Laboratory Manual FOR Lab Course EL 491 Electronics Circuit Design Laboratory
Laboratory Manual FOR Lab Course EL 491 Electronics Circuit Design Laboratory
Laboratory Manual FOR Lab Course EL 491 Electronics Circuit Design Laboratory
LABORATORY MANUAL
FOR
Lab Course EL 491
Electronics Circuit Design Laboratory
CONTENTS
1. Quadrature Oscillator
2. Switch Capacitor
3. OTA Multi-function Filters
4. Precision Rectifiers using Bi-phase Amplifiers
5. CFA (Current Conveyer)
6.
7. Appendix I (Precautions)
8. Appendix II (Data on the ICs CD4066 & CA3080)
MHAK / 190707
Page 2 of 15
R3
C1
-
R1
-
V1
R2
V0
V2
R5
C2
Theory:- On analyzing the circuit of the quadrature oscillator, shown above, the condition
of the oscillation may be written as :
R4 R5
=
R 3 R2
R4
R3
And the frequency of oscillation can be expressed as 2 =
R 1 R 2 C 1C
1+
or, f =
1
2
,
2
R4
R3
,
R1 R2 C1C 2
1+
Taking R3 = R4 and C1 = C2 = C ,
f=
1
2C
2
R1 R2
-----
----- (2)
MHAK / 190707
Page 3 of 15
Observations:Use a pot of 10 K for (R3 + R4) and adjust it to get the output waveform Vo. Once the
output Vo is obtained corresponding to the particular values of R1 and R2, replace R1 by a few
discrete values of resistors such as 2.2 K, 3.3 K, 4.7 K etc., and measure the frequency
of Vo corresponding to each of these values and verify that the frequency is changing but the
phase difference between Vo and V2 is always 900.
R1 (K)
Time period
(s)
Practical value of
frequency (KHz)
Theoretical value of
frequency (KHz)
Sample Calculations:
Designed frequency = -------- KHz
Measured frequency = -------- KHz
%age error = ----- %
Plot a curve between R1 & f .
**************
MHAK / 190707
Page 4 of 15
Vi
S1
S2
Cs
Fig.1
Fig. 2
The resistor R, in figure 1 can be simulated by a capacitor Cs, connected between two
switches S1 and S2, turning ON and OFF by the two non-overlapping pulses 1 and 2 at the
switching frequency fC, as shown in figure 2.
The transfer function of the above low-pass section is given by the expression:
(1 / RC o )
1
Vo
=
, which gives o =
,
s + (1 / RCo )
Vi
RC o
1
.... .... ( 1 )
Therefore,
fo =
2RC o
With reference to figure 1 & 2, the current through R is
i = C dv
s
dt
= Cs
V1 V2
V V2
= 1
TC
R
TC
1
=
, . . ( 2),
Cs
CS fC
Substituting the value of R obtained from equation ( 1 ) into equation ( 2 ) yields
fo = C S f C .
2C o
Therefore, R =
or,
fC
fO
( CO )
CS
Take
fC
= (2 to 30) ,
fO
MHAK / 190707
Vo
Page 5 of 15
Co = ------ F
CS = ------ F
fo = ------ KHz
fC = ----- KHz
Note:- Use a NAND gate (TTL IC 7400) as an inverter (NOT gate), to get non-overlapping
pulses and a CMOS IC, CD 4066 for the two switches. (Ref:- Pin configurations of the two
ICs), where 1 is the clock pulse of freq. = fc
2
Inverter
Observations:S. No.
Vo = O/P Voltage
(mV)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Plot the frequency response curve (gain versus frequency),
Result:Practical value of the cut-off frequency obtained from the graph plotted is 490 Hz.
Designed value (given) = ------ Hz.
Hence, the percentage error = -------- %.
MHAK / 190707
Page 6 of 15
Analyze, design and experimentally verify the OTA c multi-function filters for the
LP, HP, BP and BE responses for a cut-off ( pole ) frequency of KHz & Q = 1.
Circuit Diagram:-
V+
47 K
+
1 Meg-Ohms
pot.
