Gamma Function
Gamma Function
Gamma Function
y
x
z0
Fall 2020
David R. Jackson
Notes 14
The Gamma Function
1
The Gamma Function
2
Definition 1
Definition # 1
1 2 3 n
( z ) lim nz, z 0, 1, 2,
n z ( z 1)( z 2) ( z n )
( n ) n 1 !
3
Definition 1
Factorial property:
1 2 3 n
( z ) lim n z , z 0, 1, 2,
n z ( z 1)( z 2) ( z n )
1 2 3 n nz
( z 1) lim n z 1 ( z ) lim
n ( z 1)( z 2) ( z n 1) n ( z n 1)
( z 1) z( z )
1 2 3 n
Note that (1) lim n 1, and (2) 1 (1) 1,
n 1 2 3 n (n 1)
(3) 2 (2) 2 1, (4) 3 (3) 3 2 1, (5) 4 (4) 4 3 2 1, etc.
Note:
Leonard Euler
t z 1 t x 1 t iy t x 1 e
ln t iy
t x 1 eiy ln t
t z 1 t x 1 x 0 for integral to converge
Note:
Definition 1 is the analytic continuation of definition 2 from the right-half
plane into the entire complex plane (except at the negative integers).
5
Equivalent Integral Forms
t z 1
( z ) t dt,
0
e Re z 0
s2 2 z 1
( z ) 2 e s ds, Re z 0 (let t s 2 )
0
1 z 1
1
( z ) 0 ln s ds, Re z 0 (let t ln 1 / s )
6
Equivalence of Definitions 1 and 2
Equivalence of definitions #1 and #2
n
t t
Use e lim 1 ,
n
n
n n
t
Define F ( z, n ) 1 t z 1dt; t dt 2 z
t z 1
F ( z, n )
e
0 n n 0
t
Letting w and integrating by parts n times,
n
Factor appearing
in Definition
#1
1
n
F ( z , n ) n z 1 w w z 1dw n z
1 2 3 n 1 n 1
z n 1
0 z ( z 1)( z 2) ( z n 1) 0 w dw
1
Hence lim F ( z, n ) 1 ( z ) (Please see next slide.) z n
n
7
Equivalence of Definitions 1 and 2 (cont.)
Integration by parts development:
1
n
1 w
z 1
I w
dw
0 u
dv
dw
z 1 1
n w n 1 wz
I 1 w n 1 w dw
z 0 0 z
1
n 1 wz
0 n 1 w dw
0 z
1
n n 1
1 w w z dw
z0
8
Equivalence of Definitions 1 and 2 (cont.)
1
n
Integrate by parts twice: I 1 w w z 1
0 dv dw
1 u
n n 1
I 1 w w z dw
dw
z0
1
z 1
w z 1
1
n n 1 w n n 2
1 w n 1 1 w 1 dw
z z 1 0 z 0 z 1
n n 1 1
n 2
0
z z 1 1 w
0
w z 1dw
n n 1 1
n 2
z z 1 1 w
0
w z 1dw
After n times:
n n 1 n 2 3 2 1 1
1 w wz n1dw
nn
I
z ( z 1)( z 2) ( z n 1) 0
9
Definition 3
Definition # 3
1
z nz
ze 1 e
z
( z ) n 1 n
10
Euler Reflection Formula
Euler Reflection Formula
( z ) (1 z )
sin z
Note: We can use this along with definition #2 to find (z) for Re(z) < 0.
1
( z ) , Re z 0, z 0, 1, 2,
sin z (1 z )
y
Geometric interpretation of reflection formula:
1 z z The two points are reflections about the x = 1/2 line.
x
x 1/ 2
11
Euler Reflection Formula (cont.)
A special result that occurs frequently is (1/2).
( z )(1 z )
sin z
Set z = 1/2:
(1 / 2)
12
Pole Behavior
Simple poles are at n = 0, -1, -2, -3,…
( z 2)
( z 2) z 1 ( z 1) ( z 1)
z 1
( z 2)
z ( z )
z 1 Simple pole at z = -1
Residue = -1
( z 2)
( z )
z z 1
13
Pole Behavior (cont.)
( z 3)
( z 3) z 2 ( z 2) ( z 2)
z2
Simple pole at z = -2
( z 3)
z 1 z ( z ) Residue = +1/2
z2
( z 3)
( z )
z z 1 z 2
( z 4)
( z 4) z 3 ( z 3) ( z 3)
z3
( z 4)
z 2 z 1 z ( z ) Simple pole at z = -3
z3 Residue = -1/6
( z 4)
( z )
z z 1 z 2 z 3
14
Pole Behavior (cont.)
Residues at Poles
( z n 1)
( z )
z z 1 z 2 z 3 z n
1
Res n Lim z n
z n
z z 1 z 2 z 3 z n
1
z z 1 z 2 z 3 z n 1 z n Hence
1
1
n
n n 1 3 2 1
Res n
1
n
n!
n n 1 3 2 1
15
The Gamma Function (cont.)
z
y
x
z0
1
n
1 z z 1 1 139 571
z 2 z e 1 2
3
4
z 12 z 288 z 51840 z 2488320
z
w
Taking the ln of both sides, we also have
1 z 1 1 1
ln z z ln z z ln
2 2 3
12 z 360 z 1260 z
5
w 2 w3
Note : ln 1 w w
2 3
Valid for
z , arg z constant
18
The Gamma Function (cont.)
Summary of Factorial Generalization
n ! n n 1 n 2 3 2 1 Integers
x ! x 1 e t t x dt Real numbers
0
x 1
z ! z 1 e t t z dt Complex numbers
0
Re z 1
19
The Gamma Function (cont.)
Summary of Factorial Generalization (cont.)
z ! z 1 e t t z dt Re z 1
0
Complex numbers
+ z 0, 1, 2
1
( z )
sin z (1 z )
20