Nothing Special   »   [go: up one dir, main page]

Hart Chapter 8 Solutions

Download as pdf or txt
Download as pdf or txt
You are on page 1of 22
At a glance
Powered by AI
The chapter discusses solutions to various circuit analysis problems involving DC, AC, and transient responses. Fourier analysis is used to calculate harmonic components and total harmonic distortion.

Increasing the modulation frequency reduces the total harmonic distortion of the current, as seen when increasing the frequency from 25Hz to 100Hz, which reduced the THD of the current from 10% to 5.19%.

The expressions used are given in equation 8-42, which gives expressions for the line-to-neutral voltage and current harmonics VnL-N, Zn, and In in terms of the fundamental line-to-neutral voltage and current.

CHAPTER 8 SOLUTIONS

4/24/10
8-1)
Load: I avg  0, I rms  10 A.
Switches: I avg  5 A., I rms  I m D  10 0.5  7.07 A.
Source : I avg  I rms  10 A. (See Example 2-4)

8-2)
Vdc  1  e T /2  L 0.1 1 V 96
I max   T /2 
;    0.02s.; T  ; dc   19.2 A.
R  1 e  R 5 60 R 5
 0.341 
I max  19.2    3.94 A.
 1.66) 
Vdc
b) From Eq. 8  1: io (t )   Ae  t /
R
Vdc
io (0)  0  A  
R
io (t ) 
Vdc
R
1  e  t / 

i (T / 2)  19.2 1  e 1/2.4   6.54 A.


c) PSpice results are consistent with parts (a) and (b). The current waveform reaches
steady state after approximately 100 ms, corresponding to 5 time constants.
8.0A
(8.3333m,6.5486)

(158.333m,3.9485)

4.0A

0A

-4.0A
0s 40ms 80ms 120ms 160ms 200ms
I(L)
Time

8-3)

Vdc 150 L 40 mH T 1 / 60
a)   7.5 A.;     2 ms;   4.167
R 20 R 20  2 4 ms

Using Eq (8  8),

 1  e 4.167 
I max  7.5  4.167   7.271 A.
1 e 
I min   I max  7.271 A.

Using Eq. (8-5),

7.5  14.8e t /.002 for 0  t  8.33 ms



io  
7.5  14.8e  (t 1/120)/.002 for 8.33 ms  t  16.7 ms
b)

c) I peak  7.271 A.

d ) Vmax  Vdc  150 V .


8-4)
Vdc 125 L 25 mH T 1 / 60
a)   6.25 A.;     1.25 ms;   13.33
R 20 R 20  2 1.25 ms

Using Eq (8  8),

 1  e 13.33 
I max  6.25  13.33 
 6.25 A.
1 e 
I min   I max  6.25 A.

Using Eq. (8-5),

6.25  12.5e t /.00125 for 0  t  8.33 ms



io  
 6.25  12.5e  (t 1/120)/.00125 for 8.33 ms  t  16.7 ms

b) Using the first half-period,


1/120

  6.25  12.5e 
1  t /.00125
2
I rms  dt  5.45 A.
120 0

R   5.25  20  594 W .
2
c) P  I rms
2

P 594
Is    4.75 A.
Vdc 125

8-5)
Z1  152   2  400  0.01   29.3 
2
a)

 
V1  I1Z1  8 2  29.3  331 V .

4Vdc  V1
V1   Vdc   260 V .
 4
4Vdc Vn In
Z n  R 2   2 400 L  ;
2
b) Vn  ; In  ; I n ,rms 
n Zn 2
n Vn Zn In,rms
1 331 29.3 8.0
3 110 77 1.02
5 66 127 0.37

1.022  0.372
THDI   0.136  13.6%
8.0
8-6)
a) Z1  2.52   2 120  0.025    31.3 
2

 
V1  I1Z1  2 2  31.3  88.6 V .

4Vdc  V1
V1   Vdc   69.6 V .
 4
4Vdc Vn In
Z n  R 2   2 120 L  ;
2
b) Vn  ; In  ; I n ,rms 
n Zn 2

n Vn Zn In,rms
1 88.6 31.3 2.0
3 29.5 61.8 0.34
5 17.7 97.5 0.13

0.342  0.132
THDI   0.185  18.5%
2.0

Using PSpice,
FOURIER COMPONENTS OF TRANSIENT RESPONSE I(L_L)

DC COMPONENT = -3.668708E-06

HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED


NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)

