2a-B Fire Models
2a-B Fire Models
2a-B Fire Models
1
2016/2017
University of Liege
List the different models for building fires and the associated input data
Use the adequate type of fire model for a given problem
Estimate the values of the input data required in the models
Assess the variation of temperature in a building with time and (possibly) space
2
2016/2017
University of Liege
University of Liege
4
2016/2017
University of Liege
University of Liege
No data required
- Parametric fire
(t) uniform
In the compartment
(x, y, z, t)
- One-Zone model
- Two-Zone model
- Combination Two-Zone and One-Zone
Exact geometry
- CFD
6
2016/2017
University of Liege
[C]
1200
1110
1006
1000
945
1049
The ISO curve
* Is applied to the whole compartment even if it is large
842
800
600
ISO
ISO
ISO
400
ISO
ISO
ISO
ISO
ISO
200
* Does not depend on the fire load and the ventilation conditions
0
0
30
60
90
120
180
Temps [min]
7
2016/2017
University of Liege
Post- Flashover
1000-1200C
Flashover
Time
Ignition
heating
cooling .
8
2016/2017
University of Liege
Hydrocarbon Fire
1000
Standard Fire
800
External Fire
600
400
200
0
1200
2400
Time (s)
3600
9
2016/2017
University of Liege
No data required
- Parametric fire
(t) uniform
In the compartment
(x, y, z, t)
- One-Zone model
- Two-Zone model
- Combination Two-Zone and One-Zone
Exact geometry
- CFD
10
2016/2017
University of Liege
1200
1000
800
600
400
200
0
30
60
90
120
180
Time [min]
11
2016/2017
University of Liege
12
University of Liege
Geometry
Fire surface
Rate of Heat Release (RHR)
Fire load density
Fire
Rate of heat release (RHR): rate at which heat (energy) is generated by the fire (in W)
Fire load density (qf): sum of thermal energies which are released by combustion of
all combustible materials in a space (building contents and construction elements),
per unit area
13
2016/2017
University of Liege
14
2016/2017
University of Liege
15
2016/2017
University of Liege
16
2016/2017
University of Liege
17
2016/2017
University of Liege
18
2016/2017
University of Liege
19
2016/2017
University of Liege
q f ,d = q1 . q 2 . ni . m . q f ,k
The factors allow taking into account the fire risk, using a semi-probabilistic approach
q1 takes into account the fire activation risk due to the size of the compartment
q2 takes into account the fire activation risk due to the type of occupancy
n =
20
2016/2017
University of Liege
21
2016/2017
University of Liege
q f ,d = q1 . q 2 . ni . m . q f ,k
22
2016/2017
University of Liege
10-6
23
2016/2017
University of Liege
24
2016/2017
University of Liege
Case 2
Case 3
No active system
Fire alarm
Pfi
Pfi
Pfi
Pf,fi
Pf,fi
Pf,fi
qfd
qfd
qfd
Considering a higher design fire load decreases the probability of failure in case of fire
Decreasing the Pfi by adding fire protection systems, allows accepting a higher Pf,fi,
therefore designing with a lower qfd
25
2016/2017
University of Liege
Why a higher design fire load decreases the probability of failure in case of fire
The fire load in the compartment is a random parameter
The value that is selected influences the design fire
The design fire influences the amount of fire protection
Case 3
Case 2 Case 1
Temperature [C]
Design fire
Case 3
Case 2
Case 1
time [sec]
26
Case 1
Case 2
Case 3
If sprinklers are installed in a compartment, it is allowed to reduce the fire load used in the
