Control Valve PDF
Control Valve PDF
Control Valve PDF
2. Fixed spring orientation. Plug and seat ring positions are reversed relative to each other. In
the Fail Open design, plug travel is above the valve seat. In the Fail Closed design, plug travel is
below the seat.
• SEPARABLE BONNET
• HIGH RANGEABILITY
In addition to linear and rotary, control valves are also classified according to their guiding
systems and the types of services they are used in.
Control Valve Classification
Face to Face Dimensions
External Live-Loading
Spring-Loaded Packing
Jammed Packing
The live-loading packing spring is replaced by a fixed spacer of the same
material as the trim material.
Dual Packing
Pressure inside the valve is alternately greater than or less than (i.e.
vacuum) ambient pressure.
Dual Packing With Leak-Off Connection
Valve has a 1/4" (6mm) NPT tapped opening on its bonnet. Complete
with removable steel plug for all body materials. The opening is located
between primary and secondary packing sets when the valve is equipped
with dual packing.
Equals Equals
Increasing Signal Increasing Output Decreasing
Decreasing
from Controller from Positioner Signal
Output From
From
Positioner
Controller
Another reason the direct-acting pneumatic positioner is so popular is
that it can be by-passed and the control valve will respond to the input signal
from the controller as though the positioner were in the control loop. If a
positioner malfunction occurs or if the positioner causes the control valve to
become unstable, it can be easily by-passed. Many control valves in the field
are operating with a by-passed positioner.
Reverse-acting positioners are sometimes used on control valves, but
their appearance is rare. Occasionally one will be found in a split-ranging
sequence.
Reverse-Acting Positioner
Input Increases Input Decreases
Output Decreases Output Increases
Equals Equals
Equals Equals
Equals Equals
Two of the more common control valve uses are for pressure control. In
both instances, the controllers are reverse acting. Most pressure-reducing
valves will be fail-closed and most back-pressure control valves will be fail-
open. If the pressure-reducing valve were fail-open or the back-pressure
valve fail-closed, then the controllers would have been direct acting.
Valve Positioners
A valve Positioner is a device used to increase or decrease the air
pressure operating the actuator until the valve stem reaches the position
called for by the instrument controller.
Positioners are generally mounted on the side or top of the actuator.
They are connected mechanically to the valve stem so that stem position
can be compared with the position dictated by the controller.
A positioner is a type of air relay which is used between the controller
output and the valve diaphragm. The positioner acts to overcome hysteresis,
packing box friction, and valve plug unbalance due to pressure drop. It
assures exact positioning of the valve stem in accordance with the controller
output.
Reasons To Use Positioners
Increase control system resolution: i.e. fine control.
Allow use of characteristic cams.
Minimize packing friction effects: i.e. high-temperature packing.
Negate flow-induced reactions to higher pressure drops.
Increase speed of response to a change in process.
Allow split ranging.
Overcome seating friction in rotary valves.
Allow distances between controller and control valve.
Allow wide range of flow variation: i.e. operate at less than 10% travel under
normal conditions.
Allow increased usage of 4-20 mA electronic signal.
Increase fast venting (unloading) capability.
Permit use of piston actuators.
Facilitate operation when the higher number in the bench-set range is
greater than 15 psig: i.e. 10-30 psig, 6-30 psig, etc.
How Positioners Work
Although there are many different types of positioners, the basic
principles of operation are similar for all of them.
Principle of Operation:
The positioner is mechanically connected to the stem of the valve. This
stem position is compared with the position called for by the instrument
controller, i.e. by the instrument output air signal. A separate air supply is
brought into the positioner for positioning the valve at exactly the point called
for by the controller.
HARDNESS COMPARISON
ROCKWELL BRINELL
316 SST 76B 137
17-4 PH 34-38C 352
Hardened Inconel X-750
38-42C 401
#6 Stellite (Alloy 6) 40-44C 415
Chrome Plating 59-67C 725
Note that 316 SST is on the Rockwell B scale which means it is a much
softer material than the others shown.
HIGH RECOVERY VALVE: A valve design that dissipates relatively little flow
stream energy due to streamlined internal contours and minimal flow
turbulence. Therefore, pressure down stream of the valve VENA
CONTRACTA recovers to a high percentage of its inlet value. These types
of valves are identifiable by their straight-th rough flow paths. Examples are
most rotary control valves, such as the eccentric plug, butterfly, and ball
valve.
HYSTERESIS: The difference between up-scale and down-scale results in
instrument response when subjected to the same input approached from the
opposite direction. Example: A control valve has a stroke of 1.0 inch and we
give the valve a 9 psig signal. The valve travels 0.500 of an inch. We then
give the valve a 12 psig signal, and the valve travels to 0.750 of an inch.
When the valve is then given a 9 psig signal, the stroke is measured at
0.501. That represents hysteresis. Hysteresis can be caused by a multitude
of variables, packing friction, loose linkage, pressure drop, etc. If someone
asks you what the hysteresis of your control valve is, it is a bum question
because hysteresis is more aptly applied to an instrument than to a control
valve. There are simply too many variables in the valve and the system to
answer the question properly. The control valve only responds to the
controller signal and will move to a position to satisfy the controller - thus
negating the effects of hysteresis.
