Nothing Special   »   [go: up one dir, main page]

Aircraft Design Day5

Download as ppt, pdf, or txt
Download as ppt, pdf, or txt
You are on page 1of 35
At a glance
Powered by AI
The document discusses different types of stresses like tensile, compressive, shear and torsional stresses. It also discusses different strain types like normal strain, shear strain and volumetric strain and how they are related to stress. The three moment theorem is also derived which relates the bending moment, shear force and the rate of change of bending moment at a section of a beam.

The different types of stresses discussed are tensile, bending, compressive, shear and torsional stresses.

The different strain types discussed are normal strain, shear strain and volumetric strain. Normal strain is the change in length per unit length. Shear strain is the angular change between two lines crossing a point. Volumetric strain is the relative change in volume. Strain is the geometrical expression of deformation caused by stress.

DAY 5

STRESS
• Stress is a measure of force per unit area
within a body.
• It is a body's internal distribution of force per
area that reacts to external applied loads.

P
STRESS 
A
ONE DIMENSIONAL STRESS
• Engineering stress / Nominal stress
– The simplest definition of stress, σ = F/A,
where A is the initial cross-sectional area prior
to the application of the load
• True stress
– True stress is an alternative definition in which
the initial area is replaced by the current area

• Relation between Engineering & Nominal stress

 true  (1   e ) e
TYPES OF STRESSES

TENSILE COMPRESSIVE

BENDING SHEAR

TORSION
SHEAR STRESS
dx

2 1 xdxdy
B z z A

zdzdy
zdzdy
2 1
dz D
TORSION xdxdy
C

Taking moment about CD, We get

 z dzdy dx    x dxdy dz 
z  x
This implies that if there is a shear in one plane then there will be a shear in
the plane perpendicular to that
TWO DIMENSIONAL STRESS
• Plane stress y
 yx
 xy
x x
 xy
 yx
y
• Principal stress

x  y  x  y  2
 1, 2       xy
2  2 
THREE DIMENSIONAL STRESS
• Cauchy stress
– Force per unit area in the deformed geometry
 xx  xy  xz 
 
 ij   yx  yy  yz 
   
 zx zy zz 

• Second Piola Kirchoff stress


– Relates forces in the reference configuration to
area in the reference configuration

S  JX τ X X – Deformation gradient
IJ I, j ij J, i
3D PRINCIPAL STRESS
• Stress invariants of the Cauchy stress
I1   x   y   z
I 2   x y   y z   z x   xy   yz   zx
2 2 2

I 3   x y z  2 xy yz zx         
2
x yz
2
y zx
2
z xy

• Characteristic equation of 3D principal stress is


  I1  I 2  I 3  0
3 2

• Invariants in terms of principal stress


I1   1   2   3
I 2   1 2   2 3   3 1
I 3   1 2 3
VON-MISES STRESS
• Based on distortional energy

v 
 1   2  2
  2   3    3   1 
2 2

v 
1
 x   y    y   z    z   x   6 xy2   yz2   zx2 
2 2 2

2
STRAIN
• Strain is the geometrical expression of deformation
caused by the action of stress on a physical body.
L
Strain 
L
• Strain – displacement relations
Normal Strain
u v w
 x  y  z
x y z

Shear strain (The angular change at any point


between two lines crossing this point in a body can
be measured as a shear (or shape) strain)
u v v w w u
 xy   yz   zx 
y x z y x z
VOLUMETRIC STRAIN
• Volumetric strain
V  V0

V0

  x  y  z
TWO DIMENSIONAL STRAIN
• Plane strain y
 yx  xy
 xy
x x
 yx
y
• Principal strain

 x y   x y    xy 
 1, 2      
2  2   2 
3D STRAIN
Strain tensor   xy  xz 
 xx 2 2 

  yx  yz 
 ij   yy
2 2 
 
  zx  zy
 2
 zz 
2 
Green Lagrangian Strain tensor E  1  F F   
ij 2 ki kj ij

1  ui u j uk uk 


   
2  x j xi xi x j 

Almansi Strain tensor


1

E   ij  Fki Fkj
ij 2
-1 1

STRESS-STRAIN CURVE

Mild steel Copper

Thermoplastic
BEAM
• A STRUCTURAL MEMBER WHOSE THIRD DIMENSION
IS LARGE COMPARED TO THE OTHER TWO
DIMENSIONS AND SUBJECTED TO TRANSVERSE
LOAD

