Nothing Special   »   [go: up one dir, main page]

LCS21 - 35 - Polar Plots

Download as pptx, pdf, or txt
Download as pptx, pdf, or txt
You are on page 1of 14

Frequency response methods

Prof. Muhammad Abid


Basic Tools for analysis and design

Bode diagrams

Polar plots

Nyquist plots
Polar Plots
Plot of frequency response on a single graph
𝐺 ( 𝑗 𝜔 )=|𝐺 ( 𝑗 𝜔 )|∠( 𝐺( 𝑗 𝜔))

Phase frequency response


Magnitude frequency response

Locus of vectors as is varied from zero to infinity


Conveys the same information as the Bode
diagram
Polar plots are less detailed
Polar Plots ℑ

Polar plot for


𝜔=0

𝐺 ( 𝑗 𝜔 )= 𝑗 𝜔

¿ 𝜔 ∠ 90𝑜
Polar plot for

1 −𝑗
𝐺 ( 𝑗 𝜔 )= ¿
𝜔→0
𝑗𝜔 𝜔 ℜ

1 𝑜
¿ ∠ − 90
𝜔
Polar Plots

Polar plot for
𝜔=0
𝜔→∞ ℜ
1 1
𝐺 ( 𝑗 𝜔 )=
−1
¿ ∠ − tan 𝜔𝑇
1+ 𝑗 𝜔 𝑇 √ 1+ 𝜔 𝑇
2 2

𝜔=0 𝐺 ( 𝑗 𝜔 )=1 ∠ 0 𝑜

𝜔→∞ 𝐺 ( 𝑗 𝜔 )=0 ∠ −90 𝑜


Polar Plots

Polar plot for
𝜔=0
𝜔→∞ ℜ
1 1
𝐺 ( 𝑗 𝜔 )=
−1
¿ ∠ − tan 𝜔𝑇 1
𝜔=
1+ 𝑗 𝜔 𝑇 √ 1+ 𝜔 𝑇
2 2
𝑇

𝜔=0 𝐺 ( 𝑗 𝜔 )=1 ∠ 0 𝑜 1 1− 𝑗 𝜔𝑇
𝐺 ( 𝑗 𝜔 )= ×
1+ 𝑗 𝜔 𝑇 1 − 𝑗 𝜔 𝑇
𝜔→∞ 𝐺 ( 𝑗 𝜔 )=0 ∠ −90 𝑜 1− 𝑗 𝜔𝑇
¿ 2 2
1+ 𝜔 𝑇
1 1 𝑜
𝜔= 𝐺 ( 𝑗 𝜔 )= ∠ − 45 −𝜔𝑇
𝑇 √2 ℑ ( 𝐺 ( 𝑗 𝜔 )) = =0
2 2
Crossing on real axis 1+ 𝜔 𝑇

⇒ 𝜔=0 , 𝜔=∞
Polar Plots
Polar plot for


𝐺 ( 𝑗 𝜔 )=1+ 𝑗 𝜔 𝑇 ¿ 1+ 𝜔 2 𝑇 2 ∠ tan −1 𝜔 𝑇
𝜔=0
0 1 ℜ

𝜔=0 𝐺 ( 𝑗 𝜔 )=1 ∠ 0 𝑜

𝜔→∞ 𝐺 ( 𝑗 𝜔 )=∞ ∠ 90 𝑜

1
𝜔=
𝑇 𝐺 ( 𝑗 𝜔 )= √ 2∠ 45𝑜
Polar Plots
Polar plot for

𝜔2𝑛 1 𝜔=∞ 1 ℜ
𝐺 ( 𝑗 𝜔 )= ¿
( )( )
( 𝑗 𝜔 )2 +2 𝜁 𝜔𝑛 ( 𝑗 𝜔 ) +𝜔 2𝑛 𝑗𝜔 𝑗𝜔
2
𝜔=0
1+2 𝜁 +
𝜔𝑛 𝜔𝑛
𝜔=𝜔𝑛
𝑜
𝜔=0 𝐺 ( 𝑗 𝜔 )=1 ∠ 0

