Loading AI tools
Distinctive type of stone knapping technique used by ancient humans From Wikipedia, the free encyclopedia
The Levallois technique (IPA: [lə.va.lwa]) is a name given by archaeologists to a distinctive type of stone knapping developed around 250,000 to 400,000[1] years ago during the Middle Palaeolithic period. It is part of the Mousterian stone tool industry, and was used by the Neanderthals in Europe and by modern humans in other regions such as the Levant.[2]
It is named after 19th-century finds of flint tools in the Levallois-Perret suburb of Paris, France. The technique was more sophisticated than earlier methods of lithic reduction, involving the striking of lithic flakes from a prepared lithic core. A striking platform is formed at one end and then the core's edges are trimmed by flaking off pieces around the outline of the intended lithic flake. This creates a domed shape on the side of the core, known as a tortoise core, as the various scars and rounded form are reminiscent of a tortoise's shell. When the striking platform is finally hit, a lithic flake separates from the lithic core with a distinctive plano-convex profile and with all of its edges sharpened by the earlier trimming work.
This method provides much greater control over the size and shape of the final flake which would then be employed as a scraper or knife although the technique could also be adapted to produce projectile points known as Levallois points. Scientists consider the Levallois complex to be a Mode 3 technology, as a result of its diachronic variability. This is one level superior to the Acheulean complex of the Lower Paleolithic.[3]
The technique is first found in the Lower Palaeolithic but is most commonly associated with the Neanderthal Mousterian industries of the Middle Palaeolithic. In the Levant, the Levallois technique was also used by anatomically modern humans during the Middle Stone Age. In North Africa, the Levallois technique was used in the Middle Stone Age, most notably in the Aterian industry to produce very small projectile points. While Levallois cores do display some variability in their platforms, their flake production surfaces show remarkable uniformity. As the Levallois technique is counterintuitive, teaching the process is necessary and thus language may be a prerequisite for such technology,[citation needed] although Ohnuma, Aoki and Akazawa (1997) found modern humans could be taught the Levallois technique non-verbally at a similar level of effectiveness to verbal teaching.[4][5]
The distinctive forms of the flakes were originally thought to indicate a wide-ranging Levallois culture resulting from the expansion of archaic Homo sapiens out of Africa. However, the wide geographical and temporal spread of the technique has rendered this interpretation obsolete.
Adler et al. further argue that Levallois technology evolved independently in different populations and thus cannot be used as a reliable indicator of Paleolithic human population change and expansion.[6] Aside from technique, the overarching commonality in Levallois complexes is the attention given to maximizing core efficiency. Lycett and von Cramon-Taubedel (2013) measured variability in shape and geometrics relationships between cores over multiple regions, with an outcome that suggests a tendency for knappers to choose planforms with a specific surface morphology. In other words, they conclude that Levallois knappers cared less about the overall outline or shape of their core and more about the striking surface, evidence of complex pre-planning and recognition of an "ideal form" of Levallois core.[4] A recent article by Lycett and Eren (2013) statistically shows the efficiency of the Levallois technique which at times has been called into question. Lycett and Eren created 75 Levallois flakes from 25 Texas Chert nodules. They counted the 3957 flakes and separated them into four stages in order to show efficiency, which grew subsequently in each stage.[7] Based on the comparative study of 567 debitage flakes and 75 preferential Levallois flakes, Lycett and Eren found out the thickness is more evenly distributed and less variable across preferential Levallois flakes, which indicates the thickness is an important factor for efficiency and retouch potential.[8] The experiment[7] also shows that the Levallois core is an economic optimal strategy of raw material (lithic) usage, which means it can generate longest cutting edge per weight unit of raw material. This result also implies that the mobility of prehistoric people was higher when applying Levallois technology; prehistoric people may explore more area with Levallois cores, which can make longer cutting edge than the other flake-making technique under same amount of cores, and no need to worry about the lack of raw material to make tools.
There is disagreement when it comes to defining Levallois technology.[9] Archeologists question which attributes and dimensions are specifically associated with Levallois, and argue that there are other techniques with similar cosmetic and functional aspects. Due to these disagreements, there is now a more precise set of criteria that outlines Levallois technology from a geometric standpoint. These criteria are:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.