INCIPIENT CAVITATION: Is a term used to describe the early stages of
CAVITATION. At this point the bubbles are small, and the noise is more of a
hiss, like the sound of frying bacon. There is normally no mechanical
damage associated with incipient cavitation although it could have an effect
on the corrosive properties of some fluids.
INHERENT DIAPHRAGM PRESSURE: The high and low values of pressure
applied to the diaphragm to produce rated valve plug travel with atmospheric
pressure in the valve body. This is more commonly referred to as BENCH
SET.
INHERENT FLOW CHARACTERISTIC: It is the relationship between valve
capacity and valve travel and is usually expressed graphically. It is derived
from testing a valve with water as the fluid and with a constant pressure drop
across the valve. The most common types of inherent flow characteristics
are LINEAR, EQUAL PERCENTAGE, MODIFIED PARABOLIC, and QUICK
OPENING.
INSTALLED DIAPHRAGM PRESSURE: The high and low values of
pressure applied to the diaphragm to produce rated travel with stated
conditions in the valve body. The "stated conditions" referred to here mean
the actual pressure drops at operating conditions. Example: A control valve
may have an INHERENT DIAPHRAGM PRESSURE or BENCH SET of 8 to
15 psig. But when subjected to a 600 psig. inlet pressure, it may start to
open at 3 psig. and be full open at 15 psig. It is because of the forces acting
on the valve plug and the direction of flow through the valve (FLOW-TO-
OPEN or FLOW-TO-CLOSE) that the installed diaphragm pressure will differ
from the inherent diaphragm pressure.
INSTALLED FLOW CHARACTERISTIC: The flow characteristic when the
pressure drop across the valve varies with flow and related conditions in the
system in which the valve is installed. The purpose of characterizing a
control valve is to help compensate for nonlinearities in the control loop.
INSTRUMENT PRESSURE: The output pressure from an automatic
controller that is used to operate a control valve. It is the input signal to the
valve.
INTEGRAL SEAT: The flow control orifice and seat that is an integral part of
the valve body or cage. The seat is machined directly out of the valve body
and is normally not replaceable without replacing the body itself - although
some can be repaired by welding and remachining.
INTEGRAL FLANGE: A valve body whose flange connection is an integral or
cast part of the body. Valves with integral flanges were traditionally known to
have the ANSI short FACE-TO-FACE dimension ANSI/ISA S75.03. However
many manufacturers now produce valve bodies with both integral and
SEPARABLE FLANGES that will meet both the ANSI short and long face-to-
face dimensions.
I/P: An abbreviation for current-to-pneumatic signal conversion. This term is
commonly used to describe a type of transducer that converts an electric (4-
20 m.a) input signal to a pneumatic (3-15 psig.) output signal.
LANTERN RING: A rigid spacer used in the packing with packing above and
below it. The lantern ring is used to allow lubrication to the packing or allow
access to a leak off connection. On some of the new fugitive emission
packing systems, it also acts as a stem guide.
LAPPED-IN: A term that describes a procedure for reducing the leakage rate
on metal-to-metal seated valves and regulators. The plug and seat are
lapped together with the aid of an abrasive compound in an effort to
establish a better seating surface than would normally be achieved by
means of machining.
LEAKAGE CLASSIFICATION: A term used to describe certain standardized
testing procedures for CONTROL VALVES with a FLOW COEFFICIENT
greater then 0. 1 (Cv). These procedures are outlined in ANSI Standard d
B16.104-1976, which gives specific tests and tolerances for six seat leakage
classifications. It should be remembered that these tests are used to
establish uniform acceptance standards for manufacturing quality and are
not meant to be used to estimate leakage under actual working conditions.
Nor should anyone expect these leakage rates to be maintained after a
valve is placed in service. There is no standard test for SELF-CONTAINED
REGULATORS at this time. Note! You will see many instances where
regulators are specified using the above criteria.
LEAK-OFF: A term used to describe a threaded connection located on the
BONNET of a valve that allows for the detection of leakage of the process
fluid past the packing area.
LINEAR FLOW CHARACTERISTIC: A characteristic where flow capacity or
(Cv) increases linearly with valve travel. Flow is directly proportional to valve
travel. This is the preferred valve characteristic for a control valve that is
being used with a distributive control system (DCS) or programmable logic
controller (PLC).
LINEAR VALVE: Another name for a GLOBE VALVE. It refers to the linear
or straight-line movement of the plug and stem.
LIQUID PRESSURE RECOVERY: See (F1).
LOADING PRESSURE: The pressure used to position a pneumatic actuator.
It is the pressure that is actually applied to the actuator diaphragm or piston.
It can be the INSTRUMENT PRESSURE if a valve positioner is not used or
is bypassed.