2
6
3
3 +
5
6
C1
C2
V3
V2
V1
Vo
s 2V3 + s
V0 =
BW =
g m1C 2
g m 2 C1
Q=
Assumptions:-
g m2
C2
; 0 =
g m1 = g m 2 =
(3.1)
g m1 g m 2
C1C 2
(3.2)
IB
= 19.23I B
2VT
C1 = C2 = C,
(3.3)
Q=1
f0 =
19.23I B
2C
= 3.062
o
Q
IB
C
---------
-------------
(1)
= 2fo ,
MHAK / 190707
Page 7 of 15
150
200
300
600
100
75
50
25
RT (K)
fi
Vo
( KHz) (mV)
Gain (A) =
Vo / Vi
fi
Vo
Gain (A)
( KHz)
(mV)
= Vo / Vi
1.
0.1
2.
0.2
1.
0.1
3.
0.5
2.
0.2
4.
1.0
3.
0.5
5.
1.5
4.
1.0
6.
1.9
5.
1.5
7.
2.5
6.
1.9
8.
3.2
7.
2.5
9.
4.2
8.
3.2
10.
5.0
9.
4.2
11.
5.5
10.
5.0
12.
7.0
11.
Similarly take observations for BPF and Band Elimination (Notch) filters.
MHAK / 190707
Page 8 of 15
Plot the frequency response curves for LPF, HPF, BPF & BEF.
Report:- 1. Derive the expressions for the operating conditions.
2. Comment on the frequency responses obtained.
V+
R
47 K
RX
1 Meg
2
Vi
CA3080
Vo
R L (10K)
1. Apply a sinusoidal signal of amplitude 50 mVp-p and frequency 2.0 KHz at Vi.
2. Observe the output signal.
3. If it is of opposite phase of the input and its amplitude is increasing by adjusting the variable
resistance, then the OTA under test is all right.
4. If no signal is observed at the output, or the amplitude does not change by variable
resistance, then the OTA is defective.
*************
MHAK / 170707
Page 9 of 15
Design and experimentally verify the Full-wave and the Half-wave precision
rectifier using bi-phase amplifier. Plot the output DC voltage versus input RMS
voltage for the input signal between 0 volt and 1 volt.
Circuit Diagram:-
R1
Vin
R1
RS
IC-1
+
VO
R2
+
IC-2
RB
Q
Find the maximum signal frequency for proper rectification at Vin = 1.0 Voltp-p
3. Trace the output waveforms for half-wave and full wave rectifiers.
Components Used:1) Opamp 741 (IC-1 & (IC-2)
2) NPN Transistor (Q) BC 147
3) Resistors:
MHAK / 170707
Page 10 of 15
Design an all pass section using CFA (AD844) for a pole frequency p (= z) = 2 fo
(fo = gp-no KHz). Plot the frequency response of the designed AP section (magnitude
and phase of Vo2 with respect to Vi , versus frequency).
Circuit Diagram:2R
3
+
741
-
R
6
2
3
Vi
Vo1
Y
AD 844
R1
Vo2
C1
Design Equations:V o1
= 1 ,
Vi
V o2
Vi
1
R 1C 1
=
1
s +
R 1C 1
s
( R = 10 K, R1 = 22 K )
(Vi = 0.4 Vp-p / 1.5 KHz Sine wave may be used for initial testing of the designed circuit).
Ratings of AD844 (60 MHz, 2000 V/s Monolithic Op Amp):Wide-range of Biasing Power Supplies: 4.5 V to 18 V; Capable of high o/p drive of 50 mA to50 ;
Low offset voltage: 150 V; Low Quiescent current: 6.5 mA; Large BW : 60 MHz at Gain of -1;
Pin Connections:-
MHAK / 170707
Page 11 of 15
Circuit Diagram:-
Vo
R2
R1
V2
741
C
V3
V1
Theory and Analysis:On analyzing the circuit, the expression for Vo can be written as:
V2
B
+ V3
R1C
R2C
,
Vo =
s 1
B
1
2
s + [ + ]+
C R1 R2
R2C
s 2V + s
-----
-----
-----
(1)
B
,
R2C
Q=
R1
R1 + R2
1
2
BCR2
B
, ----R2C
-----
(2)
Note:- For Opamp 741, select B in the range (0.4 1.5) MHz.