1 1.200E+02 2.830E+00 1.000E+00 -3.716E+01 0.000E+00


2 2.400E+02 5.377E-06 1.900E-06 -1.203E+02 -4.594E+01
3 3.600E+02 4.778E-01 1.688E-01 -6.658E+01 4.490E+01
4 4.800E+02 3.589E-06 1.268E-06 -1.223E+02 2.629E+01
5 6.000E+02 1.818E-01 6.422E-02 -7.587E+01 1.099E+02
6 7.200E+02 2.858E-06 1.010E-06 -1.162E+02 1.068E+02
7 8.400E+02 9.427E-02 3.331E-02 -8.028E+01 1.798E+02
8 9.600E+02 2.523E-06 8.913E-07 -1.095E+02 1.878E+02
9 1.080E+03 5.743E-02 2.029E-02 -8.292E+01 2.515E+02

TOTAL HARMONIC DISTORTION = 1.847695E+01 PERCENT


8-7)
Using a restricted time interval of 33.33 ms to 50 ms to analyze steady-state current, the peak
value is 8.26 A and the rms value is 4.77 A. The THD from the output file is 32%.
20A

Peak
10A
(35.134m,8.2603) rms

(50.000m,4.7738)

i(t)
0A

-10A
30ms 35ms 40ms 45ms 50ms
I(R) RMS(I(R))
Time

voltage (100 V)
10

current

S1, S2 D3, D4
0
D1, D2

S3, S4

-10

30ms 35ms 40ms 45ms 50ms


I(R) V(A)/10 0
Time
8-8)
 4V 
a) V1   dc  cos  
  

 V1   90 
  cos 1  1
  cos    55.6
 4Vdc   4 125  

 4V  V In
Vn   dc  cos  n  ; Z n  R  jn0 L ; I n  n ; I n ,rms 
 n  Zn 2
n |Vn| Zn In,rms
1 90 12.5 5.08
3 51.6 24.7 1.5
5 4.43 39 0.08

1.52  0.082
THDI   0.29  29%
5.08

8-9)
4Vdc 4  200 
a) V1    255 V .
 
Z1  R  j0 L  10  j 2 60  0.035   16.6 

V1 255
I1    15.3 A.
Z1 16.6

15.3
I1,rms   10.9 A.
2
b) At 30 Hz ,

Z1  10  j 2 30  0.035   12.0 

V1  I1Z1  15.312.0   184 V .

 4V   V   184 
 cos      cos 1  1 1
V1   dc   cos    43.7
    4Vdc   4  200  
8-10)

α = 30°

Using the FFT function in Probe shows that voltages at frequencies at multiples of n = 3 are
absent.

b) α = 15°

Using the FFT function in Probe shows that voltages at frequencies at multiples of n = 5 are
absent.
8-11)

From Eq. (8-22),

90 90
   12.86
n 7

Using the FFT function in Probe, the n = 7 harmonic is absent.

8-12)
Letting T = 360 seconds and taking advantage of half-wave symmetry,
2  
54 114 150
Vrms  
 Vm2 dt 
360  30 
66
Vm2 dt  
126
Vm2 dt 

1
Vrms  Vm  54  30   114  66   150  126    0.730Vm
180 
8-13)
The VPWL_FILE source is convenient for this simulation. A period of 360 seconds is used,
making each second equal to one degree. A transient simulation with a run time of 360 second
and a maximum step size of 1m gives good results. The FFT of the Probe output confirms that the
3rd and 5th harmonics and their multiples are eliminated.

0 0
30 0
30.01 1
54 1
54.01 0
66 0
66.01 1
114 1
114.01 0
126 0
126.01 1
150 1
150.01 0
210 0
210.01 -1
234 -1
234.01 0
246 0
246.01 -1
294 -1
294.01 0
306 0
306.01 -1
330 -1
330 0
360 0
8-14)
a)

4Vdc
b) Vm  cos  n1   cos  n 2   cos  n 3  
n 
Vdc  48 V ; 1  15 ;  2  25 ;  3  55
n 1 3 5 7 9
Vn 149.5 0 -2.79 -3.04 -14.4

cos 1   cos  2   cos 3 


c) M i   0.815
3

8-15)
To eliminate the third harmonic,

cos(31 )  cos(3 2 )  cos(3 3 )  0

Select two of the angles and solve for the third.


Examples:
α1 α2 α3 Mi
15 25 55 0.815
20 30 40 0.857
10 30 50 0.831
10 30 70 0.731

8-16)
This inverter is designed to eliminate harmonics n = 5, 7, 11, and 13. The normalized coefficients
through n = 17 are

n Vn/Vdc
1 4.4593
3 -0.8137
5 0.0057 ≈ 0
7 -0.0077 ≈ 0
9 -0.3810
11 0.0043 ≈ 0
13 -0.0078 ≈ 0
15 -0.0370
17 0.1725
The coefficients are not exactly zero for those harmonics because of rounding of the angle values.
8-17)

8-18)
V1  V1,rms 2  54 2  76.8 V .