LOCK-UP VALVE: A special type of regulator that is installed between the
valve POSITIONER and the valve ACTUATOR, where it senses the supply
air pressure. If that pressure falls below a certain level, it locks or traps the
air loaded into the actuator causing the valve to FAIL-IN-PLACE.
LOW RECOVERY VALVE: A valve design that dissipates a considerable
amount of flow stream energy due to turbulence created by the contours of
the flow path. Consequently, pressure downstream of the valve VENA
CONTRACTA recovers to a lesser percentage of its inlet value than a valve
with a more streamlined flow path. The conventional GLOBE STYLE control
valve is in this category.
MODIFIED PARABOLIC: A FLOW CHARACTERISTIC that lies somewhere
between LINEAR and EQUAL PERCENTAGE. It provides fine throttling at
low flow capacity and an approximately linear characteristic at higher flow
capacities.
NORMALLY CLOSED: See AIR-TO-OPEN.
NORMALLY OPEN: See AIR-TO-CLOSE.
P1: Is used to designate Inlet Pressure.
P2: Is used to designate Outlet Pressure.
PACKING: A sealing system that normally consists of a deformable material
such as TFE, graphite, asbestos, etc. It is usually in the form of solid or split
rings contained in a PACKING BOX that are compressed so as to provide an
effective pressure seal.
PACKING BOX: The chamber located in the BONNET which surrounds the
stem and contains the PACKING and other stem-sealing components.
PACKING FOLLOWER: A part that transfers a mechanical load to the
PACKING from the packing flange or nut.
PISTON ACTUATOR: A fluid-powered, normally pneumatic device in which
the fluid acts upon a movable cylindrical member, the piston, to provide
linear motion to the actuator stem. These units are spring or air opposed and
operate at higher supply pressures than a SPRING RETURN ACTUATOR.
PLUG: See CLOSURE MEMBER.
PORT-GUIDED: A valve plug that fits inside the seat ring, which acts as a
guide bushing. Examples: Splined Plug, Hollow Skirt, and the Feather-Guide
Plug.
POSITION SWITCH: A switch that is linked to the valve stem to detect a
single, preset valve stem position. Example: Full open or full closed. The
switch may be pneumatic, hydraulic, or electric.
POSITION TRANSMITTER: A device that is mechanically connected to the
valve stem and will generate and transmit either a pneumatic or electric
signal that represents the valve stem position.
POSITIONER: A device used to position a valve with regard to a signal. The
positioner compares the input signal with a mechanical feed back link from
the actuator. It then produces the force necessary to move the actuator
output until the mechanical output position feedback corresponds with the
pneumatic signal value. Positioners can also be used to modify the action of
the valve (reverse acting positioner), alter the stroke or controller input signal
(split range positioner), increase the pressure to the valve actuator
(amplifying positioner), or alter the control valve FLOW CHARACTERISTIC
(characterized positioner).
POST GUIDE: A guiding system where the valve stem is larger in the area
that comes into contact with the guide busings than in the adjacent stem
area.
PUSH-DOWN-TO-C LOSE: A term used to describe a LINEAR or GLOBE
STYLE valve that uses a DIRECT ACTING plug and stem arrangement. The
plug is located above the seat ring. When the plug is pushed down, the plug
contacts the seat, and the valve closes. Note! Most control valves are of this
type.
PUSH-DOWN-TO-OPEN: A term used to describe a LINEAR or GLOBE
STYLE valve that uses a REVERSE ACTION plug and stem arrangement.
The plug is located below the seat ring. When the plug is pushed down, the
plug moves away from the seat, and the valve opens.
PRESSURE RECOVERY FACTOR: See (F1).
QUICK OPENING: A FLOW CHARACTERISTIC that provides maximum
change in flow rate at low travels. The curve is basically linear through the
first 40% of travel. It then flattens out indicating little increase in flow rate as
travel approaches the wide open position. This decrease occurs when the
valve plug travel equals the flow area of the port. This normally happens
when the valve characteristics is used for on/off control.
RANGEABILITY: The range over which a control valve can control. It is the
ratio of the maximum to minimum controllable FLOW COEFFICIENTS. This
is also called TURNDOWN although technically it is not the same thing.
There are two types of rangeability - inherent and installed. Inherent
rangeability is a property of the valve alone and may be defined as the range
of flow coefficients between which the gain of the valve does not deviate
from a specified gain by some stated tolerance limit. Installed rangeability is
the range within which the deviation from a desired INSTALLED FLOW
CHARACTERISTIC does not exceed some stated tolerance limit.
REDUCED TRIM: Is an undersized orifice. Reduced or restricted capacity
trim is used for several reasons. (1) It adapts a valve large enough to handle
increased future flow requirement with trim capacity properly sized for
present needs. (2) A valve with adequate structural strength can be selected
and still retain reasonable travel vs. capacity relationships. (3) A valve with a
large body using restricted trim can be used to reduce inlet and outlet fluid
velocities. (4) It can eliminate the need for pipe reducers. (5) Errors in over
sizing can be corrected by use of restricted capacity trim.