1
𝜔→∞ 𝐺 ( 𝑗 𝜔 )→ ¿ 0 ∠ −180 𝑜
( )
2
𝑗𝜔
𝜔𝑛

1 1 𝑜
𝜔=𝜔𝑛 𝐺 ( 𝑗 𝜔 )= ¿ ∠ − 90
1+ 𝑗 2 𝜁 −1 2𝜁
Polar Plots
Polar plot for

1 𝜔=∞ ℜ
𝐺 ( 𝑗 𝜔 )=
𝑗 𝜔 ( 𝑗 3 𝜔+1 ) ×
𝜔=0 1
𝐺 ( 𝑗 𝜔 )= ¿ ∞ ∠ − 90𝑜 ≈
𝑗0
1 𝑜
𝜔→∞ 𝐺 ( 𝑗 𝜔 )→ =0 ∠ −180
( 𝑗 ∞) ( 𝑗∞ ) 𝜔=0

1 ( − 𝑗 3 𝜔+1 ) ( − 𝑗 3 𝜔 +1 ) ( −3 ) 1
𝐺 ( 𝑗 𝜔 )= × ¿ ¿ − 𝑗
𝑗 𝜔 ( 9 𝜔2 +1 ) ( 9 𝜔 2+1 ) 2
𝑗 𝜔 ( 𝑗 3 𝜔+1 ) ( − 𝑗 3 𝜔+1 ) 𝜔( 9 𝜔 +1)
Polar Plots As

Polar plot for −3 − 𝑗 ( 1− 2 𝜔2 )


𝐺 ( 𝑗 𝜔 )= +
( 𝜔 +1 ) ( 4 𝜔 +1 ) 𝜔 ( 𝜔 2 +1 )( 4 𝜔2 +1 )
2 2

1 − ( 1 −2 𝜔 2 ) 1
𝐺 ( 𝑗 𝜔 )= =0 𝜔= , 𝜔=∞
𝑗 𝜔 ( 𝑗 𝜔+1 ) ( 𝑗 2 𝜔 +1 ) 𝜔 ( 𝜔 +1 )( 4 𝜔 +1 )
2 2
√2

1 2 −0.67
𝜔=0 𝐺 ( 𝑗 𝜔 )= ¿ ∞ ∠ − 90𝑜 𝐺 ( 𝑗 𝜔 ) |𝜔=1 / √ 2=− 𝜔=∞ ℜ
𝑗0 3
1 𝑜
𝜔→∞ 𝐺 ( 𝑗 𝜔 )→ =0 ∠ − 270
( 𝑗 ∞ ) ( 𝑗 ∞ )( 𝑗 ∞ )

( − 𝑗 𝜔+1 ) (− 𝑗 2 𝜔+1 ) ¿ ( 1 − 2 𝜔 − 𝑗 3 𝜔 )
2
1
𝐺 ( 𝑗 𝜔 )= ×
𝑗 𝜔 ( 𝑗 𝜔+1 ) ( 𝑗 2 𝜔 +1 ) ( − 𝑗 𝜔+1 ) (− 𝑗 2 𝜔+1 ) 𝑗 𝜔 ( 𝜔 2 +1 )( 4 𝜔2 +1 )
𝜔=0
Polar Plots 𝐺 ( 𝑗 𝜔 )=
( 8 − 𝜔 2 )+ 𝑗 ( 6 𝜔 )
( 𝜔2 + 4 ) ( 𝜔2 +16 )
Polar plot for ( 8− 𝜔 2 )
( 𝜔 + 4 )( 𝜔 +16 )
2 2
=0 𝜔= √ 8 , 𝜔=∞
1 ( 6 𝜔)
𝐺 ( 𝑗 𝜔 )=
( 𝑗 𝜔+2 ) ( 𝑗 𝜔+ 4 ) ( 𝜔 + 4 )( 𝜔 +16 )
2 2
=0 𝜔=0 , 𝜔=∞

