02-1 Synchronous Machines
02-1 Synchronous Machines
02-1 Synchronous Machines
Copyright P. Kundur
This material should not be used without the author's consent
1539pk
Synchronous Machines
Outline
1. Physical Description
2. Mathematical Model
3. Park's "dqo" transportation
4. Steady-state Analysis
phasor representation in d-q coordinates
link with network equations
magnetic saturation
7. Simplified Models
8. Synchronous Machine Parameters
9. Reactive Capability Limits
SM - 1
1539pk
Physical Description of a
Synchronous Machine
SM - 2
1539pk
1539pk
SM - 4
1539pk
SM - 5
1539pk
MMFa Ki a cos
ia Im coss t
MMFb Ki b cos
ib Im cos s t
MMFc Ki c cos
ia lm cos s t
3
KI m cos s t
2
SM - 6
1539pk
SM - 7
1539pk
Transient Operation
SM - 8
1539pk
1539pk
Mathematical Descriptions of a
Synchronous Machine
SM - 10
1539pk
d
dt
e1
d
ri
dt
Li
N2P
i
where
P = permeance of magnetic path
> = flux = (mmf) P = NiP
1539pk
d1
r1i1
dt
e2
d2
r2i2
dt
1 L11i1 L 21i2
2 L 21i1 L 22i2
1539pk
SM - 13
1539pk
da
R aia pa R aia
dt
fd L ffdifd L fkdikd
2
2
3
3
kd L fkdifd Lkkdikd
2
2
3
3
kq Lkkdikq
2
2
3
3
SM - 14
1539pk
2
2
cos
cos
cos
3
3
id
i 2 sin sin 2 sin 2
q 3
3
3
i
1
0
1
1
2
2
2
ia
ib
i
c
1539pk
SM - 16
1539pk
SM - 17
1539pk
SM - 18
1539pk
Air-gap torque
T e diq qid
SM - 19
1539pk
eb Em cost 2 3
e c Em cost 2 3
with
= angular velocity = 2f
= phase angle of ea at t=0
Applying the d,q transformation,
ed Em cost
eq Em sint
1539pk
eq Et sin 0
1539pk
~
in the d-q coordinates
E t ed jeq
E R jEl
SM - 22
1539pk
Similarly
e q d iqR a
X did X adifd iqR a
~
E
and t e d je q jL adifd
1539pk
eL
solving
Lt
i Ke
di
iR
dt
Em
sint
Z
1539pk
1539pk
SM - 26
1539pk
Elimination of dc Component by
Neglecting Stator Transients
e d p d q idR a
e q p q d iqR a
transformer voltage terms: pd, pq
speed voltage terms: q , d
SM - 27
1539pk
SM - 28
1539pk
SM - 29
1539pk
The combined inertia of the generator and primemover is accelerated by the accelerating torque:
dm
Ta Tm Te
dt
where
Tm =
Te =
am =
time in seconds
SM - 30
1539pk
1 J20m
H
2 VAbase
where
a0m = rated angular velocity of the rotor in
mechanical radians per second
2H
d r
Tm Te
dt
where
m
0m
Tm
Tm0m
VAbase
Te
Te 0m
VAbase
1539pk
Magnetic Saturation
SM - 32
1539pk
SM - 33
1539pk
L ad K sdL adu
L aq K sqL aqu
(3.182)
(3.183)
I at0 at
(3.186)
at
at I
(3.187)
K sd
I AsateBsat at TI
SM - 34
(3.189)
1539pk
SM - 35
1539pk
1539pk
SM - 37
1539pk
Example 3.3
Pt
Qt
Ea (pu)
Ksd
i (deg)
ifd (pu)
1.0
0.889
0.678
0.4
0.2
1.033
0.868
25.3
1.016
0.9
0.436
1.076
0.835
39.1
1.565
0.9
1.012
0.882
54.6
1.206
0.9
-0.2
0.982
0.899
64.6
1.089
Qt
Ksq
Ksd
i (deg)
ifd (pu)
0.667
0.889
0.678
0.4
0.2
0.648
0.868
21.0
1.013
0.9
0.436
0.623
0.835
34.6
1.559
0.9
0.660
0.882
47.5
1.194
0.9
-0.2
0.676
0.899
55.9
1.074
SM - 38
1539pk
Neglect of Amortisseurs
first order of simplification
data often not readily available
Et
x d
Steady-state Model
constant field current
neglect saliency (xd = xq = xs)
Et
Eq
xs
Eq = Xadifd
SM - 39
1539pk
SM - 40
1539pk
SM - 41
1539pk
Therefore
X ad
E tifd sin i
Xs
X
E2
Q E tlt sin ad E tifd cos i t
Xs
Xs
P E tlt cos
SM - 42
1539pk
1539pk
SM - 44
1539pk
SM - 45
1539pk
1539pk
SM - 47
1539pk