Nothing Special   »   [go: up one dir, main page]

Slag Lecture

Download as pdf or txt
Download as pdf or txt
You are on page 1of 39

Outline

The role of the slag phase in steelmaking


Discussion of slag fundamentals
Application of slag fundamentals to steelmaking
Conclusions
The importance of the slag phase

Good steelmaking Good slag making

Take of the slag and the steel will take care of


itself

Tools for good slag practices:


Mass balance calculations for accurate estimations
of slag compositions
The role of the slag in steelmaking:
Insulate the bath, maintaining steel temperature,
chemistry and reduced off-grade heats.
Protect the steel from oxidation and help to
control steel chemistry
Dephosphorization and desulfurization of steel
Stabilize the arc to protect the refractory and sides
from arc flare damage (EAF and LRF)
Be compatible with the refractory material to
minimize chemical erosion of the lining
Good foaming slag reduces the amount of slag required to
cover the arc, resulting in cost reductions in fluxes, slag
handling, and electrical energy by reducing the heat loss to
slag.
Slag - Metal Reactions:

Mn MnO + Fe
Si SiO2 + Fe
FeO +
Al Al2O3 + Fe
CaC2 CaO + Fe + CO(g)

Si SiO2 + Mn
MnO + Al Al2O3 + Mn
CaC2 CaO + Mn + CO(g)

SiO2 + Al Al2O3 + SiO(g)


Al2O3 + [Si]
Slag/Metal Interactions:

FeO
MnO SiO2

Slag FeO, MnO, SiO2

Metal Al, Si, Mn


Slag/Metal Interactions:
FeO

Slag

Metal Al, Si, Mn


Slag/Metal Interactions:

FeO

Slag

Metal Al, Si, Mn


Slag/Metal Interactions:

FeO

Slag

Al, Si, Mn
Metal
Slag/Metal Interactions:
Al2O3
SiO2
MnO
FeO

Al, Si,
Fe Mn
Slag

Metal
(burp!)

Fe Al2O3
SiO2, MnO
Slag

Metal
Slag/Metal Interactions:
MnO

Slag

Metal Al, Si, Mn


Slag/Metal Interactions:

MnO

Slag

Metal Al, Si
Slag/Metal Interactions:

MnO

Slag

Al, Si
Metal
Slag/Metal Interactions:
Al2O3
SiO2
MnO

Mn Al, Si

Slag

Metal
(hic!)

Mn Al2O3
SiO2
Slag

Metal
Slag/Metal Interactions:
SiO2

Slag

Metal Al
Slag/Metal Interactions:

SiO2

Slag

Metal Al
Slag/Metal Interactions:

SiO2
Slag

Al
Metal
Slag/Metal Interactions:

Al2O3
SiO2

Al
Si

Slag

Metal
Si
Al2O3
Slag

Metal
Typical slag components
Oxide Melting Point (C) Optical Basicity
SiO2 1720 0.48
CaO 2600 1.0
MgO 2800 0.78
Al2O3 2030 0.61
FeO 1370 0.51
MnO 1850 0.59
Cr2O3 2260 0.55
CaF2 1420 0.67
Fluxes for MgO and CaO

Possible fluxes for MgO and CaO are:


SiO2
Al2O3
CaF2
FeO
Fluxing is necessary to form liquid slags at
steelmaking temperatures
MgO MgO
MgO MgO
MgO slag MgO slag
MgO CaO, SiO2 MgO MgO, CaO, SiO2
MgO 1600 C MgO 1600 C
Melting point Melting point
1350C 1450C
Melting Point Melting point
2800C 2800C

MgO
MgO slag
MgO MgO CaO, SiO2
MgO MgO 1600 C
MgO Melting point
1350C

Melting Point formation of low


2800C melting phases
Slag : Balance of refractory and fluxing oxides

Refractory Oxides Fluxing Oxides


(CaO & MgO) (SiO2, Al2O3, CaF2)
Good foamy slag can be controlled by HBI
continuous feeding
Too much CaO and MgO

Fluxing Oxides

Refractory Oxides
Too little CaO and MgO

Refractory Oxides

Fluxing Oxides
Balance of refractory and fluxing oxides

Refractory Oxides Fluxing Oxides


(CaO & MgO) (SiO2, Al2O3, CaF2)
Slag Requirements:
High fluidity, but not watery - Slags with a
creamy consistency

Saturated with refractory oxides to minimize


chemical wear

Maximum amount of dissolved lime for optimum


desulfurization and inclusion removal
Consider the balance again:

Refractory Oxides Fluxing Oxides


(CaO & MgO) (SiO2, Al2O3, CaF2)
The use of CaF2 and SiO2 as fluxes

Fluorspar is very effective to bring lime in


solution. However, it is equally effective in
bringing MgO into solution.

If MgO is not added as a flux it will be dissolved


from the refractories.

The addition of Al2O3 increases the solubility


of CaO in the slag but it also decreases the
solubility of MgO in the slag.
The composition of a slag is usually expressed in terms of the
component oxides (or flourides) on
a weight percent basis. For example a slag could have the following
composition:
wt% CaO 55
wt% SiO2 20
wt% MgO 8
wt% Al2O3 12
wt% CaF2 5
Where do these components come from?
CaO - Lime (98 % CaO)
- Dolomite (58 % CaO & 39 % MgO)
- Ca-Aluminate (45% CaO & 53% Al2O3)
- Refractories (dolomite)
MgO - Dolomite (58 % CaO & 39 % MgO)
- Magnesia (> 92% MgO)
- Refractories (Mag-C & Dolomite)
SiO2 - Oxidation of the Si in the scrap (Si + O2 = SiO2)
- Steel deoxidation (2O + Si = SiO2)
- Sand and dirt
- Refractories (High Alumina)
Al2O3 - Oxidation of the Al in the scrap (2Al +3/2O2 = Al2O3)
- Steel deoxidation (3O + 2Al = Al2O3)
- Ca-Aluminate (45% CaO & 53% Al2O3)
- Bauxite (>80% Al2O3)
- Refractories (High Al2O3 sidewalls & bottoms)
FeO - Scrap (2Fe + O2 = 2FeO)
MnO - Scrap (2Mn + O2 = 2MnO)
- Steel deoxidation (O + Mn = MnO)
CaF2 - Fluorspar (90% CaF2)
The mass-balance approach is used to calculate contributions of the various
components.
CaO Contributions
Lime: 700 x 1 = 700
Dolomite: 500 x 0.6 = 300
Ca-Aluminate: 500 x 0.45 = 225
1225
MgO Contributions
Dolomite: 500 x 0.4 = 200
Al2O3 Contributions
Ca-Aluminate: 500 x 0.55 = 275
Steel deoxidation 340 x 0.75 x 1.89 = 485
760

Total Slag Amount: 1225 + 200 + 760 = 2185


% CaO = 1225/2185 x 100 = 56.1
% MgO = 200/2185 x 100 = 9.1
% Al2O3 = 760/2185 x 100 = 34.8
Calculate the quantity of pure CaCo3 required
to produce 1 ton of Cao .
The atomic mass of Ca, C and O are
40.1,12,and 16.
Estimate the quantity of magnetite contains
5% impurities (SiO2,CaO,MgO,Al2O3)
required for the production of 1 ton metallic
iron. Consider the reduction done by using
H2.

You might also like