Nothing Special   »   [go: up one dir, main page]

(PPT) ... Transforming Stress Tensor. Direction Cosines. ... A. Tx. Polar Coordinates. ... Procedure. Use Stress Transformation

Download as ppt, pdf, or txt
Download as ppt, pdf, or txt
You are on page 1of 143

[PPT] Two-Dimensional Elasticity

File Format: Microsoft Powerpoint 97 - View as HTML


... Transforming Stress Tensor. Direction Cosines. ... A. Tx.
Tx. Stress Distribution in
Polar Coordinates. ... Procedure. Use stress transformation
to get stresses in xy system ...
civil.engr.siu.edu/Elasticity/ lecture/PlaneElasticity_1.ppt -

Similar pages
Two-Dimensional Elasticity

Plane Stress
Plane Strain
Plane Stress
• No traction on one plane passing through
the body.
• One dimension of the body much smaller
than the other two.
Plane Stress

Out - of - plane normal stress :


 zz  0
or :
 33  0

Out - of - plane shear stresses :


 xz   yz  0
or :
13   23  0
Plane Stress

Remaining stresses do not vary with


z, but are functions of only x and y.
Let us let x=1, y=2, z=3 in
considering the tensor form of
elasticity equations.
Equilibrium Equations

 xx , x   xy , y  Fx  0
 xy , x   yy , y  Fy  0
Fz  0
Potential Function

Specify Body Force vector as :



F  V   V, i ê i
V is a potential function. This corresponc ds to
a body force field that is conservative (an energy concept).
Equilibrium Equations

 xx , x   xy , y  V, x  0
 xy , x   yy , y  V, y  0
V, z  0
Airy’s Stress Function

 xx  V  , yy
 yy  V  , xx
 xy   , xy
Stresses of this form identically
satisfy the equilibrium equations.
Stress-Strain Equations
 xx    xx   yy 
1
E

 yy    yy   xx 
1
E

 zz   xx   yy 
E
1
 xy   xy
2G
 xz   yz  0
Strains depend only on x and y, but
not on z. However, we do have a
nonzero strain component in the z
direction.
Stress-Strain Equations

 xx 
E
2
  xx   yy 
1 

 yy 
E
2
  yy   xx 
1 
 xy  2G xy
Combining Results
 xx   , yy  , xx   1    V 
1
E

 yy   , xx  , yy   1    V 
1
E

 zz   , xx  , yy  2V 
E
1
 xy  , xy
2G
 xz   yz  0
St. Venant Compatibility Equations
2
 2 xx   yy  2 xy
 2
x 2
y 2
 x y
 2 yy  2 zz  2 yz
 2
z 2 y 2
y z
 2 zz  2 xx  2 xz
 2
x 2
z 2
 x z
 2 xy 2
 2 xz   yz  2 xx
  
xz xy x 2
y z
 2 yz  2 xy 2
 2 xz   yy
  
 x z  y  z y 2
 x z
 2 xy 2
 2 xz   yz  2 zz
  
yz xz z 2
xy
Plane Stress Compatibility Equations

2
 2 xx   yy  2 xy
 2
All partials w.r.t. z are zero. x 2
y 2
xy
ε zz  0  2 zz
0
ε xz  ε yz  0 y 2

 2 zz
2
0
x
 2 zz
0
 x y

Ignore last three equations for now.


Plane Stress Compatibility Equations

2
 2 xx   yy  2 xy
 2
x 2
y 2
xy
Substitution yields :
1
E
 , yyyy  , xxyy   1    V, xx  , xxxx  , xxyy   1    V, yy 

1
  , xxyy
G
E
 2(1   )
G
Governing Equation

 4   (1   ) 2 V

4 4 4
  
4  4  2 2 2  4
x x  y y
2 2
 
2  2  2
x y

 4  4  4   2V  2V 
4
 2 2 2  4   (1   ) 2  2 
x x y y  x y 
Governing Equation

4 2
   (1   ) V
 xx  V  , yy
 yy  V  , xx
 xy   , xy
Ignoring Body Forces

4
 0
 xx  , yy
 yy  , xx
 xy   , xy
Out-of-plane Stress

 zz     xx   yy 
Equilibrium Equations
Body force vector :
 