REVERSE ACTING: This term has several deferent meanings depending
upon the device it is describing. A REVERSE-ACTING ACTUATOR is one in
which the actuator stem retracts with an increase in diaphragm pressure. A
REVERSE-ACTING VALVE is one with a PUSH-DOWN-TO-OPEN plug and
seat orientation. A REVERSE-ACTING POSITIONER or a REVERSE-
ACTING CONTROLLER outputs a decrease in signal in response to an
increase in set point.
REVERSE FLOW: Flow of fluid in the opposite direction from that normally
considered the standard direction. Some ROTARY VALVES are considered
to be bi-directional although working pressure drop capabilities may be lower
and leakage rates may be higher in reverse flow.
ROTARY VALVE: A valve style in which the FLOW CLOSURE MEMBER is
rotated in the flow stream to modify the amount of fluid passing through the
valve.
SEAT LOAD: The contact force between the seat and the valve plug. When
an actuator is selected for a given control valve, it must be able to generate
enough force to overcome static, stem, and dynamic unbalance with an
allowance made for seat load.
SEAT RING: A part of the flow passageway that is used in conjuction with
the CLOSURE MEMBER to modify the rate of flow through the valve.
SELF-CONTAINED REGULATOR: A valve with a positioning actuator using
a self-generated power signal for moving the closure member relative to the
valve port or ports in response and in proportion to the changes in energy of
the controlled variable. The force necessary to position the CLOSURE
MEMBER is derived from the fluid flowing through the valve.
SEPARABLE FLANGE: Also known as a SLIP-ON FLANGE. A flange that
fits over a valve body flow connection. It is generally held in place by means
of a retaining ring. This style of flange connection conforms to ANSI/ISA
275.20 and allows for the use of different body and flange materials.
Example: A valve with a stainless steel construction could use carbon steel
flanges. This type of valve is very popular in the chemical and petro-
chemical plants because it allows the use of exotic body materials and low
cost flanges.
SOFT SEATED: A term used to describe valve trim with an elastomeric or
plastic material used either in the VALVE PLUG or SEAT RING to provide
tight shutoff with a minimal amount of actuator force. A soft seated valve will
usually provide CLASS VI seat leakage capability.
SPLIT BODY: A valve whose body is split. This design allows for easy plug
and seat removal. Split-bodied valves are made in both the straight-through
and angle versions. The Masoneilan 2600 or ANNIN is an example of a split
body valve.
SPRING RATE: A term usually applied to SELF-CONTAINED
REGULATORS describing the range of set point adjustment available for a
particular range spring.
STATIC UNBALANCE: The net force produced on the valve stem by the
fluid pressure acting on the CLOSURE MEMBER and STEM within the
pressure retaining boundary. The closure member is at a stated opening
with a stated flow condition. This is one of the forces an actuator must
overcome.
STELLITE: Also called #6 Stellite or Alloy 6. A material used in valve trim
known for its hardness, wear and corrosion resistance. Stellite is available
as a casting, barstock material and may be applied to a softer material such
as 316 stainless steel by means of spray coating or welding.
STEM: The VALVE PLUG STEM is a rod extending through the bonnet
assembly to permit positioning of the plug or CLOSURE MEMBER. The
ACTUATOR STEM is a rod or shaft which connects to the valve stem and
transmits motion or force from the actuator to the valve.
STEM GUIDE: A guide bushing closely fitted to the valve stem and aligned
with the seat. Good stem guiding is essential to minimizing packing leakage.
SUPPLY PRESSURE: The pressure at the supply port of a device such as a
controller, positioner, or transducer. Common values of control valve supply
pressures are 20 psig. for a 3-15 psig. output and 35 psig. for a 6-30 psig.
output.
STROKE: See TRAVEL.
THROTTLING: Modulating control as opposed to ON/OFF control.
TRANSDUCER: An element or device which receives information in the form
of one quantity and coverts it to information in the form of the same or
another quantity. (See I/P)
TRAVEL: The distance the plug or stem moves in order to go from a full-
closed to a full-open position. Also called STROKE.
TRIM: Includes all the parts that are in flowing contact with the process fluid
except the body, BONNET, and body flanges and gaskets. The plug, seats,
stem, guides, bushings, and cage are some of the parts included in the term
trim.
TRUNNION MOUNTING: A style of mounting the disc or ball on the valve
shaft or stub shaft with two bushings diametrically opposed.
TURNDOWN: A term used to describe the ratio between the minimum and
maximum flow conditions seen in a particular system. Example: If the
minimum flow were 10 G.P.M. and the maximum flow were 100 G.P.M. the
turndown would be 10:1. This term is sometimes incorrectly applied to
valves. See RANGEABILITY.
VALVE: A device which dispenses, dissipates, or distributes energy in a
system.
VALVE BODY: See BODY.
VALVE FLOW COEFFICIENT: See Cv.
VALVE PLUG: See CLOSURE MEMBER.