calculation for designing the structure, based on the target failure probability approach of EN
2016/2017
University of Liege
RHRf
[kW/m]
Dwelling
Medium
250
948
Hotel (room)
Medium
250
377
Library
Fast
500
1824
Office
Medium
250
511
School
Medium
250
347
Fast
250
730
Shopping centre
27
2016/2017
University of Liege
28
2016/2017
University of Liege
RHR [MW]
Medium (FGR)
RHR [MW]
RHR [MW]
Fire A
Growth
Rate = FGR
x RHR
fi
Decay phase
1
75'' 150''
Slow (FGR)FIRE
LOCALISED
2016/2017
COMPARTMENT FIRE
Fast (FGR)
(FGR)
29
A f x RHR
10 Ultra8
Fast
9 7
8
Growing
Steady
state phase
Decay Phase
300''
5
5
tdecay
University of Liege
600''
10
15
10
20
15
t [min]
25t [min]30
20
Time [min]
J-M Franssen & T. Gernay
30
2016/2017
University of Liege
No data required
- Parametric fire
(t) uniform
In the compartment
(x, y, z, t)
- One-Zone model
- Two-Zone model
- Combination Two-Zone and One-Zone
Exact geometry
- CFD
31
2016/2017
University of Liege
(x, y, z, t)
32
2016/2017
University of Liege
33
2016/2017
University of Liege
Iso-Curve
1000
O = 0.04 m
900
O = 0.06 m
800
O = 0.10 m
O = 0.14 m
700
O = 0.20 m
600
500
400
300
200
100
time [min]
34
0
2016/2017
10
20
30
40
50
60
70
University of Liege
80
90
100
110 120
J-M Franssen & T. Gernay
Input data:
- Fire load density qf,d
- Opening factor
O = Av h / At
- Wall factor
b = c
Temperature = (t)
35
2016/2017
University of Liege
36
2016/2017
University of Liege
37
2016/2017
University of Liege
[m]
38
2016/2017
University of Liege
[C]
[m]
39
2016/2017
University of Liege
Lh
Concrete slab
beam
40
h is function of:
r: Horizontal distance between the fire vertical axis and
the point along the ceiling where the flux is calculated
Lh: Horizontal flame length
H: distance between the fire source and the ceiling
D: Diameter of the fire
Q: RHR of the fire
2016/2017
University of Liege
= Temperature
at beam level
D
x
41
2016/2017
University of Liege
[W/m]
[W/m]
42
2016/2017
University of Liege
[W/m]
43
2016/2017
University of Liege
No data required
- Parametric fire
(t) uniform
In the compartment
(x, y, z, t)
- One-Zone model
- Two-Zone model
- Combination Two-Zone and One-Zone
Exact geometry
- CFD
44
2016/2017
University of Liege
OZone model
Stratification (2 zones)
Z
QC
ZS
Upper layer
mU , TU, VU,
EU, U
m OUT,U
QR
ZP
Q
m IN,L
mL , TL, V L,
EL, L
p
mp
Lower layer
45
2016/2017
University of Liege
m IN,L
46
2016/2017
University of Liege
OZone model
Z
QC
QR
mOUT,L
p = f(Z)
m, T, V,
E, (Z)
mOUT
ZP
mIN,L
Fire: RHR,
combustion products
0
47
2016/2017
University of Liege
QC+R,O
University of Liege
49
2016/2017
University of Liege
50
2016/2017
University of Liege
51
2016/2017
University of Liege
52
2016/2017
University of Liege
53
2016/2017
University of Liege
54
2016/2017
University of Liege
55
2016/2017
University of Liege
56
2016/2017
University of Liege
57
2016/2017
University of Liege
58
2016/2017
University of Liege
59
2016/2017
University of Liege
1400
1300
1200
1100
1000
900
800
700
y = 1.0955x - 102.13
600
500
R2 = 0.9348
400
300
200
100
0
0
100
200
300
400
500
600
700
800
900
University of Liege
1300
1200
1100
1000
900
800
qf,d =511MJ/m2
RHRf = 250kW/m2
700
600
500
400
300
200
100
0
0
600
1200
1800
2400
3000
3600
4200
4800
5400
6000
6600
7200
Time [sec]
61
2016/2017
University of Liege
62
2016/2017
University of Liege
63
2016/2017
University of Liege
64
2016/2017
University of Liege
65
2016/2017
University of Liege
66
2016/2017
University of Liege