F  F x , y 
Equilibrium equations :
 xx , x   xy , y  V, x  0
 xy , x   yy , y  V, y  0
 zz  constant
Airy’s Stress Function

 xx  V  , yy
 yy  V  , xx
 xy   , xy
Stresses of this form identically
satisfy the equilibrium equations.
St. Venant Compatibility Equations
2
 2 xx   yy  2 xy
 2
x 2
y 2
xy
 2 yy 2
  zz  2 yz
 2
z 2 y 2
 y z
 2 zz  2 xx  2 xz
 2
x 2
z 2
 x z
 2 xy 2
 2 xz   yz  2 xx
  
xz xy x 2
 y z
 2 yz  2 xy 2
 2 xz   yy
  
xz yz y 2
xz
 2 xy 2
 2 xz   yz  2 zz
  
yz xz z 2
xy
Plane Stress Compatibility Equations

All partials w.r.t. z are zero. 2


  xx  2 yy  2 xy
 2
ε zz  ε xz  ε yz  0 x 2
y 2
xy
Combining Results

 xx 
1
E
 
1   2 , yy    1    , xx  1   1  2   V 
 yy 
1
E
 
1   2 , xx    1    , yy  1    1  2   V 
1
 xy  , xy
2G
Plane Stress Compatibility Equations

2 2
  xx   yy
2   xy
 2
x 2
y 2
xy

 xx 
1
E
 
1   2 , yy   1    , xx  1    1  2   V 
 yy 
1
E
 
1   , xx   1    , yy  1    1  2   V
2

1
 xy  , xy
2G
Substitution yields :
1
E
  
1   2 , yyyy    1    , xxyy  1   1  2   V, yy


1
E
   1
1   , xxxx    1    , xxyy  1    1  2   V, xx   , xxyy
2
G
Governing Equation

(1  2 ) 2
4    V
1 

 4  4  4 (1  2 )   2 V  2 V 
2 2 2  4   2  2
x 4
x  y y 1    x y 
Ignoring Body Forces

4
 0
 xx  , yy
 yy  , xx
 xy   , xy
Biharmonic Equation

4
 0
General Solution

    Cmnx y m n

m n
General Solution

    Cmnx y
m n

m n
m  n  3 satisfy biharmonic
individually and exactly
Cylindrical Coordinates

r
 

r

rr
Equilibrium Equations

σ rr σ rr  σθθ 1 σθθ
   Fr  0
r r r θ
σ rθ 2σ rθ 1 σθθ
   Fθ  0
r r r θ
Strain Displacement Equations

u r
rr   ur , r
r
u r 1 u  u r 1
      u , 
r r  r r
1  u  u  1 u r  1  u 1 
 r        u  , r   u r, 
2  r r r   2  r r 
x  r cos θ
y  r sin θ
2 2 2
x  y r
-1 
y
θ  tan  
 x

1 2 x

1
2 2
r, x  x  y 2x   cos θ
2 r
y
r, y   sin θ
r
1  y  y sin θ
θ, x   2    2  
2

1  xy  x  r r

1  1  y cos θ
θ, y  2  
 2 
1  y
x
 x r r
     
 r, x  θ, x
x r 
        sin θ 
 cos θ   
x r   r 
     
 r, y  θ, y
y r 
        cos θ 
 sin θ   
y r   r 
Transforming Stress Tensor

rr  ri rj ij


    i  j ij
r  ri  j ij
Direction Cosines

x y z
r cos q sin q 0
q -sin q cos q 0
z 0 0 1
Stress Transformations

rr   xx cos 2    yy sin 2   2 xy cos  sin 


    xx sin 2    yy cos 2   2 xy cos  sin 

r    xx cos  sin    yy cos  sin    xy cos 2   sin 2  
 xx  , yy
 yy  , xx
 xy   , xy
Airy’s Stress Function

rr  , yy cos 2   , xx sin 2   2, xy cos  sin 


   , yy sin 2   , xx cos 2   2, xy cos  sin 

r   , yy cos  sin   , xx cos  sin   , xy cos 2   sin 2  
     
 r, x  θ, x
x r 
        sin θ 
 cos θ   
x r   r 
     
 r, y  θ, y
y r 
        cos θ 
 sin θ   
y r   r 
Airy’s Stress Function
          sin   
, xx       cos     
 x   x   x  r   r  
  2  2  sin      sin2  
  cos    2  cos        0  
 r r   r   r  r 

sin    2  2  sin      sin  cos  sin  


  cos   2       2 cos   
r  r     r     r r2
2 2
cos  sin  cos  sin  sin  sin 
 , rr cos2   2, r  2,   , r  , 
r r r r2
Airy’s Stress Function

