling, we propose a capsule-based neural network model which accomplishes slot filling and intent detection via a dynamic routing-by-agreement schema. A re-routing schema is proposed to further synergize the slot filling performance using the inferred intent representation. Experiments on two real-world datasets show the effectiveness of our model when compared with other alternative model architectures, as well as existing natural language understanding services.
Distantly supervised relation extraction greatly reduces human efforts in extracting relational facts from unstructured texts. However, it suffers from noisy labeling problem, which can degrade its performance. Meanwhile, the useful information expressed in knowledge graph is still underutilized in the state-of-the-art methods for distantly supervised relation extraction. In the light of these challenges, we propose CORD, a novelCOopeRativeDenoising framework, which consists two base networks leveraging text corpus and knowledge graph respectively, and a cooperative module involving their mutual learning by the adaptive bi-directional knowledge distillation and dynamic ensemble with noisy-varying instances. Experimental results on a real-world dataset demonstrate that the proposed method reduces the noisy labels and achieves substantial improvement over the state-of-the-art methods.
Answer selection is an important but challenging task. Significant progresses have been made in domains where a large amount of labeled training data is available. However, obtaining rich annotated data is a time-consuming and expensive process, creating a substantial barrier for applying answer selection models to a new domain which has limited labeled data. In this paper, we propose Knowledge-aware Attentive Network (KAN), a transfer learning framework for cross-domain answer selection, which uses the knowledge base as a bridge to enable knowledge transfer from the source domain to the target domains. Specifically, we design a knowledge module to integrate the knowledge-based representational learning into answer selection models. The learned knowledge-based representations are shared by source and target domains, which not only leverages large amounts of cross-domain data, but also benefits from a regularization effect that leads to more general representations to help tasks in new domains. To verify the effectiveness of our model, we use SQuAD-T dataset as the source domain and three other datasets (i.e., Yahoo QA, TREC QA and InsuranceQA) as the target domains. The experimental results demonstrate that KAN has remarkable applicability and generality, and consistently outperforms the strong competitors by a noticeable margin for cross-domain answer selection.