Silva Et Al - Ijcim 2012
Silva Et Al - Ijcim 2012
Silva Et Al - Ijcim 2012
To cite this article: Jorge A. Silva , Jos V. Abelln-Nebot , Hector R. Siller & Federico Guedea-Elizalde (2012): Adaptive
control optimisation system for minimising production cost in hard milling operations, International Journal of Computer
Integrated Manufacturing, DOI:10.1080/0951192X.2012.749535
To link to this article: http://dx.doi.org/10.1080/0951192X.2012.749535
Adaptive control optimisation system for minimising production cost in hard milling operations
Jorge A. Silvaa, Jose V. Abellan-Nebotb, Hector R. Sillera* and Federico Guedea-Elizaldea
a
Center for Innovation in Design and Technology, Tecnologico de Monterrey, Monterrey, Mexico; bDepartment of Industrial
Systems Engineering and Design, Universitat Jaume I, Castellon, Spain
1.
Introduction
Figure 1. Fishbone diagram of parameters that aect surface roughness (adapted from Benardos and Vosniakos 2003, AbellanNebot 2010).
Production cost
ACO (adaptation of cutting parameters)
To present in this paper
Production cost
Traditional approach
(xed cutting parameters)
Traditional approach
(xed cutting parameters)
Traditional approach
(xed cutting parameters)
ACO and ACC
(adaptation of cutting parameters)
ACO (adaptation of cutting parameters)
Traditional approach
(xed cutting parameters)
Table 1.
2.
Production cost
tm
;
T
p D L e e=ap np
;
1000 z Vc fz
tm
p D t L np
:
1000 Vc fr
Cu cmat c1 c0 ts c1 c0 tm
tm
c1 ttc ct c0 ttc ;
T
b2
np ;
D2
b2 Ra avg Ra tgt 2 :
Constraints
fzmin fz fzmax ;
10
ap apmax :
11
12
3.
2.3.
Process models
KT
:
a3
Va1
fa2
c
z ap
13
2.4.
14
Limitations
Figure 2.
Adaptive control with optimisation (ACO) scheme (adapted from Schey 2000).
tith
b2
m
Arw ith
;
T
D2
15
16
17
Cutting conditions and cost constants for ACO system experimental setup.
Cutting conditions
Cost constants
ae
ap
Part specications
Surface roughness
Ra
Tool constants
Tool change time
ttc
Table 3.
1230
V1:32
f0:881
c
z
31.25 mm
0.4 mm
50.2 m m
Tool cost
Overhead cost
Ct
C0
90 e
10 e /hr
Labour cost
Piece rework cost
C1
Arw
40 e /hr
75 e
Lot size
np
50 pcs
10 s
DoE scheme
Results
Combination numbers
Vc (m/min)
fz (mm)
T (min)
Ra1 ( m m)
1
2
3
4
5
6
7
8
9
100
100
100
150
150
150
200
200
200
0.04
0.08
0.12
0.04
0.08
0.12
0.04
0.08
0.12
43.36
31.17
19.88
37.94
10.84
10.24
18.97
10.84
9.03
0.120
0.144
0.168
0.119
0.134
0.157
0.142
0.134
0.154
8
Table 4.
Pass
Condition
10
11
12
1
2
3
4
5
6
7
8
9
Condition
1
2
3
4
5
6
7
8
9
0.10
0.11
0.13
0.09
0.11
0.14
0.15
0.11
0.11
13
0.16
0.16
0.19
0.13
0.08
0.11
0.14
0.11
0.12
0.14
0.12
0.11
0.13
14
0.15
0.17
0.18
0.13
0.09
0.11
0.13
0.11
0.11
0.15
0.11
0.14
0.15
15
0.15
0.17
0.21
0.13
0.09
0.11
0.12
0.11
0.12
0.14
0.13
0.11
0.17
16
0.14
0.18
0.21
0.13
0.12
0.11
0.13
0.12
0.18
0.16
0.13
0.13
0.17
17
0.14
0.13
0.15
0.13
0.14
0.15
0.15
0.12
0.17
18
0.13
0.14
0.15
0.11
0.14
0.18
0.17
0.14
0.17
19
0.13
0.13
0.16
0.12
0.15
0.15
0.16
0.15
0.17
20
0.11
0.11
0.16
0.14
0.14
0.15
0.13
0.13
0.15
21
0.1
0.12
0.18
0.11
0.14
0.15
0.15
0.12
0.14
22
0.13
0.15
0.15
0.12
0.14
0.16
0.14
0.14
0.13
23
0.12
0.14
0.18
0.10
0.12
0.16
0.15
0.15
0.14
0.17
0.18
0.12
0.17
0.20
0.12
0.17
0.20
0.12
0.17
0.21
0.12
0.16
0.19
0.14
0.17
0.20
0.18
0.18
0.13
0.14
0.15
0.17
0.18
0.14
0.15
0.17
0.18
0.16
0.16
0.16
0.17
0.15
0.15
0.17
0.20
Table 5.
Source
Regression
Residual error
Total
Table 6.