Obtain similar results for :


, xy and , xy
Airy’s Stress Function
1 1
rr  , r  2 , 
r r
   , rr
1 1
 r  ,   , r 
r r
Biharmonic Equation

4
 0
Biharmonic Equation

 
 4    2  2  0
2 1 1
   , rr  , r  2 , 
r r
4   2
1 1  2
    1  1   
2 2
  2   2 2  2   2 2
 r r  r r     r r r r  
Axisymmetric Problems
No dependence on 
1
rr  , r
r
   ,rr
 r  0
2 1 1   
   , rr  , r  r 
r r  r  , r

4   2
1   1 
  2    , rr  , r 
 r r r   r 
4 3 2
4   2   1   1 
  4   2 2 3
r r r 3
r r r r
Stress Function

2 2
  C1r ln r  C2r  C3 ln r  C4
Stresses

1
rr  C1  1  2 ln r   2C2  C3 2
r
1
   C1  3  2 ln r   2C2  C3 2
r
 r  0
Plane Stress

1
rr   rr    
E
1
        rr 
E

 r 
1
 r 
 1  
 r
2G E
Strain-Displacement Equations

u r
rr   ur , r
r
ur
  
r
Displacements

dur 1  C3  1    
rr     2C 2  1     C1  1    2 ln r  1   2  C1
dr E  r 2 
ur 1  C 3  1    
     2
 2C2  1     C1  1    2 ln r  1  2C1 
r E r 
Displacements

Integrate the first equation :


dur 1  C3  1    
   2C 2  1     C1  1    2 ln r  1   2  C1
dr E r2 
1  C3  1    
ur     2C 2  1    r  C1  1    2r ln r  r   2  C1r  constant 
E r 
Solve second equation
ur 1  C 3  1    
   2C 2  1     C1  1    2 ln r  1   2C1
r E r2 
1  C3  1    
ur     2C 2  1    r  C1  1    2r ln r  r   2C r
1 
E r 
Displacements

1  C3  1    
ur     2C 2  1    r  C1  1    2r ln r  r   2C1r  constant  
E r 
1  C3  1    
   2C 2  1    r  C1  1    2r ln r  r   2C r
1 
E r 
 C1  0 constant  0

1  C3  1    
ur     2C 2  1    r 
E r 
Quasi-Axisymmetric Problem

If we assume stresses are independent of θ but


displacements may depend on 
dur 1  C3  1    
rr     2C 2  1     C 1  1    2 ln r  1   2  C 1
dr E  r 2 
u r 1 u  1  C 3  1    
       2 C 2  1     C 1  1    2 ln r  1   2C1
r r  E  r2 
1  u  u  1 u r 
     
2  r r r  
Displacements

Integrate the first equation :


dur 1  C3  1    
   2C 2  1     C1  1    2 ln r  1   2  C1
dr E r2 
1  C3  1    
ur     2C 2  1    r  C1  1    2r ln r  r   2  C1r  f    
E r 
Substitute into second equation
1 u  1  C 3  1     ur
   2C 2  1     C1  1    2 ln r  1   2C1 
r  E r 2
 r
1 u  1  f   
 4C1  
r  E r 
Displacements
Integrate this equation :
u  1
  4C1r  f    
 E
1
u   4C1r   f    d  g  r  
E
Displacements
Substitute into shear strain expression :
g r  1 1
g r     f  θ  dθ  f  θ   0
r r r
 1 1 
rg r   g  r      f  θ  dθ  f  θ  
r r 
 rg r   g  r   C5
  f  θ  dθ  f  θ    C5
Displacements

rg r   g  r   C5
g  r    C 5  C 6r
g r   C6
Displacements

 f  θ  dθ  f  θ   C5
f  θ   C7 sin   C8 cos 
 f  θ  dθ  C5  C7 cos   C8 sin 
Displacements