MHAK / 170707
Page 12 of 15
Operating Conditions:
With reference to the eqn (1) above, the circuit will be working as a multi function filter under
the following conditions:
For Low pass filter:-
V1 = V2 = 0, and V3 = Vin ,
V3 = V2 = 0, and V1 = Vin ,
V1 = V3 = 0, and V2 = Vin ,
V2 = 0,
and V1 = V3 = Vin ,
where 0 stands for grounded and Vin for the input signal.
Observations:
Given f0 = .. KHz
Take R1 = R2 = ---- K
Calculate C = ----- nF, Use the nearest available value of C = -------- F,
By back calculation, f0 =
Vin = -------- volts p-p
(i) Readings for low pass filter:S. No.
Gain, A =
Vo
Vin
Similarly tabulate:(ii) Readings for high pass filter:(iii) Readings for band pass filter:(iv) Readings for band elimination filter:Measure f0 from the frequency-response curve.
Report:- Plot frequency response of each filter on the same semi-log graph paper and verify the
designed cutoff frequency fo . Also give your comments on the results and carry out circuit
analysis.
***************
MHAK / 170707
Page 13 of 15
APPENDIX - I
Some Common Precautions
Care should be taken to observe the following Precautions while performing experiments ON
the circuits employing Electronic Devices:1.
Before connecting the device into the circuit, always ensure that the device is perfectly
working; that is, it should have already been tested separately in its test-circuit.
2.
Always connect the device/IC carefully and correctly into the circuit being assembled
on the Breadboard to avoid any loose or incorrect connection leading to the damage of
the device.
3.
While connecting the device into the circuit on the breadboard, ensure that no DC
supply or signal is connected to that circuit. (Keep power supplies and signal generators
OFF).
4.
When the device has been correctly connected into the circuit, only then turn ON the
DC supply and the signal generators in this order:- Firstly turn ON the Power Supply;
then turn ON the signal generator.
5.
Dont forget to check the output voltage of the DC power supply before connecting it to
the circuit, and adjust it to proper value conforming to the device specifications.
6.
Dont forget to adjust the amplitude of the signal to be connected to the device, to its
proper value, always below the maximum signal level specified in the device data sheet,
to avoid the consequent damage to the device already checked and found OK.
7.
Take extra care while using the costly and sensitive devices like OTAs and Current
conveyers, that is, read thoroughly their specifications given in their datasheets, and
never violate any rating of the device.
8.
Before replacing any device or component on the bread-board, turn-OFF the signal
generator first and then turn-OFF the power supplies connected to the circuit, and then
replace the device or component; and after replacement, switch ON the power supply
first & then switch ON the signal generator.
******************
MHAK / 170707
Page 14 of 15
APPENDIX II
Pin Connections and the Specifications of the ICs : CD 4066 and OTA CA 3080
Schematic Diagram:-
Page 15 of 15
CA 3080
2MHz, Operational Transconductance Amplifier (OTA)
The CA3080 and CA3080A types have differential input and a single-ended, push-pull,
class-A output. In addition, these types have an amplifier bias input which may be used either
for gating or for linear gain control. These types also have a high output impedance and their
transconductance (gM) is directly proportional to the amplifier bias current (IABC).
The CA3080 and CA3080A types are notable for their excellent slew rate (50V/s),
which makes them especially useful for multiplexer and fast unity-gain voltage followers. These
types are especially applicable for multiplexer applications because power is consumed only
when the devices are in the ON channel state.
For further details, refer to the manufacturers Datasheet
Compiled by:-
Electronics Engineer;
Department of Electronics Engineering, AMU, Aligarh 202 002
Res:- 5-B, Zakaullah Road, Tar Bangla, AMU, Aligarh-202 002
Email:- h a d i a l i k h a n @ g m a i l . c o m
Phone & Fax No:- (0571) -2721148
NB:- This laboratory manual can be downloaded from the site :- http://hadialikhan.tripod.com/lab491.pdf
MHAK / 170707