𝜔=0 𝐺 ( 𝑗 𝜔 )=
1
8 ¿ 0.125 ∠ 0 𝑜
𝐺 ( 𝑗𝜔 ) |𝜔= √ 8=− 𝑗 0.056

1
𝜔→∞ 𝐺 ( 𝑗 𝜔 )→ ¿ 0 ∠ −180 𝑜
( 𝑗 𝜔 )( 𝑗 𝜔 )2 𝜔=∞ 𝜔=0 ℜ

0.125 ∠0 𝑜
1 ( 𝑗 𝜔 +2 ) ( 𝑗 𝜔+ 4 )
𝐺 ( 𝑗 𝜔 )= × − 𝑗 0.056
( 𝑗 𝜔+2 ) ( 𝑗 𝜔+ 4 ) ( 𝑗 𝜔 +2 ) ( 𝑗 𝜔+ 4 ) 𝜔= 𝑗 √ 8
Polar Plots
Polar plot for

1
𝐺 ( 𝑗 𝜔 )=
( 𝑗 𝜔+2 ) ( ( 𝑗 𝜔 )2 + 𝑗 2 𝜔+2 )


1
𝜔=0 𝐺 ( 𝑗 𝜔 )= ¿ 0.25 ∠ 0 𝑜
4
𝜔=∞ 𝜔=0 ℜ
1
𝜔→∞ 𝐺 ( 𝑗 𝜔 )→ 2 ¿ 0 ∠−270
𝑜
( 𝑗 𝜔 )( 𝑗 𝜔 )
1
𝐺 ( 𝑗 𝜔 )=
( 𝑗 𝜔+2 ) ( ( 𝑗 𝜔 )2 + 𝑗 2 𝜔+2 )

1 (− 𝑗 𝜔 +2 ) ( 2− 𝜔 2 − 𝑗 2 𝜔 ) ( 4 − 4 𝜔 2) + 𝑗 𝜔 ( 6 − 𝜔 2)
𝐺 ( 𝑗 𝜔 )= × ¿
( 𝑗 𝜔+2 ) ( 2− 𝜔 + 𝑗 2 𝜔 ) (− 𝑗 𝜔 +2 ) ( 2− 𝜔 − 𝑗 2 𝜔 )
2 2
( 𝜔2 +4 ) ( ( 2 − 𝜔 )2 + 4 𝜔 2 )

𝜔 ( 6 − 𝜔2 )
( 𝜔 + 4 ) ( (1 − 𝜔 ) + 4 𝜔 )
2 2 2
=0 ⇒ 𝜔=0 , √ 6 , ∞ 𝐺 ( 𝑗𝜔 ) |𝜔= √ 6=−0.05

( 4 − 4 𝜔2 )
( 𝜔 + 4 ) ( ( 2− 𝜔 ) + 4 𝜔 )
2 2 2
=0 ⇒ 𝜔=1 , ∞ 𝐺 ( 𝑗𝜔 ) |𝜔=1 =− 𝑗0.2
Nyquist Diagram
0.25

0.2

Polar Plots 0.15

0.1

Imaginary Axis
0.05

Polar plot for


0

-0.05

-0.1

-0.15

1 -0.2
𝐺 ( 𝑗 𝜔 )=
( 𝑗 𝜔+2 ) ( ( 𝑗 𝜔 )2 + 𝑗 2 𝜔+2 ) -0.25
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
Real Axis


1
𝜔=0 𝐺 ( 𝑗 𝜔 )= ¿ 0.25 ∠ 0 𝑜
4 𝜔= √6
−0.05 𝜔=∞ 𝜔=0 ℜ
1 𝑜
𝜔→∞ 𝐺 ( 𝑗 𝜔 )→ =0 ∠ −270
( 𝑗 𝜔 )( 𝑗 𝜔 )2

𝐺 ( 𝑗𝜔 ) |𝜔=1 =− 𝑗0.2 𝐺 ( 𝑗𝜔 ) |𝜔= √ 6=−0.05 − 𝑗0 .2


𝜔=1

You might also like