 C3  1    
1   2C2  1    r  
ur   r 
E
C1  1     2r ln r  r   2C1r  C7 sin   C8 cos 
1
u    4 C1r   C7 cos   C8 sin   C6r
E
Thick-Walled Cylinder or Disk

• Plane Strain
– Cylinder constrained along the normal axis
• Plane Stress
– Thin disk with circular hole
Thick-Walled Cylinder or Disk
Lame’s Problem

Ro
po
Ri

pi
po pressure load on outer surface.
pi pressure load on inner surface.
Ro outer radius.
Ri inner radius.
Stresses

1
rr  C1  1  2 ln r   2C2  C3 2
r
1
   C1  3  2 ln r   2C2  C3 2
r
 r  0
Boundary Conditions

rr  R o    po
rr  R i    p i
Stresses

1
 po  C1  1  2 ln R o   2C2  C3 2
Ro
1
 p i  C1  1  2 ln R i   2C2  C3 2
Ri
Displacement Condition

1
u    4 C1r   C7 cos   C8 sin   C6r
E
u   0   u   2 
C1  0
Stresses

1
 po  2C2  C3 2
Ro
1
 p i  2C 2  C 3 2
Ri
Stresses

2 2
p i R i  po R o
C2 
 2
2 Ro  Ri 2

C3 
2 2
Ri Ro  po  p i 
2
Ro  2
Ri 
Stresses
p i R i2  po R o2 R i2R o2  po  p i 
rr   2 2
 2
Ro  Ri 2
 r Ro  Ri 
2

p i R i2  po R o2 R i2R o2  po  p i 
    2 2
 2
Ro  Ri 2
 r Ro  Ri  2

and for Plane Strain :

 zz   rr     
2  2 2
pi R i  poR o 
 
R o2  R i2
Displacements

1  C3  1    
ur     2C 2  1    r 
E r 
p i R i2  po R o2
C2 

2 R o2  R i2 
R i2R o2  po  p i 
C3 

R o2  R i2 
1  R i2R o2  po  p i  p i R i2  po R o2 
ur    1    1   r
E 2

Ro  Ri r 2
 
2
Ro  Ri 2
 
Pressure in a small hole in an
infinite plate

pi Ri
pi
Stresses
R i2
pi 2  po
Ro R i  po  pi 
2
rr  
 Ri  2
 Ri 
2
1  2  r 1  2 
2
 R   R 
 o  o

R i2
pi 2  po
Ro R i  po  p i 
2
   
 Ri  2
 Ri 
2
1  2  r 1  2 
2
 R   R 
 o  o
Stresses
po  0
let R o2  
2
Ri
0
R o2
2
 R i pi
rr  2
r
2
R i pi
   2
r
Plane Stress

rr 
2
piR i 2
 poR o

2 2

R i R o po  pi 
Ro2
 Ri2
 
2
r Ro  2
Ri2

  
2
piR i 2
 poR o

2 2

R i R o po  pi 
Ro2
 Ri2
 2

r Ro  2
Ri2

and for Plane Stress :
 2  p R 2 2
 pi R i 
 zz   rr    o o
E E R 2
o  Ri2

Thick-walled pipe with end caps

• Neither Plane Stress nor Plane Strain


• Superposition of 2D solution in cross
section and an axial stress.
• Axial stress is assumed to be uniformly
distributed and maintains overall
equilibrium.
F  pA  p i A i  po A o
Net Force in Axial Direction

Fz    2
p o R o  2
p i R i 
2 2
Fz p i R i  p o R o
 zz   2 2
Az R o  R i
2 2
pi R i  poR o
 zz  2 2
Ro  Ri
1
rr   rr  (     zz ) 
E
1
       ( rr   zz ) 
E
1
 zz    zz  ( rr    ) 
E
1
 r   r
2G
Shrink Fit
• Inner diameter of outer ring is slightly smaller
than the outer diameter of the inner ring.
• Expand outer ring by heating, slip it over the
inner ring and allow it to cool.
• Disks exert pressure on each other.
• Difference in diameter is called the
interference.
Shrink Fit

b
a c

a,b,c are radii after the


parts are fitted together
Definitions
• Let p be the pressure exerted between the two
parts
• Inner cylinder
pi = 0
po = -p
• Outer cylinder
pi=-p
p0=0
1  R i2R o2  p o  p i  p i R i2  p o R o2 
ur    1    1   r
E 2