V1 76.8
ma    0.8
Vdc 96

Z n  R  jn0 L  32  jn 2 60 .024   32  jn9.05

From Table 8-3,


n Vn/Vdc Vn Zn In=Vn/Zn
1 0.8 76.8 33.3 2.30
mf 17 0.82 78.7 157 0.50
mf - 2 15 0.22 21.1 139 0.151
mf + 2 19 0.22 21.1 175 0.121
2 2 2
 0.50   0.151   0.121 
     
 2   2   2 
THD   0.23  23%
2.30
2

8-19)
V1  V1,rms 2  160 2  226.3 V .

V1 226.3
ma    0.9
Vdc 250

Z n  R  jn0 L  20  jn 2 60 .050   20  jn18.85

From Table 8-3,


n Vn/Vdc Vn Zn In=Vn/Zn
1 0.9 225 27.5 8.18
mf 31 0.71 178 585 0.305
mf - 2 29 0.27 67 547 0.122
mf + 2 33 0.27 67 622 0.108

2 2 2
 0.305   0.122   0.108 
     
 2   2   2 
THD   0.044  4.4%
8.18
2
8-20)
The circuit “Inverter Bipolar PWM Function” is suitable to verify the design results. The
parameters are modified to match the problem values.

Transient Analysis and Fourier Analysis are establish in the Simulation Setup menu:

The output file contains the THD of the load current, verifying that the THD is less than 10%.

TOTAL HARMONIC DISTORTION = 9.387011E+00 PERCENT


8-21)
Example solution:
Let ma  0.9,

Vm 120 2
Vdc    189 V .
ma 0.9

Using Table 8-3, at n  m f , Vmf  0.71189   134 V .

for THD  8%, I mf  0.08I1

V1 120 2 120 2
I1     13.6 A.
Z1 10  j 2 60  0.020  12.5

I mf  0.08 13.6   1.09 A.

Vmf 134
Z mf    123   m f 0 L
I mf 1.09

123 123
mf    16.4
0 L 377  0.020 

Choose odd integer 19 or greater for m f .

8-22)
Example solution:
V1  V1,rms 2  100 2  141 V .

V1 141
Let ma  0.9  Vdc    157 V .
ma 0.9

V1 V1 141
I1     4.48 A.
Z1 R  j0 L 30  j 377  0.025 

I mf
THDI   0.10  I mf  0.1 4.48   0.448 A.
I1

Vmf 0.71157 
Z mf    249   m f 0 L
I mf 0.448

249
mf   26.4
377  0.025 

Choose odd integer 29 or greater for m f .


8-23)
Use the bipolar PWM function circuit of Fig. 8-23a, and use the unipolar PWM function circuit of
Fig.8-26 with mf = 10. Use ma = 0.8 for V1 = 120 V from the 150-V dc source.

The THD for bipolar, mf = 21, is 10.2 %, for bipolar mf = 41 is 5.2%, and for unipolar mf = 10 is
5.9%.
Bipolar mf = 21:

Bipolar mf = 41:
Unipolar, mf = 10:

8-24)
2Vdc     2    500 
a) V1, L  N   2  cos    cos      3  159 V .
3  3  3    3 

V1 159 159
I1     6.09 A.
Z1 25  j 377  0.020  26.1

I1
I1,rms   4.31 A.
2
8-25)

Use Eq. (8-42) for Vn,L-N , Zn  R  jn2 fL , I n  Vn, L- N / Z n , and I n,rms  I n / 2.

For f = 25 Hz:
n VnL-N Zn In In,rms
1 255 11.1 23.0 16.3
5 50.9 25.6 2.0 1.41
7 36.4 34.5 1.06 0.75
11 23.1 52.8 0.44 0.31
13 19.6 62.0 0.32 0.22

1.412  0.752  0.312  0.222


THDI   0.10  10%
16.3
50.92  36.42  0.222  19.62
THDV   0.273  27.3%
255

For f = 100 Hz,


n VnL-N Zn In In,rms
1 255 21.3 11.9 8.43
5 50.9 94.8 0.54 0.38
7 36.4 132 0.27 0.19
11 23.1 208 0.12 0.08
13 19.6 245 0.08 0.06

0.382  0.192  0.082  0.062


THDI   0.0519  5.19%
8.43

The THD for current is reduced from 10% to 5.19% as f is increased from 25 Hz to 100 Hz. The
THD of the line-to-neutral voltage remains at 27.3%.

These results can also be determined from a PSpice simulation for the six-step inverter.
8-26)
 
At f  30 Hz , Z1  10.7 , V1  I1Z1  10 2 10.7   151 V .

2Vdc     2 
V1, L  N   2  cos    cos     Vdc  0.637 
3  3  3 

V1, L  N 151
Vdc    237 V .
0.637 0.637

 
At f  60 Hz , Z1  19.5 , V1  I1Z1  10 2 19.5   276 V

276
Vdc   433 V .
0.637

You might also like