Advanced Microwave Engineering
Advanced Microwave Engineering
Advanced Microwave Engineering
ASSIGMENT #2
ASSIGNMENT #2
1. Design an air filled circular waveguide
Frequency separation = 1GHZ
TE
f c11
TM
f c01
=
=
TM
TE
f c01
f c11
Pmn
2a
Pmn
2
1.841
2a o o
2.4049
2a o o
2.4049
2a o o
1.841
2a o o
0.5639
2a o o
0.56393108
=109
2a
a=
0.56393108
=0.0269 m=2.69 cm
210 9
2.
TM
c01
P mn
2a
2.4049
2.40493108
=
=4.271 GHZ
20.0269 o o 20.0269
Design a rectangular waveguide such that there is only one mode of propagation
The lowest usable frequency is 10% above cutoff frequency
The highest usable frequency is 5% below the cutoff frequency where the next
mode can propagate
m
a
1
f c=
TE
for TE 10 , f c10
=
a=
C
C
C 1.1310
+ 0.1 =1.1 =
=7.5109
2a
2a
2a
2a
1.1310 8
=0.022m=2.2cm
27.510 9
TE
for TE 01 , f c01
=0.95
b=
C 0.953108
=
=10109
2b
2b
0.953108
=0.01425 m=1.425 cm
210109
3. Cubical cavity
fr = 3GHZ
Determine a (the smallest possible size of this cavity) =?
Which mode does it resonate at this frequency?
m
a
p
c
f r=
2
For a cubical cavity ,a=b=c
Therefore,
m
a
p
a
f r=
2
1
a
At
1
2+
a
()
TM 110 , f r=
a=
3108 2
=0.071m=7.1 cm
2310 9
The mode of propagation
1
a
2
1
2+
a
1
TM 110 , f r=
()
1
a
1
2+
a
()
TE 101 , f r=
1
a
2+
1
a
()
TE 011 , f r =
2f 2310 9
1
=
=62.8 m
8
C
310
i)
K= =
ii)
m
a
n
b
f c=
2
m
a
2
At TE10,
1
f TE
c, 10 =
2
iii)
m
0.6 a
1
TE
f c, 10=
iv)
0.6a
2k 2
0.60.072
2(62.8)2
v)
40 dB=20lo g10 ( ez )
2=log 10 ( ez )
102=ez
z=
4.6
=0.1258 m=12.58 cm
36.596
e ( , ) and
and
j E = H
dHz
d Ez
(2) j H = E
(2 a)
d
d
H
( ) d H z
d
d
d
E
( ) d E z
d
d
d
1
j E z=
(4 a)
d
d
d
kc
k c d
E =
dH z
dE dH z
1 dE z
1
j
(5)H = 2 j z
(5 a)
2
d
d d
k c d
kc
2
2
2
Where k c =k + and = + j
The value of
( )
( )
E =
dEz
j dE z
( 7 ) H = 2
( 7 a)
2
d
k c d
kc
( )
( )
The longitudinal electric field of the TM modes within the cylindrical waveguide must
satisfy:
2
2
E z +k E z=0
Where
E z ( , , z )=e z ( , ) ez
d
d
d
The electric field function may be determined using the separation of variables technique
by assuming a solution of the form:
z
e z ( , ) e =R ( ) P( )
Inserting the assumed solution into the governing partial differential equation yields
d 2 R ( ) P ( ) dR ( ) R ( ) d 2 P ( ) 2
P()
+
+ 2
+k c R ( ) P ()=0
d
d 2
d 2
Dividing by
R ( ) P() gives
2
d2 P () 2
1 d R ( )
1 dR ( )
1
+
+
+ k c =0
R ( ) d 2
R() d
2 P( ) d 2
on only.
The result is:
2
2
2 d R ( )
dR ( )
1 d P ( ) 2 2
+
+
+ k c =0(1)
P() d 2
R ( ) d 2
R ( ) d
According to the separation of variables technique, we may set the
2
equal to a constant (- k c ). The resulting differential equation defining
d2 P () 2
+ k c P ( )=0
d 2
dependent term
P ( ) is
P ()
P ( )= Asin k + Bcos k
P ( )= Asinn + Bcosn
2
2 d R ( )
dR ( )
+
+ ( 2 k 2c + n2 ) =0(2)
2
R ( ) d
R ( ) d
Equation (2) is known as Bessels equation which has solutions known as Bessel
functions. We may write the general solution to Bessels equation as:
R ( )=C J n ( k c ) + D Y n ( k c )
The Bessel function of the second kind approaches
J n ( k c )=0
If we define the mth zero of the nth order Bessel function as pnm, then the TM nm
P nm
k
=
c
,
nm
mode cutoff wavenumber is found by
( )
E ( , , z )=
dEz
= 2 J n ( k c ) [ Acosn Bsinn ] ez
2
d
kc
kc
( )
H ( , , z )=
j dE z
j n
= 2 J n ( k c ) [ Acosn Bsinn ] ez
2
k c d
kc
H ( , , z )=
j dE z j n
=
J ' n ( k c ) [ Asinn + Bcosn ] ez
2
d
k
kc
c
( )
( )
f c, nm=
Pnm
2
Pnm
f c ,nm
f
2
k
nm= k 2k 2c ,nm=
f c ,nm
f
2
1
k
V p=
=
nm
f c ,nm
f
2
1
d 1 1 1
V g [
] =
d
6. Specify the cutoff frequencies for the first 4TE and first 4TM modes of an air- filled
circular waveguides with radius 0.8cm. Draw a graph of frequency vs. propagation
showing the frequencies at which each of these modes will propagate. Is there a
frequency range in which only one mode will propagate? If so, what is the range and
what mode is propagating
ANSWER:
p'
k c = mn
a
f c, mn=
Pmn
n=1
n=2
n=3
c p ' mn
2 a
m=0
3.8318
7.0156
10.1735
TE (Transverse
mode
m=2
m=1
1.8412 3.0542
5.3315 6.7062
8.5363 9.9695
electric)
m=3
4.2012
8.0153
11.3459
c p ' mn 31083.0542
=
=18.2284 GHZ
2 a
20.8102
f TE
c, 01=
c p ' mn 31083.8318
=
=22.8694 GHZ
2 a
20.8102
TE
TE
f c, 31=
TM (Transverse Magnetic)
mode
m
0
1
Pm1
2.405
3.832
Pm2
5.52
7.016
Pm3
8.654
10.174
5.135
8.417
11.62
c pmn 31083.832
=
=
=22.8706 GHZ
2 a 20.8102
TM
c, 11
f c, 21=
c p mn 310 85.135
=
=30.6473GHZ
2 a 20.8102
f TM
c, 02=
8
c p mn
310 5.52
=
=32.9451GHZ
2 a 20.8102
TM