Ro  Ri r 2
  2
Ro  Ri 2
 
pi  0
po   p
Ro  b
Ri  a
rb
1  a 2b 2p pb 2 
  2  1  1   2 2  1   1 
ur1

E b a b 2
 b a   b

ur1 

pb
E1 b 2  a 2
  1    a   1    b 
1
2
1
2
1  R i2R o2  po  p i  p i R i2  po R o2 
ur    1    1   r 
E 2

Ro  Ri r 2
 2
Ro  Ri 
2

pi  p
po  0
Ro  c
Ri  b
rb

ur 2 
pb

E2 c 2  b 2
  1   2  c 2
  1   2  b 2

  2( u1  u 2 )


pb

2 E1 b 2  a 2
  1    a
1
2
  1  1  b 2

2
pb

2
E2 c  b 2
  1   2  c 2
  1   2  b 2

Same material

3 2 2
4b ( c  a ) p
 2 2 2 2
( b  a )( c  b ) E
Solid Shaft

a0
2
4 b( c ) p
 2 2
(c  b ) E
Plate with a small circular hole.

Assume infinite plate under uniform


tension.
Tx

A 
y

x Tx
Without Hole

 xx  Tx
 yy  0
 xy  0
Distribution Varies Only
Near Hole

• St. Venant’s Principle


– stresses and strains reasonably distant from the
point of application of an external force are not
significantly altered if the external force is
replaced by a statically equivalent load.
– principle holds true for geometrical objects
(holes, notches, corners, etc.)
Distribution Varies Only
Near Hole

• Construct a hypothetical circle with a radius


large enough that the effects of the hole are
not felt. Call this radius B.
• B>>A
• Transform uniform stress distribution into
polar coordinates at r=B
Tx

A
y

x Tx
Stress Distribution in Polar Coordinates

Tx
rr  B,    Tx cos  
2
 1  cos 2
2
Tx
   B,    Tx sin  
2
 1  cos 2
2
Tx
rr  B,     Tx cos  sin     sin 2 
2
Alternative Approach
 xx  Tx
1
  Tx y 2
2
y  r sin 
1
  Tx  r sin  
2
2
1 1
  Tx r sin   Tx r 2  1  cos 2 
2 2
2 4
Airy’s Stress Function
1 1
rr  , r  2 , 
r r
   , rr
1 1
 r  ,   , r 
r r
Stresses
1
  Tx r  1  cos 2 
2
4
Tx
rr  B,     1  cos 2
2
Tx
   B,     1  cos 2
2
Tx
r  B,      sin 2 
2
Stress Components

Tx Tx Tx
rr  B,     1  cos 2   cos 2
2 2 2
Tx Tx
r  B,      sin 2   0   sin 2 
2 2
Stress Components
Axisymmetric :
 1 Tx
rr  B,   
2
 1
rr  B,    0

 dependent :
 1 Tx
rr  B,    cos 2
2
 1 Tx
rr  B,      sin 2 
2
Axisymmetric State of Stress

Tx
2

y
Non-axisymmetric State of Stress

Tx
cos 2
2

y
Tx
 sin 2
2

x
Stresses

rr 
2
pi R i 2
 poR o

2 2
R i R o po   pi 
 Ro2
 Ri2
 2
r Ro  2
 Ri2

  
2
pi R i 2
 poR o

2 2
R i R o po   pi 
Ro2
 Ri2
 2
r Ro  2
 Ri2

and for Plane Strain :

 zz    rr     
2  2 2
p i R i  po R o 
 2
Ro  Ri 2

Axisymmetric Stresses
Ri  A

Ro  B

pi  0

Tx
po  
2

 1 Tx  B 2 A 2B 2 
rr   2  2 2

2  B A 2
  
r B  A2 

 1 Tx  B 2 A 2B 2 
    2  2 2

2  B A 2
  
r B  A2 
Theta Dependent Stresses
4   2
1  1  2
   2
 1   1  2

  2   2 2  2   2 2
 r r r r    r r r r  
From the B.C.' s we can assume :
  F r  cos 2θ
This seperation of variables leads to :
2 9 9
F, rrrr  F, rrr  2 F, rr  3 F, r  0
r r r
1
F r   C1  C2r  C3r  C4 2
2 4
r
Theta Dependent Stresses