VENA CONTRACTA: The location where cross-sectional area of the flow
stream is at its minimum size, where fluid velocity is at its highest level, and
where fluid pressure is at its lowest level. The vena contracta normally
occurs just downstream of the actual physical restriction in a control valve.
Instrumentasi dan Kontrol pada dasarnya adalah ’sekedar’ alat pelengkap untuk menunjang
ketepatan pengukuran dan otomasi sistem dari alat-alat listrik, mesin, ataupun juga alat-
alat proses pengolahan atau produksi. Jika anda membayangkan contoh berikut misalnya, sebuah
oil refinery atau pengolahan minyak maka komponen utama yang akan terlihat di sana adalah
kolom-kolom destilasi, pipa-pipa, dan vesel-vesel untuk separasi. Mana instrument and
kontrolnya?. Instrumentasi hanyalah tempelan devices kecil-kecil di sekujur kolom destilasi,
perpipaan, vessel, dapat juga tank. Kontrol adalah seperangkat alat yang menerima informasi dan
memberikan perintah kepada instrument. Fungsinya adalah untuk melakukan otomasi atau
kontrol terhadap proses yang sedang berlangsung. Keberadaannya menjadi vital ketika akurasi
hasil, continuity proses, juga safety process menjadi pertimbangan utama dalam industri proses.
Dapat dikatakan bahwa instrumentasi dan kontrol berkembang sebagai cabang ilmu tersendiri
adalah baru saja pertengahan abad 20 setelah usai Perang Dunia ke-2. Sedangkan industri-
industri sudah berkembang satu abad sebelumnya.
Secara teori dalam kondisi equilibrium semua proses equipment, electric equipment, atau
mechanical equipment dapat dijalankan dengan baik. Kondisi equilibrium yang saya maksudkan
adalah suatu kondisi ideal atau kondisi set-point yang diperlukan agar suatu sistem dapat
berjalan dengan seimbang. Masalahnya adalah tidak selamanya kondisi yang diperlukan untuk
menjalankan suatu sistem itu ideal. Sehingga peran instrumentasi dan kontrol menjadi signifikan
dalam tahap ini untuk memenuhi semua kebutuhan kondisi set point tersebut.
Untu menjalankan turbin generator secara teori tidak ada sangkut pautnya dengan disiplin ilmu
Instrumentasi dan Kontrol. Dengan adanya bahan bakar yang akan memutar rotating equipment
(ilmu-nya mesin) maka engine dapat running. Ketika engine running maka ilmu elektrikal yang
menjelaskan bagaimana mengubah gerakan yang berpotongan dengan medan magnet menjadi
listrik. Ketika kita berhenti di sini maka sama sekali tidak terlihat instrumentasi dan kontrol
diperlukan di sana. Tetapi ternyata secara detail banyak sekali kebutuhan yang diperlukan oleh
turbine generator untuk running secara kontinu dan safe. Karena turbine generator memerlukan
kondisi ideal. Dia memerlukan supply bahan bakar yang stabil, memerlukan pressure lube oil
tertentu, memerlukan kepastian tidak ada flammable gas di enclosure-nya, memerlukan untuk
memindahkah kalor untuk menjaga suhunya, memastikan voltage dan current yang dihasilkan
tepat sesuai desain, dll. Semua kepastian tersebut hanya dapat dijamin dengan melakukan
pengukuran atau sensing variable dengan instrument. Dan jika kondisi ternyata tidak ideal maka
dapat dilakukan adjustment pada final element yang dapat di adjust dengan sistem kontrol untuk
mengubah sensing variabel. Nah, di situlah perlunya bidang ilmu yang satu ini.
Di dalam kegiatan commissioning peran dan fungsi dari sistem instrument dan kontrol adalah
sebagai penunjang continuity dan safety dari sistem yang sedang running. Oleh karena itu
monitoring, regular control agar tercapai continuity process, dan safety control untuk
keselamatan proses, sangat mutlak diperlukan.
Operator Station bertugas untuk memonitor semua proses yang sedang berjalan.
DCS/PLC specialis bertugas untuk melakukan adjustment jika ditemukan abnormality pada
software atau logic.
Field Technician bertugas untuk stand by ready on job jika ditemukan abnormality pada field
devices.
Tugas seorang Instrument & Control Commissioning Engineer adalah ibarat “Kapten” (kalo suka
nonton aksi Kapten pada film-film tentang Kapal Selam, sang kapten berdiri dibelakang operator
yang sedang memantau monitor dan memberikan perintah-perintah). Sang Kapten memberikan
command-command kepada oparator, masukan untuk DCS specialist, dan command untuk field
technician serta menjaga komunikasi dengan engineer disiplin lain yang bertanggung jawab
terhadap sistem tersebut, bisa mekanikal, proses, piping, atau elektrik.
Jadi instrument dan kontrol pada dasarnya adalah melayani disiplin lain, namun sangat vital
diperlukan untuk menjamin proses berjalan secara continue dan safe.
