P-752 Unit 2 Fundamentals
P-752 Unit 2 Fundamentals
P-752 Unit 2 Fundamentals
Fundamentals - 1
Overview
Fundamental Concepts
Ground Motions and Their Effects
Structural Dynamics of Linear SDOF Systems
Response Spectra
Structural Dynamics of Simple MDOF Systems
Inelastic Behavior
Structural Design
Fundamentals - 2
Fundamentals - 3
In most parts of the country the inertial forces are so large that it is not
economical to design a building to resist the forces elastically. Thus
inelastic behavior is necessary, and structures must be detailed to
survive several cycles of inelastic behavior during an earthquake.
Fundamentals - 4
Overview
Fundamental Concepts
Ground Motions and Their Effects
Structural Dynamics of Linear SDOF Systems
Response Spectra
Structural Dynamics of Simple MDOF Systems
Inelastic Behavior
Structural Design
Fundamentals - 5
Fundamentals - 6
Tectonic Plates
Fundamentals - 7
Fundamentals - 8
Fundamentals - 9
Fault Features
Fault trace
Strike angle
Fault
Dip angle
Fundamentals - 10
Epicenter
Rupture surface
Hypocenter
(focus)
Fault plane
Fundamentals - 11
Types of Faults
Strike Slip
(Left Lateral)
Normal
Strike Slip
(Right Lateral)
Reverse (Thrust)
Fundamentals - 12
Compression Wave
(P Wave)
Shear Wave
(S Wave)
Fundamentals - 13
Love Wave
Rayleigh Wave
Fundamentals - 14
P Waves
S Waves
Love Waves
Fundamentals - 15
Effects of Earthquakes
Ground Failure
Rupture
Landslide
Liquefaction
Lateral Spreading
Tsunami
Seiche
Ground Shaking
Fundamentals - 16
Fundamentals - 17
Fundamentals - 18
Overview
Fundamental Concepts
Ground Motions and Their Effects
Structural Dynamics of Linear SDOF Systems
Response Spectra
Structural Dynamics of Simple MDOF Systems
Inelastic Behavior
Structural Design
Fundamentals - 19
T=1.0 Seconds
Fundamentals - 20
0.5 f S ( t )
f D (t )
F (t )
0.5 f S ( t )
f I (t ) + f D (t ) + fS (t ) = F (t )
( t ) + c u ( t ) + k u( t ) = F ( t )
mu
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 21
Mass
Internal Force
Mass
M
1.0
Acceleration
Fundamentals - 22
Damping
Damping Force
C
1.0
Velocity
Fundamentals - 23
Damping
Damping Force
AREA =
ENERGY
DISSIPATED
Displacement
Fundamentals - 24
Spring Force
Stiffness
Elastic Stiffness
K
1.0
Displacement
Fundamentals - 25
Spring Force
Stiffness
Inelastic Behavior
AREA =
ENERGY
DISSIPATED
Displacement
Fundamentals - 26
u( t ) = A sin(t ) + B cos(t )
A=
u0
u (t ) =
u0
Solution:
( t ) + k u( t ) = 0
mu
u0 u0
B = u0
k
m
sin(t ) + u0 cos(t )
Fundamentals - 27
u0
T = 0.5 sec
1.0
3
2
1
0
-1
-2
-3
u0
0.0
0.5
1.0
1.5
2.0
Time, seconds
Circular Frequency
(radians/sec)
k
m
Cyclic Frequency
(cycles/sec, Hertz)
f =
2
Period of Vibration
(sec/cycle)
1 2
T=
=
f
Fundamentals - 28
T = 2.4 sec
T = 1.3 sec
T = 0.2 sec
T = 1.6 sec
T = 0.9 sec
T = 0.1 sec
Gravity dam
Suspension bridge
T = 0.2 sec
T = 20 sec
Fundamentals - 29
( t ) + c u( t ) + k u( t ) = 0
mu
u0
Initial conditions: u0
st
Assume: u( t ) = e
Equation of motion:
Solution:
u( t ) = e
u0 + u0
sin( D t )
u0 cos( D t ) +
D
c
c
=
=
cc
2 m
D = 1
Fundamentals - 30
Time, sec
Fundamentals - 31
Displacement, inches
0% Damping
10% Damping
20% Damping
0.0
0.5
1.0
1.5
2.0
Time, seconds
Fundamentals - 32
Damping in Structures
Welded steel frame
Bolted steel frame
= 0.010
= 0.020
= 0.015
= 0.020
= 0.035
= 0.100
= 0.150
= 0.050
= 0.075
= 0.250
Fundamentals - 33
2 uS
Displacement, in.