  F r  cos 2θ
1
F r   C1  C2r  C3r  C4 2
2 4
r
 2 4 1
   C1  C2r  C3r  C4 2  cos 2θ
 r 
Airy’s Stress Function
1 1
rr  , r  2 , 
r r
   , rr
1 1
 r  ,   , r 
r r
Stresses
 2 4 1
   C1  C2r  C3r  C4 2  cos 2θ
 r 
 2  1 1
rr    4C1 2  2C2  6C4 4  cos 2θ
 r r 
 2  2 1
    2C2  12C3r  6C4 4  cos 2θ
 r 
 2  1 2 1
 r    2C1 2  2C2  6C3r  6C4 4  cos 2θ
 r r 
Boundary Conditions
 2
rr  A ,    0
 2
 r  A ,    0
 2 Tx
rr  B,    cos 2
2
 2 Tx
r  B,     sin 2
2
 4 6 
 A 2 2 0  4   C1   0 
A    
 2 6    0 
 2 2 6A 2  4  C 2   
 A A  
   T 
 4 6    x 
  B2 2 0  4  C3
B    2 

 2 6      Tx 
2 6B 2  4 C4   2 
 B 2 B 
A  B

Look at fourth equation :

 A2  2  A2  2 A 
2
6  A2  Tx  A 2 
  2  2 C1  2 2 C2  6B  2 C3  4  2 C4    2 
B B B  B  B B  2 B 

 A2  2  A2  6  A2  Tx  A 2 
  2  2 C1  2 2 C2  6A C3  4  2 C4    2 
2

B B B  B B  2 B 

 A2 
 2   0  6 A 2C 3  0  C 3  0
B 
 
A  B

Solving the third equation :

24 2 6 2 Tx 2
 A 2 C1  2A C2  4 A C4  A
B B 2

 A2  Tx 2 Tx
 2   0  2A C 2 
2
A  C2  
B  2 4
 
Solving the first two equations :

4 Tx 6
 2 C1   4 C4  0
A 2 A

2 Tx 6
 2 C1   4 C4  0
A 2 A

A2
C1  Tx
2

A4
C4   Tx
4
Coefficients
2
A
C1  Tx
2

Tx
C2  
4

C3  0

4
A
C4   Tx
4
Stresses

 2  A 2 1 3 A4 
rr    2 2    T cos 2θ
4  x
 r 2 2r 

 2  1 3 A 4

       T cos 2θ
4  x
2 2 r 

 2  A 2 1 3 A4 
 r    2    T sin 2θ
4  x
 r 2 2r 
Axisymmetric Stresses
Ri  A

Ro  B

pi  0

Tx
po  
2

 1 Tx  B 2 A 2B 2 
rr   2  2 2

2  B A 2
  

r B  A2 

 1 Tx  B 2 A 2B 2 
rr   2  2 2

2  B A 2
 
r B A  
2 
Axisymmetric Stresses

A
0
B

 
 
 1 T  1 A 2
 Tx  A 2 
rr  x
   1  2 
2  A  2
2 A  2 
2
r 
1  2  r 1  2 
  B  
 B  

 
 
 1 T  1 A 2
 T  A 2

   x
   1  2 
x
2  A  2
2 A  2 
2
r 
1  2  r 1  2 
  B 


 B 


Total Stresses
 1  2  Tx  A2   A2 1 3 A4 
rr  rr  rr  1  2    2 2    T cos 2θ
4  x
2  r   r 2 2r 

 1  2  Tx  A 2   1 3 A4 
         1  2      T cos 2θ
4  x
2  r  2 2 r 

 1 
 2  A 2
1 3 A 4

 r   r   r    2    T sin 2θ
4  x
 r 2 2r 
Total Stresses
Tx  A 2  Tx  4A 2 3A 4 
rr  1  2    2  1  4  cos 2θ
2  r  2  r r 
Tx  A 2  Tx  3A 4 
   1  2    1  4  cos 2θ
2  r  2  r 
Tx  2A 2 3A 4 
r    2  1  4  sin 2θ
2  r r 
Maximum Stress

