Hart Chapter 8 Solutions
Hart Chapter 8 Solutions
Hart Chapter 8 Solutions
4/24/10
8-1)
Load: I avg 0, I rms 10 A.
Switches: I avg 5 A., I rms I m D 10 0.5 7.07 A.
Source : I avg I rms 10 A. (See Example 2-4)
8-2)
Vdc 1 e T /2 L 0.1 1 V 96
I max T /2
; 0.02s.; T ; dc 19.2 A.
R 1 e R 5 60 R 5
0.341
I max 19.2 3.94 A.
1.66)
Vdc
b) From Eq. 8 1: io (t ) Ae t /
R
Vdc
io (0) 0 A
R
io (t )
Vdc
R
1 e t /
(158.333m,3.9485)
4.0A
0A
-4.0A
0s 40ms 80ms 120ms 160ms 200ms
I(L)
Time
8-3)
Vdc 150 L 40 mH T 1 / 60
a) 7.5 A.; 2 ms; 4.167
R 20 R 20 2 4 ms
Using Eq (8 8),
1 e 4.167
I max 7.5 4.167 7.271 A.
1 e
I min I max 7.271 A.
c) I peak 7.271 A.
Using Eq (8 8),
1 e 13.33
I max 6.25 13.33
6.25 A.
1 e
I min I max 6.25 A.
6.25 12.5e
1 t /.00125
2
I rms dt 5.45 A.
120 0
R 5.25 20 594 W .
2
c) P I rms
2
P 594
Is 4.75 A.
Vdc 125
8-5)
Z1 152 2 400 0.01 29.3
2
a)
V1 I1Z1 8 2 29.3 331 V .
4Vdc V1
V1 Vdc 260 V .
4
4Vdc Vn In
Z n R 2 2 400 L ;
2
b) Vn ; In ; I n ,rms
n Zn 2
n Vn Zn In,rms
1 331 29.3 8.0
3 110 77 1.02
5 66 127 0.37
1.022 0.372
THDI 0.136 13.6%
8.0
8-6)
a) Z1 2.52 2 120 0.025 31.3
2
V1 I1Z1 2 2 31.3 88.6 V .
4Vdc V1
V1 Vdc 69.6 V .
4
4Vdc Vn In
Z n R 2 2 120 L ;
2
b) Vn ; In ; I n ,rms
n Zn 2
n Vn Zn In,rms
1 88.6 31.3 2.0
3 29.5 61.8 0.34
5 17.7 97.5 0.13
0.342 0.132
THDI 0.185 18.5%
2.0
Using PSpice,
FOURIER COMPONENTS OF TRANSIENT RESPONSE I(L_L)
DC COMPONENT = -3.668708E-06
Peak
10A
(35.134m,8.2603) rms
(50.000m,4.7738)
i(t)
0A
-10A
30ms 35ms 40ms 45ms 50ms
I(R) RMS(I(R))
Time
voltage (100 V)
10
current
S1, S2 D3, D4
0
D1, D2
S3, S4
-10
V1 90
cos 1 1
cos 55.6
4Vdc 4 125
4V V In
Vn dc cos n ; Z n R jn0 L ; I n n ; I n ,rms
n Zn 2
n |Vn| Zn In,rms
1 90 12.5 5.08
3 51.6 24.7 1.5
5 4.43 39 0.08
1.52 0.082
THDI 0.29 29%
5.08
8-9)
4Vdc 4 200
a) V1 255 V .
Z1 R j0 L 10 j 2 60 0.035 16.6
V1 255
I1 15.3 A.
Z1 16.6
15.3
I1,rms 10.9 A.
2
b) At 30 Hz ,
Z1 10 j 2 30 0.035 12.0
4V V 184
cos cos 1 1 1
V1 dc cos 43.7
4Vdc 4 200
8-10)
α = 30°
Using the FFT function in Probe shows that voltages at frequencies at multiples of n = 3 are
absent.
b) α = 15°
Using the FFT function in Probe shows that voltages at frequencies at multiples of n = 5 are
absent.