• A BEAM IS A STRUCTURAL MEMBER THAT CARRIES


LOAD PRIMARILY IN BENDING

• A BEAM IS A BAR CAPABLE OF CARRYING LOADS IN


BENDING. THE LOADS ARE APPLIED IN THE
TRANSVERSE DIRECTION TO ITS LONGEST
DIMENSION
TERMINOLOGY
• SHEAR FORCE
– A shear force in structural mechanics is an example
of an internal force that is induced in a restrained
structural element when external forces are applied

• BENDING MOMENT
– A bending moment in structural mechanics is an
example of an internal moment that is induced in a
restrained structural element when external forces
are applied

• CONTRAFLEXURE
– Location, where no bending takes place in a beam
TYPES OF BEAMS

• CANTILEVER BEAM
• SIMPLY SUPPORTED BEAM
• FIXED-FIXED BEAM
• OVER HANGING BEAM
• CONTINUOUS BEAM
BEAMS (Contd…)
• STATICALLY DETERMINATE
• STATICALLY INDETERMINATE

B
A

C D
BEAM

•TYPES OF BENDING
Hogging
Sagging
SHEAR FORCE & BENDING
MOMENT
BEAM P
P
PL/8 PL/8
L
P/2 P/2
SHEAR FORCE FREE BODY DIAGRAM
P/2
P/2

BENDING MOMENT

PL/8 PL/8
SHEAR FORCE & BENDING
MOMENT
BEAM P
P
3PL/8
L
11P/16 5P/16
SHEAR FORCE FREE BODY DIAGRAM
11P/16
5P/16

BENDING MOMENT

3PL/8
RELATION BETWEEN
BM, SHEAR & LOAD
w
V V+dV
M O M+dM
dx
Taking moments about O
M O 0
 dx 
M  ( M  dM )  Vdx  wdx   0
 2
dM
V
dx

Force equilibrium gives


V  V  dV   w * dx  0
dV
w
dx
BEAM THEORY
• ASSUMPTIONS
– MATERIAL IS HOMOGENOUS
– MATERIAL IS ISOTROPIC
– THE BEAM IS SYMMETRICAL
– THE TRANSVERSE PLANE SECTION
REMAIN PLANE AND NORMAL TO THE
LONGITUDIONAL FIBRES AFTER BENDING
(NEUTRAL PLANE REMAINS SAME AFTER
BENDING)
BENDING STRESS
o

M M
R
c d
ef
a b
Change in length ef Ey
strain ( )   ... (1) dF  stress * area  dA ... (6)
Original length cd R
From similar triangles edf & cod  Ey 
ef de dM  y * dF  y dA ... (7)
 ... (2)  R
cd co
ef y E  EI 
strain ( )   ...(3) M     y 2dA    ... (8)
cd R R  R
Hooks law M E
f (or )   ... (9)
strain ( )  ...(4) I R
E
From (3) & (4) From (5) & (9)
f E M E f
 ...(5)   ... (9)
y R I R y
FINITE ELEMENTS
• TRUSS / BAR / LINK ELEMENT
• BEAM ELEMENT
3D BEAM ELEMENT
3D BEAM ELEMENT
q
t q
s q
t
x(r , s, t )  hk l xk   ak hk lVtxk   bk hk lVsxk
k 1 2 qk 1 2 qk 1
q
t s
t
y (r , s, t )  hk yk   ak hk Vty   bk hk lVsyk ……… (1)
l l k

k 1 2 kq1 2 kq1
q
t s
t
z (r , s, t )  hk z k   ak hk Vtz   bk hk lVszk
l l k

k 1 2 k 1 2 k 1

l
x, y, z  Cartesian coordinate of any point in the element
l l

l
xk , y k , z k  Cartesian coordinate of any nodal point k
l l

a k , bk  Cross sectional dimensions of the beam at nodal point k


l
Vtxk , l Vtyk , l Vtzk  Components
l
V s
k l
t
k
of unit vector V in direction
V l k

t at nodal point k
s

l
Vsxk , l Vsyk , l Vszk  Components of unit vector V in direction s at nodal point k
l
s
k

l k
We call Vt and lVsk the normal vectors or director vectors at
nodal point k
3D BEAM ELEMENT
The displacement components are
x ( r , s , t ) 1 x  0 x
y ( r , s , t ) 1 y  0 y ……… (2)
z ( r , s , t ) 1 z  0 z
From (1) & (2) we get
q
t q s q
x(r , s, t )   hk xk   ak hkVtx   bk hkVsxk
k

k 1 2 qk 1 2 qk 1
q
t s
y (r , s, t )   hk yk   ak hkVty   bk hkVsyk
k
……… (3)
k 1 2 kq1 2 kq1
q
t s
z (r , s, t )   hk z k   ak hkVtzk   bk hkVszk
k 1 2 k 1 2 k 1
Vt  Vt  Vt
k 1 k 0 k