Maximum Values occur at r  A


rr  0
Tx Tx
   1  1   1  3  cos 2θ  Tx  2Tx cos 2θ
2 2
 r  0
Maximum Stress

Maximum Values occur at r  A


 3
Maximum Values occur at   2
or 2

 
   A ,    xx  0, A   Tx  2Tx cos 2 2   3Tx
 2
Stress concentrat ion factor K  3
Stress Distribution

Look at stresses along y axis, at   2

 A 2  Tx  3A 4 
   r , 2  
Tx
1  2    1  4    1

2  r  2  r 
 A 2  Tx  3A 4 
   r , 2  
Tx
1  2    1  4 

2  r  2  r 
 2 4
   r , 2  
 Tx A 3A
2  2  4 
2  r r 
3

2.5

K 1.5

0.5

0
0 1 2 3 4 5 6 7 8 9 10

r/A
r/A K
1 3.0000
1.5 1.5185
2 1.2188
2.5 1.1184
Note how quickly the effect
3 1.0741 of the hole decays. Stress is
3.5 1.0508 raised only by 2.24% at 5 hole
4 1.0371 radii and by0.52 % at 10 hole
4.5 1.0283
5 1.0224
radii.
5.5 1.0182
6 1.0150
6.5 1.0127
7 1.0108
7.5 1.0094
8 1.0082
8.5 1.0072
9 1.0064
9.5 1.0057
10 1.0052
Plate Under Shear
S

S S

S
S

S S

S
S  A 2  S  4A 2 3A 4 
rr  1  2    2  1  4  cos 2θ
2 r  2 r r 
S  A 2
S  3A 
4
   1  2    1  4  cos 2θ
2 r  2 r 
S  2A 2 3A 4 
r    2  1  4  Tx sin 2θ
2 r r 

Stresses due to tension.


S  A 2  S  4A 2 3A 4 
rr   1  2    2  1  4  cos 2 θ  2 
2 r  2 r r 
S  A2  S  3A 4 
    1  2    1  4  cos 2 θ  2 
2 r  2 r 
S  2A 2 3A 4 
 r   2  1  4  sin 2 θ  
2

2 r r 

Stresses due to compression.


 3A 4 4 A 2 
rr  S 1  4  2  cos 2 θ 
 r r 
 3A 4 
   S 1  4  cos 2 θ 
 r 
 3A 4 2A 2 
r  S 1  4  2  sin 2 θ 
 r r 

Superimposing
 3A 
4
   S 1  4  cos 2 0   4S
 A 
Next Examples
• Finite Width Plate with Center Hole
• Concentrated Force at a Point of a Straight
Boundary
• Wedge Under Uniform Side Load
• Forces Acting on the End (Tip) of a Wedge
• Stresses in a Circular Disk
• Curved Beam
• Rotating Cylinder
Finite Width Plate with Center Hole
 xx  


2b r

c 

a
Boundary Conditions
At the edge of the hole :
rr  c,    0
 r  c ,    0
At the outer boundary :
0
 xx  a, y   f ( y )  
 xy  a, y   0


2
 yy  x, b   0
 xy  x, b   0
Boundary Conditions

At the edge of the hole :


rr  c,    0
 r  c ,    0
In terms of the Stress Function :
 c,   0

 c,  0
r
Airy’s Stress Function
1 1
rr  , r  2 , 
r r
   , rr
1 1
 r  ,   , r 
r r
Airy’s Stress Function

2
r r
  a0  b0 ln   c 0   
b b
   r  n  r 
n 2
 r 
n
 r 
2 n
 
  an    b0    c n    d n    cos(n) 
n  2 , 4 , 6   b  b  b  b  

a0  b0  12  ln  
2
b0  r 
c0   2  
2  b 
n2
a n   c n  n  1   2n
 dnn   2( n  1)

b n   c n n   2 ( n  1 )  d n  n  1   2 n

c

b
Outer Boundaries

0
a
r
cos 


2
b
r
sin 
Procedure
• Use stress transformation to get stresses in
x-y system.
• Satisfy B.C. in least squares sense.
 2 2

  a    a 
      xx  cos  ,     xy  cos  ,   d 
0      

2 
2 2
  b    b 
   yy  sin  ,    xy  sin  ,   d  minimum
      

You might also like