40
-40
Linear envelope
-80
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
Time, seconds
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 34
( t ) + cu ( t ) + k u(t ) = p0 sin( t )
mu
Displacement Amplitude, Inches
50
40
1
Static
2
30
20
10
0
-10
-20
-30
-40
-50
0.00
1.00
2.00
3.00
4.00
5.00
Time, Seconds
Fundamentals - 35
Resonance
0.0% Damping
5.0 % Damping
10.0% Damping
25.0 % Damping
12.00
10.00
8.00
RD =
6.00
1
(1 ) + (2 )
2 2
4.00
2.00
Slowly
loaded
0.00
0.00
0.50
Rapidly
loaded
1.00
1.50
2.00
2.50
3.00
Frequency Ratio,
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 36
Fourier transform
Duhamel integration
Piecewise exact
Newmark techniques
Fundamentals - 37
0.40
0.20
0.00
-0.20
-0.40
0.00
1.00
2.00
3.00
4.00
5.00
6.00
TIME, SECONDS
m [ug ( t ) + ur ( t )] + c ur ( t ) + k ur ( t ) = 0
mur ( t ) + c ur ( t ) + k ur ( t ) = mug ( t )
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 38
c
k
ur (t ) + ur (t ) + ur (t ) = ug (t )
m
m
Make substitutions:
c
= 2
m
k
2
=
m
Simplified form:
ur (t ) + 2 ur (t ) + 2ur (t ) = ug (t )
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 39
Structural frequency
ur (t ) + 2 u r (t ) + u r (t ) = ug (t )
2
Damping ratio
Ground motion acceleration history
Fundamentals - 40
0.3
0.2
0.1
0
-0.1
SOLVER
-0.2
-0.3
0
10
20
30
40
50
60
Time (sec)
6
Change in ground
motion or structural
parameters and
requires re-calculation
of structural response
0.4
Computed response
4
2
0
-2
-4
Peak displacement
-6
0
10
20
30
40
50
60
Time (sec)
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 41
16
12
0
0
10
PERIOD, Seconds
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 42
Pseudoacceleration Spectrum
400.0
5% damping
Pseudoacceleration, in/sec
350.0
300.0
250.0
200.0
PSA(T ) 2 D
150.0
100.0
50.0
0.0
0.0
1.0
2.0
3.0
4.0
Period, Seconds
Fundamentals - 43
5% damping
Pseudoacceleration, in/sec2
350.0
Peak ground
acceleration
300.0
250.0
200.0
150.0
100.0
50.0
0.0
0.0
1.0
2.0
3.0
4.0
Period, Seconds
Fundamentals - 44
K = 500 k/in
350.0
W = 2,000 k
M = 2000/386.4 = 5.18 k-sec2/in
= (K/M)0.5 =9.82 rad/sec
T = 2/ = 0.64 sec
5% critical damping
Pseudoacceleration, in/sec2
Example Structure
300.0
250.0
200.0
150.0
100.0
50.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Period, Seconds
Fundamentals - 45
Fundamentals - 46
Fundamentals - 47
Constant Acceleration
Constant Velocity
Constant Displacement
Fundamentals - 48
Overview
Fundamental Concepts
Ground Motions and Their Effects
Structural Dynamics of Linear SDOF Systems
Response Spectra
Structural Dynamics of Simple MDOF Systems
Inelastic Behavior
Structural Design
Fundamentals - 49
MDOF Systems
u1
u2
u3
Fundamentals - 50
Fundamentals - 51
Fundamentals - 52
Overview
Fundamental Concepts
Ground Motions and Their Effects
Structural Dynamics of Linear SDOF Systems
Response Spectra
Structural Dynamics of Simple MDOF Systems
Inelastic Behavior
Structural Design
Fundamentals - 53
V = CsW
SD1
Cs =
T (R /Ie )
SDS and SD1 are short and one second (T=0.2 s and 1.0 s)Design
Basis Spectral Accelerations, including Site Effects
Ie is the Importance Factor
R is a Response Modification Factor, representing Inelastic
Behavior (Ductility, Over-strength, and a few other minor
ingredients).