Nova Kurniawan
•
o
Control Valve adalah terminologi yang digunakan untuk suatu valve yang mempunyai
kemampuan throatling atau juga gradual changing. Apakah on-off valve termasuk controlled
valve? Iya, tetapi jarang sekali disebut sebagai control valve. Control valve terkhusus untuk
valve yang bisa menerima perintah analog baik dengan sinyal analogue maupun kumpulan sinyal
digital.
Kalibrasi control valve diperlukan untuk memastikan bahwa control valve dapat menghasilkan
respon aktuasi sebagaimana dikehendaki oleh sistem kontrol pada suatu proses. Respon aktuasi
yang dimaksud meliputi ketepatan pada value, linearity, dan juga respon time tentunya. Control
valve sebagai aktuator dalam suatu loop kontrol mempunyai peranan penting dalam
meregulating suatu proses. Kegagalannya dalam meregulating suatu proses adalah merupakan
indikasi abnormality suatu proses yang apabila berkelanjutan berefek kepada shutdown.
Ada 2 macam kalibrasi yang umum dikenal pada control valve yaitu Manual Calibration dan
Auto Calibration.
Manual calibration adalah kalibrasi dengan menggunakan input manual untuk control valve dan
sebagai pembanding adalah si pengkalibrasi. Inti dari pada kalibrasi adalah untuk membawa
value kepada nilai sebenarnya. Value dari suatu control valva adalah bukaan / opening. Bukaan
di value kan berupa percentage. Common sense mengatakan bahwa lima titik standar yang
dijadikan patokan sebagai opening control valve. 0%, 25%, 50%, 75%, 100%. Aktivitas kalibrasi
adalah untuk mengsinkronkan input kontrol valve yang berupa analogue signal (assumed HART)
dengan opening control valve. Nilai 4-20 mA sebagai standar instrumentasi direntangkan untuk
mewakili opening menjadi 4mA, 8mA, 12mA, 16mA, 20mA.
Dalam control valve dikenal terminologi Quick Opening, Linear, Equal Percentage. Istilah ini
untuk menunjukkan hubungan antara opening dan flow rate. Pertanyaan yang timbul adalah
apakah ketika Valve Quick Opening atau Equal Percentage maka opening travelnya tidak linear
dengan input signal? Menurut pendapat orang fisher bahwa Quick Opening, Linear, dan Equal
Percentage adalah trim characteristik yang sudah di set secara mechanical. Sehingga input signal
terhadap opening harus selalu linear. Pendapat tersebut menunjukkan term QO, Linear, dan
Equal% pada trim karakteristik.
Namun ada pertanyaan kembali kenapa dimungkinkan untuk mengganti input characteristik
menjadi Quick Opening, Linear, dan Equal Percentage dengan setting dari Handheld HART
Communicator 375?. Sehingga dihasilkan respon signal yang melengkung atau parabolik. Saya
belum menemukan jawaban yang spesifik tentang hal itu. Tapi requirement dari proses
memungkinkan untuk memberikan respon yang bersifat parabolik dari suatu control valve ketika
proses yang hendak dikontrol memang tidak linear. Sehingga dapat disimpulkan bahwa respon
kontrol dapat juga menjadi quick opening, linear, atau equal percentage.
Jarak travel juga menjadi hal penting yang perlu diperhatikan dalam kalibrasi. Jarak travel adalah
absolutely mechanical adjust pada stem control valve. Jarak travel adalah jarak dari fully open
sampai fully closed. Fully closed artinya sudah tidak dapat diadjust tapi untuk fully open
beberapa valve memberikan keleluasaan kepada user untuk memendekkan atau memanjangkan
travel. Reference utama dalam tahap konstruksi adalah bahwa jarak travel harus sesuai dengan
data sheet. Jika jarak travel salah maka control valve akan mendeteksi maksimum open sebagai
100%. Misalkan control valve anda jarak travelnya 3″, namun dalam kenyataannya secara
mekanikal berjarak 4″ maka dalam tahap kalibrasi nilai travel 4″ dianggap sebagai 100%,
padahal seharusnya kalau merefer kepada datasheet dengan travel 3″ maka nilai opening 4″
adalah sekitar 133%. Oleh karena itu harus benar-benar dipastikan bahwa jarak travel sudah
sesuai requirement pada datasheet dengan melakukan adjustment pada stem.
Autocalibration dapat dilakukan dengan menggunakan Handheld Fisher 375. Pilih menu
calibration and auto. Valve secara otomatik mencari highest postition dengan menstroke secara
penuh control valve, nilai itu akan secara otomatik dianggap sebagai nilai 100%. Kemudian
valve akan mencari nilai fully closed, dan nilai itu adalah 0%. And valve calibrated already.
Initial opening menjadi penting ketika tight shut off menjadi hal utama. Artinya ketika fully
closed 0% control valve harus benar-benar tight. Bagaimana memastikannya? Case untuk FC,
langkah pertama pastikan ketika feedback menunjukan 0%, kemudian release pressure-nya maka
control valve tidak ada gerakan turun lagi. Atau dengan mengirim signal dibawah nilai minimum
4 mA, misalnya 3.8 mA maka control valve juga sudah tidak dapat turun lagi. Kalo control
valve sudah terkalibrasi tetapi ketika dikirim signal 3.8 mA control valve masih turun lagi maka
nilai 0% belum sepenuhnya tight.