Degrees of freedom
Sum of squares
2
6
8
0.50347
0.05606
0.55953
0.25173
0.00934
26.94
0.001
R2 90%
Source
Regression
Residual error
Total
Degrees of freedom
Sum of squares
2
6
8
0.014137
0.006832
0.020969
0.007068
0.001139
6.21
0.035
4.3.
R2 67.4%
ANN models description for cutting tool wear, surface roughness and tool life.
ANN models
Modelling variable
Type
Inputs
Outputs
Hidden layers
Neurons
Mapping function
Training method
Epochs
Learning
Back propagation
Vc, fz, Fc (RMS)
Tw
1
3
Logarithmic sigmoid
Lev-Marq
300
0.05
Back propagation
Vc, fz, Tw
Ra
1
3
Logarithmic sigmoid
Lev-Marq
100
0.05
Back propagation
V c, f z
T
1
2
Logarithmic sigmoid
Lev-Marq
200
0.05
Table 8.
Optimisation algorithms description for the operation of the ACO system (genetic algorithm).
Genetic algorithm
Variables to optimise
Population size
Stall generations
Stall time
Crossover frac.
Table 9.
V c, f z
10
7
6 sec
0.8
Elite count
Mutation function
Selection function
Generations
Initial ranges
2
Gaussian
Stochastic
15
Vc [100, 200]; fz [0.04, 0.12]
Optimisation algorithms description for the operation of the ACO system (mesh adaptive direct search).
Mesh adaptive direct search
Variables to optimise
Initial mesh size
Maximum mesh size
Minimum mesh size
Expansion factor
V c, f z
0.05
Inf
Inf
2
Contraction
Poll method
Polling order
Stop criterion
2
Positive basis 2N
Consecutive
Tolerance mesh: 5 6 1074
10
Figure 4.
18
tot
@T
@R
a
(
tm
ECtot c1 ttc ct co ttc 2 dT
T
)
2A n
rw p
19
R
R
dR
a
a
a
tgt
D2
Figure 5.
Figure 6.
Figure 7.
11
12
n
o
tm
ECtot 98:333 2 2sT j1875Ra 0:12sRa j
T
20
Evaluating Equation (20) using the traditional and the
proposed approach, the uncertainties of the production cost estimation per part are + 44.32 e and
+10.76 e, respectively. Therefore, the uncertainty of
the cost estimation is greatly reduced (76%) which is
mainly explained by the better performance of ANN
models to estimate the machining process variables.
5.
References
Abellan-Nebot, J.V., et al., 2008. Adaptive control optimization of cutting parameters for high quality machining
operations based on neural networks and search algorithms. In: J. Aramburo and A. Ram rez Trevino, eds.
Advances in robotics, automation and control. Austria: ITech Education and Publishing, 472491.
Abellan-Nebot, J.V., 2010. A review of articial intelligent
approaches applied to part accuracy prediction, International Journal of Machining and Machinability of
Materials, 8 (1/2), 637.
13
Samanta, B., 2009. Surface roughness prediction in machining using soft computing. International Journal of
Computer Integrated Manufacturing, 22 (3), 257266.
Sick, B., 2002. On-line and indirect tool wear monitoring in
turning with articial neural networks: a review of more
than a decade of research. Mechanical Systems and Signal
Processing, 16 (4), 487546.
Schey, J.A., 2000. Introduction to manufacturing processes.
Boston: McGraw-Hill Higher Education.
Shan, S. and Wang, G.G., 2010. Survey of modeling and
optimization strategies to solve high-dimensional design
problems with computationally-expensive black-box
functions. Structural and Multidisciplinary Optimization,
41, 219241.
Siller, H.R., et al., 2008. Study of face milling of hardened
AISI D3 steel with a special design of carbide tool.
International Journal of Advanced Manufacturing Technology, 40 (12), 1225.
Stephenson, D. and Agapiou, J., 1997. Metal cutting theory
and practice. New York: Marcel Dekker, Inc., 801848.
Tonsho, H.K., Arendt, C., and Amor, R.B., 2000. Cutting
of hardened steel. CIRP Annals - Manufacturing Technology, 49 (2), 547566.
Trent, E.M. and Wright, P.K., 2000. Metal cutting. 4th ed.
Boston: Butterworth/Heinemann.
Ulsoy, A.G. and Koren, Y., 1989. Application of adaptive
control to machine tool process control. Control system
Magazine, IEEE, 9 (4), 3337.
Valentincic, J., Brissaud, D., and Junkar, M., 2007. A novel
approach to DFM in toolmaking: a case study. International Journal of Computer Integrated Manufacturing, 20
(1), 2838.
Wang, Y., et al., 2005. A computer aided tool selection
system for 3D die/mould-cavity NC machining using
both a heuristic and analytical approach. International
Journal of Computer Integrated Manufacturing, 18 (8),
686701.
Zain, A.M., Haron, H., and Sharif, S., 2010. Prediction of
surface roughness in the end milling machining using
articial neural network. Expert Systems with Applications, 37, 17551768.
Zuperl, U. and Cus. F., 2003. Optimization of cutting
conditions during cutting by using neural networks.
Robotics and Computer Integrated Manufacturing, 19,
189199.
Zuperl, U., et al., 2004. A hybrid analytical-neural network
approach to the determination of optimal cutting
conditions. Journal of Materials Processing Technology,
157158, 8290.