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 54
62.5
90
120
Fundamentals - 55
Comparison of EQ vs Wind
VEQ
VW 120
2592
=
= 6 .4
406
VEQ
VW 90
2592
=
= 8.5
304
Fundamentals - 56
Fundamentals - 57
Force, kips
Actual
600
Idealized
400
Over-Strength
First Yield
200
1.0
2.0
3.0
4.0
5.0
Displacement, inches
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 58
Force, kips
Fy=500 k
K2=11 k/in
400
200
K1=550 k/in
2.0
1.0
4.0
3.0
5.0
Displacement, in.
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
0
10
12
14
16
18
20
Time, Seconds
Fundamentals - 59
Maximum
shear force:
542 k
Number of
yield events:
15
Fundamentals - 60
Fundamentals - 61
Fundamentals - 62
Fundamentals - 63
ASCE 41
Fundamentals - 64
Fundamentals - 65
500
1000
1500
2000
2500
3000
3500
4000
6
5
Inelastic
4
3
2
Elastic
1
0
0
500
1000
1500
2000
2500
3000
3500
4000
Fundamentals - 66
3500
3500
3000
3000
2500
2500
Force, Kips
Force, Kips
ACTUAL BEHAVIOR
2000
1500
1000
2000
1500
1000
500
500
0
0
4
Displacement, Inches
Displacement, inches
Fundamentals - 67
Fundamentals - 68
Elastic
Force, Kips
3000
2500
2000
1500
1000
Inelastic
500
0
0
5.77 6
Displacement, inches
Fundamentals - 69
Force, Kips
Elastic
2000
1500
1000
500
0
0 dy=0.91 2
Inelastic
4 du=5.77 6
Displacement, inches
5.77
= 6.34
0.91
Fundamentals - 70
Application in Principle
3500
FE
Force, Kips
3000
2500
2000
1500
1000
FI
500
0
0
dR
dI 6
Displacement, inches
Fundamentals - 71
Application in Practice
(NEHRP and ASCE 7)
Use basic elastic spectrum but, for strength,
divide all pseudoacceleration values by R, a
response modification factor that accounts for:
Fundamentals - 72
Ductility/Overstrength
First Significant Yield
First
Significant
Yield
Force
Design
Strength
Displacement
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 73
Fundamentals - 74
Overstrength
Force
Apparent
Strength
Over Strength
Design
Strength
Displacement
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 75
Sources of Overstrength
Fundamentals - 76
Apparent Strength
Design Strength
Force
Apparent Strength
Overstrength
Design Strength
Displacement
Fundamentals - 77
Fundamentals - 78
Ductility Reduction Rd =
Apparent Strength
Design Strength
Elastic Strength Demand
Apparent Strength
= Rd
Fundamentals - 79
Fundamentals - 80
Fundamentals - 81
Cd
5.5
5
3
3
3
4.5
2.5
5
4
2
1.5
2.5
2.5
2.5
2.5
5.0
4.0
2.0
1.5
Fundamentals - 82
SDS=1.0g
S DS
CS =
R/I
S D1
CS =
T(R / I )
Acceleration, g
1.0
SD1=0.48g
R=1
R=2
0.8
R=3
0.6
R=4
R=6
R=8
0.4
0.2
0.0
0
Period, Seconds
Fundamentals - 83
R=1
1.0
R=4
0.8
0.6
V=0.15W
0.4
0.15
0.2
0.0
0.0
1.0
2.0
3.0
4.0
5.0
Period, Seconds
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 84
INELASTIC = 3.65 in
Displacement,inches.
R=1
R=4
20
(R=4)*Cd
15
Cd=3.5
10
5
0
0
Period, Seconds
Instructional Material Complementing FEMA P-751, Design Examples
Fundamentals - 85
Overview
Fundamental Concepts
Ground Motions and Their Effects
Structural Dynamics of Linear SDOF Systems
Response Spectra
Structural Dynamics of Simple MDOF Systems
Inelastic Behavior
Structural Design
Fundamentals - 86
Fundamentals - 87
Questions
Fundamentals - 88