Hal yang perlu diperhatikan ketika melakukan kalibrasi adalah control valve dalam kondisi out
of service. Serta proteksi kalibrasi harus dihilangkan. Pastikan input karakteristik dan send ke
control valve. Setelah kalibrasi selesai control valve dikembalikan pada kondisi in-service.
•
o
Oil and Gas Offshore industry lebih dari setengah abad telah menjadi penopang kebutuhan
energi dunia setelah puluhan tahun sebelumnya onshore industri lebih mendominasi industri ini.
Salah satu bidang disiplin ilmu yang tidak dapat terlepas keberadaannya dalam menunjang
kebutuhan energi dunia ini untuk offshore industri adalah instrumentasi dan kontrol
(automation). Disiplin ilmu ini berperan dalam memberikan monitoring dan otomatisasi atau
kontrol pada proses secara normal kontinyu dan dan juga berperan menjamin safety pada kondisi
hazard atau bahaya dari dalam proses itu sendiri juga kebakaran. Sebagaimana harus dipahami
bahwa pengolahan oil and gas pada dasarnya adalah industri proses yang artinya adalah kegiatan
hilir. Kegiatan hulu explorasi dan exploitasi ataupun pengeboran dari titik 0 sampai negatif
kebawah permukaan tanah atau air laut diluar dari pembahasan website ini.
Sampai sejauh mana scope disiplin ilmu ini digunakan dalam dunia Oil & Gas Offshore, berikut
ini adalah sebuah cerita pendek tentangnya.
Instrumentasi dan Otomasi secara hierarki dibagi menjadi dua system besar yaitu Process
Control System dan Safety Instrumented System. Process Control System (PCS) merupakan
sistem penunjang proses monitoring, regulatory control, atau pun juga advance regulatory
control. Safety Instrumented System (SIS) merupakan sistem yang diaplikasikan untuk menjamin
safety yang meliputi Emergency Shutdown System (ESD) dan Fire & Gas System (F&G).Ketika
normal operasi maka fungsi kontrol reguler akan dijalankan oleh PCS secara kontinyu.
Monitoring open loop, running simple closed loop antara tranmitter dan control valve yang
bekerja mencari kestabilan performance kontrolnya adalah fungsi-fungsi sederhana dari PCS.
Demikian juga halnya dengan cascade loop, ratio, split range, yang semuanya beroperasi untuk
mencari kestabilan sepenuhnya juga ditangani oleh PCS. Numerik control calculation untuk
simple closed loop, cascade, ratio, split range masih dipercayakan kepada iterasi jitu PID.
Safety system yang lebih dikenal dengan Safety Instrumented System (detail definisi dapat dbaca
artikel lain di page ini -pen), terdiri atas ESD system dan F&G system. Keduanya saling
berhubungan dan berinteraksi. ESD system menjalankan fungsi process safety hazard. Dalam
P&ID dengan mudah SIS dapat diidentifikasi sebagai sebuah kondisi proses yang Hi-Hi atau Lo-
Lo. Demikian halnya F&G system akan menjalankan fungsi ketika adanya gas atau fire yang
timbul di area platform. Kritikal process menghasilkan effect shutdown demikian juga halnya
kehadiran api atau gas berbahaya akan menghasilkan inisiasi shutdown sesuai dengan levelnya
menurut cause and effect matrix. Untuk safety process, transmitter yang digunakan masih dari
produk Yokogawa EJA dengan HART protocol, control system menggunakan Yokogawa Prosafe,
sedangkan final element adalah simple digital output untuk solenoid dan atau relay. F&G system
masih mengandalkan produk dari Detronic untuk gas dan flame detector, VESDA untuk High
Sensitivity Smoke Detector, Manual Alarm Call Point dan ESD button menggunakan produk
MEDC.
Demikian sekilas gambaran scope instrumentasi dan kontrol untuk offshore platform oil & gas
facility.
Nova Kurniawan
•
o
Definisi:
Loop adalah sistem yang terintegrasi untuk menggabungkan instrument field device dari dan ke lapangan
dengan sistem control yang jejaringnya dihubungkan dengan wiring. Open Loop adalah hubungan signal
satu arah dari lapangan (field devices) ke sistem kontrol atau sebaliknya dari sistem kontrol ke lapangan.
Closed Loop adalah siklus signal dari lapangan (field devices) ke sistem kontrol kemudian diolah dan
menghasilkan signal output yang akan dikirimkan kembali ke lapangan (final element). Single Loop
adalah loop sederhana dapat berupa open loop atau closed loop sederhana. Pre-Commissioning adalah
aktivitas untuk memastikan bahwa setiap instrument input devices, sistem control, dan instrument final
element dapat beroperasi sebagaimana control design untuk menunjang proses. Pre-commissioning
dapat juga disebut function test untuk setiap loop. Commissioning adalah aktivitas untuk membuat suatu
sistem ‘LIVE’ dan beroperasi secara normal. Commissioning melibatkan multidisiplin dan multi loop.