8-11)
90 90
12.86
n 7
8-12)
Letting T = 360 seconds and taking advantage of half-wave symmetry,
2
54 114 150
Vrms
Vm2 dt
360 30
66
Vm2 dt
126
Vm2 dt
1
Vrms Vm 54 30 114 66 150 126 0.730Vm
180
8-13)
The VPWL_FILE source is convenient for this simulation. A period of 360 seconds is used,
making each second equal to one degree. A transient simulation with a run time of 360 second
and a maximum step size of 1m gives good results. The FFT of the Probe output confirms that the
3rd and 5th harmonics and their multiples are eliminated.
0 0
30 0
30.01 1
54 1
54.01 0
66 0
66.01 1
114 1
114.01 0
126 0
126.01 1
150 1
150.01 0
210 0
210.01 -1
234 -1
234.01 0
246 0
246.01 -1
294 -1
294.01 0
306 0
306.01 -1
330 -1
330 0
360 0
8-14)
a)
4Vdc
b) Vm cos n1 cos n 2 cos n 3
n
Vdc 48 V ; 1 15 ; 2 25 ; 3 55
n 1 3 5 7 9
Vn 149.5 0 -2.79 -3.04 -14.4
8-15)
To eliminate the third harmonic,
8-16)
This inverter is designed to eliminate harmonics n = 5, 7, 11, and 13. The normalized coefficients
through n = 17 are
n Vn/Vdc
1 4.4593
3 -0.8137
5 0.0057 ≈ 0
7 -0.0077 ≈ 0
9 -0.3810
11 0.0043 ≈ 0
13 -0.0078 ≈ 0
15 -0.0370
17 0.1725
The coefficients are not exactly zero for those harmonics because of rounding of the angle values.
8-17)
8-18)
V1 V1,rms 2 54 2 76.8 V .
V1 76.8
ma 0.8
Vdc 96
8-19)
V1 V1,rms 2 160 2 226.3 V .
V1 226.3
ma 0.9
Vdc 250
2 2 2
0.305 0.122 0.108
2 2 2
THD 0.044 4.4%
8.18
2
8-20)
The circuit “Inverter Bipolar PWM Function” is suitable to verify the design results. The
parameters are modified to match the problem values.
Transient Analysis and Fourier Analysis are establish in the Simulation Setup menu:
The output file contains the THD of the load current, verifying that the THD is less than 10%.
Vm 120 2
Vdc 189 V .
ma 0.9
V1 120 2 120 2
I1 13.6 A.
Z1 10 j 2 60 0.020 12.5
Vmf 134
Z mf 123 m f 0 L
I mf 1.09
123 123
mf 16.4
0 L 377 0.020
8-22)
Example solution:
V1 V1,rms 2 100 2 141 V .
V1 141
Let ma 0.9 Vdc 157 V .
ma 0.9
V1 V1 141
I1 4.48 A.
Z1 R j0 L 30 j 377 0.025
I mf
THDI 0.10 I mf 0.1 4.48 0.448 A.
I1
Vmf 0.71157
Z mf 249 m f 0 L
I mf 0.448
249
mf 26.4
377 0.025
The THD for bipolar, mf = 21, is 10.2 %, for bipolar mf = 41 is 5.2%, and for unipolar mf = 10 is
5.9%.
Bipolar mf = 21:
Bipolar mf = 41:
Unipolar, mf = 10:
8-24)
2Vdc 2 500
a) V1, L N 2 cos cos 3 159 V .
3 3 3 3
V1 159 159
I1 6.09 A.
Z1 25 j 377 0.020 26.1
I1
I1,rms 4.31 A.
2
8-25)
For f = 25 Hz:
n VnL-N Zn In In,rms
1 255 11.1 23.0 16.3
5 50.9 25.6 2.0 1.41
7 36.4 34.5 1.06 0.75
11 23.1 52.8 0.44 0.31
13 19.6 62.0 0.32 0.22
The THD for current is reduced from 10% to 5.19% as f is increased from 25 Hz to 100 Hz. The
THD of the line-to-neutral voltage remains at 27.3%.
These results can also be determined from a PSpice simulation for the six-step inverter.
8-26)
At f 30 Hz , Z1 10.7 , V1 I1Z1 10 2 10.7 151 V .
2Vdc 2
V1, L N 2 cos cos Vdc 0.637
3 3 3
V1, L N 151
Vdc 237 V .
0.637 0.637
At f 60 Hz , Z1 19.5 , V1 I1Z1 10 2 19.5 276 V
276
Vdc 433 V .
0.637