Nothing Special   »   [go: up one dir, main page]

Dislocations Mechanical Properties: Prof. Wendy Liu

Download as pdf or txt
Download as pdf or txt
You are on page 1of 18

Dislocations

Mechanical properties

Prof. Wendy Liu

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  1    
Imperfections in the Crystal Lattice
•  Vacancy
•  Intersitital atoms
Point defects 10-10m
•  Substitutional atoms

•  Dislocations Line defects


–  Edges, Screws, Mixed

•  Grain boundaries
•  Stacking Faults Planar defects
•  Twin Boundaries

•  Void, Inclusions Volume defects 10-2m

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  2    
Line defects

•  One dimensional defects around which atoms are


misaligned

•  Slip or movement between crystal planes

•  Can form during crystal growth or induced by mechanical


strain

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  3    
Edge dislocation
•  a linear defect caused by an extra half-plane of atoms
•  the defect is defined along the end of the extra half-plane
of atoms

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  4    
Burger’s Vector, b

•  Used to define the direction and magnitude of a


dislocation

•  For an edge dislocation, the Burger’s vector is perpendicular


to the dislocation line

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  5    
Screw vs. Edge Dislocations

Edge

Screw

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  6    
Screw dislocation
•  a linear defect caused by rotation of crystals resulting
from shear forces
Screw Dislocation

b  
Dislocation
line
Burgers vector b (b)
(a)
Adapted  from  Fig.  4.4,  Callister  &  Rethwisch  8e.  

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  7    
Edge, Screw, and Mixed Dislocation
Mixed

Edge

Screw
•  For a mixed dislocation, the dislocation line is neither perpendicular
(as for edge) or parallel (as for screw) to the Burger’s vector
Adapted  from  Fig.  4.5,  Callister  &  Rethwisch  8e.  

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  8    
Plasticity results from moving dislocations

•  Plasticity is permanent deformations in the material– mechanical


energy supplies energy to break bonds required for dislocations to
move
•  For crystalline materials, plastic deformation is referred to as slip
•  Factors affecting plasticity (ductile vs brittle)
–  Number of possible slip systems – the more possibilities, the
more ductile – and distance between nearest neighbors (FCC
>BCC > HCP)
–  Metals vs. ceramics

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  9    
Movement of atoms usually occurs along the
most close-packed direction

(100)   (101)  (101)    


(010)   (011)  (011)  
(001)   (110)  (110)  
   
{100}  family   {110}  family  
   
3  planes  x  2  direcMons  =  6  systems   (6  planes  x2  direcMons  =12  slip  systems)  
 
(111)  
(111)  
(111)  
(111)  
 
{111}  family  
 
4  planes  x  3  direcMons  

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  10    
Planar Defects
•  Defects along planes or 2D
surfaces in a material
•  Atoms on this plane are not
bonded to the maximum
number of nearest neighbors –
possess surface or interfacial
energy (energy/area)
•  Surface of material – highest
amount of surface energy
(more in the latter part of the
course)
•  Planar defects along the
Adapted  from  Fig.  4.7,  Callister  &  Rethwisch  8e.  
interior of the material also
•  Grain boundary separates two small have higher energy –
grains, or crystals having different interfacial energy, called a
crystallographic orientations grain boundary

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  11    
Grain boundaries
•  Grain boundaries result from solidification of materials
Solidification- result of casting of molten material
–  2 steps
•  Nuclei form in liquid
•  Nuclei grow to form crystals – grain structure

nuclei crystals growing grain structure


liquid Adapted  from  Fig.  4.14(b),  Callister  &  Rethwisch  8e.  
•  Crystals  grow  unMl  they  meet  each  other  

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  112
2    
Grain boundaries can strengthen materials

•  By preventing dislocation slip

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  13    
Volume Defects
•  Voids (empty space)
–  Useful for changing porosity to allow cell ingrowth
–  Introduce porogens during fabrication process, then leach out

•  Precipitates or inclusions
–  May introduce a second material to change material properties

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  14    
Elastic and plastic deformation

1.  IniMal   2.  Small  load   3.  Larger  load  


bonds    
bonds     stretch    
stretch  
&  planes    
slip  

δ
δelasMc  +  plasMc  
F  
ElasMc  deformaMons  are  reversible  
Dependent  on  interatomic  forces   F  
PlasMc  deformaMons  are  irreversible  

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  15    
Stress and Strain

•  Stress: force per unit area resulting from applied load


tension, compression, shear, torsion

F
Stress = σ =
A
–  Newtons per m2 or MPa, mega-Pascals (1MPa = 106N/m2) or psi
(pounds force per square inch)

•  Strain: physical deformation response of materials to


stress (unitless)

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  16    
Elastic vs. plastic deformation
•  Simple  tension  test:  
ElasMc+PlasMc    
engineering  stress,  σ   at  larger  stress  

ElasMc    
iniMally  
permanent  (plasMc)    
aYer  load  is  removed  

εp engineering  strain,  ε    

plasMc  strain   Adapted  from  Fig.  7.10  (a),  


Callister  &  Rethwisch  3e.    

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  17    
Tension and compression
Applied force is perpendicular to the cross-sectional area of the sample material
tension   compression  
Fnormal
Stress  (sigma)   σ=
Ao
 − o
ε=
Strain  (epsilon)   o

ElasMc   σ = Eε
response  
Hooke’s  Law  

•  E is the Young’s modulus, or elastic modulus of the material


•  For compression, force F is negative and results in a negative
stress, lo is greater than l, so strain is also negative

BME111  Design  of  Biomaterials  Spring  2015      April  23    Lecture  7  Slide  18    

You might also like