Instrument dan control sistem harus dapat berfungsi normal untuk mengontrol sistem multidisiplin
(proses, electrical, mechanical) yang sedang berjalan dan juga menjaga safety protection systemnya
dalam kondisi kritikal. Contoh: Instrument Air System, Separation System, Power Generation System,
Heating Medium System, dll. Start-Up adalah aktivitas untuk menghidupkan semua sistem yang
menunjang beroperasinya plant secara keseluruhan. Seluruh field device input, logic control, final
element untuk berbagai sistem pada seluruh plant harus beroperasi dan terkontrol sempurna
sebagaimana desain proses.Contoh: Start-Up semua system yang sudah pernah dicommissioning
dengan sequence sesuai dengan requirement process or utility. Jadi pada dasarnya Pre-Commissioning
untuk Instrument adalah Loop Check dan langkah-langkahnya adalah sebagai berikut:
Nova Kurniawan
•
o
Temperature Instrument
Posted on January 5, 2008 by novakurniawan
Thermocouple adalah dua logam yang didekatkan yang apabila terpapar oleh kalor dengan suhu
tertentu akan menghasilkan beda potensial or mV yang sebanding dengan perubahan temperature
(Seebeck Effect). RTD adalah resistance temperature detector, sensor ini akan menghasilkan
perubahan resistance seiring dengan perubahan temperature. Kedua hal di atas adalah sensor-
sensor yang umum digunakan di industri oil and gas untuk mengukur temperature. Kedua
besaran di atas yaitu mV dan Ohm akan dilinierisasi dan diconvert menjadi 4-20 mA oleh
transmitter. Bagaimana menkonvert perubahan mV menjadi 4-20 mA? dan bagaimana
mengkonvert perubahan besaran Ohm menjadi 4-20 mA? Silahkan anda membuat rangkain
untuk itu dengan sumber tegangan tetap sebesar 24 VDC.
Ada banyak type sensor RTD dan TC namun yang biasa saya temukan dalam pekerjaan saya
adalah Pt-100 (RTD) dan Type-K (TC). Hitungan matematika yang biasa digunakan untuk
menghubungkan temperature dengan mV dan Ohm biasanya hanya tertinggal di meja teori.
Praktisnya anda harus memiliki Tabel Standar yang menunjukkan hubungan mV dan Ohm
dengan temperature. Umumnya teknisi bekerja berdasarkan tabel itu.
Ambient temperature adalah juga tolok ukur yang penting untuk mengecek apakah sebuah
temperature instrument bekerja atau tidak. Ketika temperature instrument dalam kondisi non
operasi tidak menunjukkan ambient maka tanda-tanda bahwa ada masalah dengan instrument
tersebut.
Function test dilakukan On-site setelah temperature instrument hooked up. Langkah awal dari
loop test tentu saja adalah wiring test or continuity and polarity test. Kemudian plug-in knife
switch, temperature instrument harus menunjukkan nilai ambient temperature pada display.
Namun jika display tidak menyala hendaknya dire-check wiring, polarity dan power supply ke
instrument. Demikian halnya di operating station harus menunjukkan kalau temperature
instrument healthy. Jika masih terdapat status IOP maka abnormality harus segera direpair.
Troubleshooting adalah kegiatan yang harus dilakukan per tahap. Sampai cara paling akhir
adalah dengan komparasi interchange modul, hanya untuk membuktikan bahwa modul
transmitter masih baik atau sudah rusak. Ketika ditemukan modul transmitter rusak, tahap
commissioning hanya bisa report & klaim. Repair untuk modul transmitter diperlukan expertize
khusus. Bahkan mungkin seorang maintenance engineer lebih mengerti bagaimana untuk
melakukan repair.
Tahap simulasi on site pada tahap pre-commissioning ditujukan kepada check transmitter.
Karena injeksi signal dilakukan dari input transmitter. Dalam hal ini signal injector berfiungsi
untuk menggantikan elemen sensor. RTD type sensor dapat disimulasikan dengan decade
resistance box dan Thermocouple type sensor dapat disimulasikan dengan mV injector. Kenaikan
temperatur yang linear tidak akan menghasilkan sensor signal yang linear tapi cenderung
logaritmik. Oleh karena itu fungsi transmitter untuk kembali melakukan linearisasi dengan
membalik fungsi logaritmik tersebut.
Masih banyak aspek yang bisa dipelajari tentang temperature instrument. Tapi keterbatasan
pengetahuan murni penulis, artinya tidak copy paste atau mencomot dari tulisan lain, membuat
tulisan ini menjadi pendek. Seiring berjalannya waktu dan bertambahnya pengalaman semoga
tulisan ini makin lengkap.
Nova Kurniawan