Vs  Vs  Vs
k 1 k 0 k
3D BEAM ELEMENT
Strain displacement relation
   q
     Bk uˆ k where uˆ k  u k vk wk  xk  yk  zk 
  k 1
  
and the matrices Bk,k=1,…..,q, together constitute the matrix B,

B   B1 . . . . Bq 
 hr k  

  u
 1 (g)1i (g)2i (g)3i   u 
k k

 r  r  
k

   
   k 
 u 
 
k  
q

   k   h 1 (gˆ ) k
(gˆ ) k
(gˆ )
x

 s k 1 
1i 2i 3i
  k 
   y
 
k  
 u  
h 1 (g ) k
( g ) k
( g ) 
3i   k 
 t   k 1i 2i
z
   
3D BEAM ELEMENT
 0 - 0 Vszk 0Vsyk 
 
bk  0 k
 gˆ  k
 Vsz 0 - 0Vsxk 
2 
- 0 V k 0V k 0 
 sy sx 
 0 - 0Vtzk 0Vtyk 
 
ak  0 k
g k
 Vtz 0 - 0 Vtxk 
2  
- 0V k 0V k 0 
 ty tx 

 g k
ij  s gˆ  ij  t  g  ij
k k

 1 
Jacobian Transformation J
x 
3D BEAM ELEMENT
Strain displacement relation
 u   1 hk 
 x   J 11 r (G1 )ik1 (G 2 )ik1 (G3 )ik1  u k 
 
    k 
 u  q  h   x 
     J 211 k (G1 )i 2 (G 2 )i 2 (G3 )i 2   
k k k

 y  k 1  r   yk 
    
 u   J 311 hk (G1 )ik3 (G 2 )ik3 (G3 )ik3   k 
 z   r   z 

Where  Gm  k   J 1  g k   hk   J 1  gˆ k   J 1  g k   h
r
in n1 mi n2 mi n3 mi k

1
l
Stiffness K   B T DB 2 d
1 2
1
l2
Load f   B N d  f KT
T

1 2
STIFFNESS MATRIX
 AE AE 
 L 0 0 0 0 0  0 0 0 0 0 
L
 12 EI 6 EI 12 EI 6 EI 
 0 0 0  0 0 0 
 L3 L2 L3 L2 
 0 12 EI 6 EI 12 EI 6 EI 
0 0 0 0  0 0
 L3 L2 L3 L2 
 GJ GJ 
 0 0 0 0 0 0 0 0  0 0 
 L L 
 0 6 EI 4 EI 6 EI 2 EI
0 0 0 0  0 0 0 
 L2 L L2 L 
 6 EI 4 EI 6 EI 2 EI 
 0 0
L2
0 0
L
0 0
L2
0 0
L 
Ke   
AE AE
 0 0 0 0 0 0 0 0 0 0 
 L L 
 0 12 EI 6 EI 12 EI 6 EI
- 0 0 - 0 0 0 0 - 0 
 L3 L2 L3 L2 
 12 EI 6 EI 12 EI 6 EI 
 0 0 - 0 0 - 0 0 0 0 
 L3 L2 L3 L2 
 0 GJ GJ
0 0 - 0 0 0 0 0 0 0 
 L L 
 6 EI 2 EI 6 EI 4 EI 
 0 0 0 0 0  0 0 0 
L2 L L2 L
 6 EI 2 EI 6 EI 4 EI 
 0 0 0 0 0 0 0 0 
 L2 L L2 L 
THREE MOMENT EQUATION
THREE MOMENT EQUATION
(Developed by clapeyron)
Continuity condition  L tan C  R tan C

LL LR

Using second moment-area theorem


1  2 1 1 1 
 L tan C   L L
x A  LL
M L
C L
 LL
M L L
L
ELL  3 2 3 2 

1  2 1 1 1 
 R tan C   xR AR  LR M C LR  LR M R LR 
ELR  3 2 3 2 

Equating the above equations


LL  L L  L 6x A 6x A
M L  2 L  R  M C  R M R   L L  R R
EI L  EI L EI R  EI R LL EI L LR EI R
THREE MOMENT THEOREM

 A1 x1 A2 x2 
M A L1  2M B ( L1  L2 )  M C L2  6  
 L1 L2 

 L1   L1 L2   L2   A1 x1 A2 x2 
M A    2 M B     M C    6  
 I1   I1 I 2   I2   L1 I1 L2 I 2 

You might also like