Nothing Special   »   [go: up one dir, main page]

Catalysis

Download as docx, pdf, or txt
Download as docx, pdf, or txt
You are on page 1of 9

CATALYSIS

Types of catalytic reactions Catalysts can be divided into two main types - heterogeneous and homogeneous. In a heterogeneous reaction, the catalyst is in a different phase from the reactants. In a homogeneous reaction, the catalyst is in the same phase as the reactants. What is a phase? If you look at a mixture and can see a boundary between two of the components, those substances are in different phases. A mixture containing a solid and a liquid consists of two phases. A mixture of various chemicals in a single solution consists of only one phase, because you can't see any boundary between them.

You might wonder why phase differs from the term physical state(solid, liquid or gas). It includes solids, liquids and gases, but is actually a bit more general. It can also apply to two liquids (oil and water, for example) which don't dissolve in each other. You could see the boundary between the two liquids.

If you want to be fussy about things, the diagrams actually show more phases than are labelled. Each, for example, also has the glass beaker as a solid phase. All
1

probably have a gas above the liquid - that's another phase. We don't count these extra phases because they aren't a part of the reaction.

Heterogeneous catalysis This involves the use of a catalyst in a different phase from the reactants. Typical examples involve a solid catalyst with the reactants as either liquids or gases. How the heterogeneous catalyst works (in general terms) Most examples of heterogeneous catalysis go through the same stages: One or more of the reactants are adsorbed on to the surface of the catalyst at active sites. Adsorption is where something sticks to a surface. It isn't the same as absorption where one substance is taken up within the structure of another. Be careful! An active site is a part of the surface which is particularly good at adsorbing things and helping them to react. There is some sort of interaction between the surface of the catalyst and the reactant molecules which makes them more reactive. This might involve an actual reaction with the surface, or some weakening of the bonds in the attached molecules. The reaction happens. At this stage, both of the reactant molecules might be attached to the surface, or one might be attached and hit by the other one moving freely in the gas or liquid. The product molecules are desorbed. Desorption simply means that the product molecules break away. This leaves the active site available for a new set of molecules to attach to and react. A good catalyst needs to adsorb the reactant molecules strongly enough for them to react, but not so strongly that the product molecules stick more or less permanently to the surface. Silver, for example, isn't a good catalyst because it doesn't form strong enough attachments with reactant molecules. Tungsten, on the other hand, isn't a good catalyst because it adsorbs too strongly. Metals like platinum and nickel make good catalysts because they adsorb strongly enough to hold and activate the reactants, but not so strongly that the products can't break away.
2

Examples of heterogeneous catalysis The hydrogenation of a carbon-carbon double bond The simplest example of this is the reaction between ethene and hydrogen in the presence of a nickel catalyst.

In practice, this is a pointless reaction, because you are converting the extremely useful ethene into the relatively useless ethane. However, the same reaction will happen with any compound containing a carbon-carbon double bond. One important industrial use is in the hydrogenation of vegetable oils to make margarine, which also involves reacting a carbon-carbon double bond in the vegetable oil with hydrogen in the presence of a nickel catalyst. Ethene molecules are adsorbed on the surface of the nickel. The double bond between the carbon atoms breaks and the electrons are used to bond it to the nickel surface.

Hydrogen molecules are also adsorbed on to the surface of the nickel. When this happens, the hydrogen molecules are broken into atoms. These can move around on the surface of the nickel.

If a hydrogen atom diffuses close to one of the bonded carbons, the bond between the carbon and the nickel is replaced by one between the carbon and hydrogen.

That end of the original ethene now breaks free of the surface, and eventually the same thing will happen at the other end.
3

As before, one of the hydrogen atoms forms a bond with the carbon, and that end also breaks free. There is now space on the surface of the nickel for new reactant molecules to go through the whole process again.

Catalytic converters Catalytic converters change poisonous molecules like carbon monoxide and various nitrogen oxides in car exhausts into more harmless molecules like carbon dioxide and nitrogen. They use expensive metals like platinum, palladium and rhodium as the heterogeneous catalyst. The metals are deposited as thin layers onto a ceramic honeycomb. This maximises the surface area and keeps the amount of metal used to a minimum. Taking the reaction between carbon monoxide and nitrogen monoxide as typical:

Catalytic converters can be affected by catalyst poisoning. This happens when something which isn't a part of the reaction gets very strongly adsorbed onto the surface of the catalyst, preventing the normal reactants from reaching it. Lead is a familiar catalyst poison for catalytic converters. It coats the honeycomb of expensive metals and stops it working. In the past, lead compounds were added to petrol (gasoline) to make it burn more smoothly in the engine. But you can't use a catalytic converter if you are using leaded fuel. So catalytic converters have not only helped remove poisonous gases like carbon monoxide and nitrogen oxides, but have also forced the removal of poisonous lead compounds from petrol.

The use of vanadium(V) oxide in the Contact Process During the Contact Process for manufacturing sulphuric acid, sulphur dioxide has to be converted into sulphur trioxide. This is done by passing sulphur dioxide and oxygen over a solid vanadium(V) oxide catalyst.

This example is slightly different from the previous ones because the gases actually react with the surface of the catalyst, temporarily changing it. It is a good example of the ability of transition metals and their compounds to act as catalysts because of their ability to change their oxidation state. The sulphur dioxide is oxidised to sulphur trioxide by the vanadium(V) oxide. In the process, the vanadium(V) oxide is reduced to vanadium(IV) oxide.

The vanadium(IV) oxide is then re-oxidised by the oxygen.

This is a good example of the way that a catalyst can be changed during the course of a reaction. At the end of the reaction, though, it will be chemically the same as it started.

Homogeneous catalysis This has the catalyst in the same phase as the reactants. Typically everything will be present as a gas or contained in a single liquid phase. The examples contain one of each of these . . . Examples of homogeneous catalysis The reaction between persulphate ions and iodide ions Persulphate ions (peroxodisulphate ions), S2O82-, are very powerful oxidising agents. Iodide ions are very easily oxidised to iodine. And yet the reaction between them in solution in water is very slow. If you look at the equation, it is easy to see why that is:

The reaction needs a collision between two negative ions. Repulsion is going to get seriously in the way of that!

The catalysed reaction avoids that problem completely. The catalyst can be either iron(II) or iron(III) ions which are added to the same solution. This is another good example of the use of transition metal compounds as catalysts because of their ability to change oxidation state. For the sake of argument, we'll take the catalyst to be iron(II) ions. As you will see shortly, it doesn't actually matter whether you use iron(II) or iron(III) ions. The persulphate ions oxidise the iron(II) ions to iron(III) ions. In the process the persulphate ions are reduced to sulphate ions.

The iron(III) ions are strong enough oxidising agents to oxidise iodide ions to iodine. In the process, they are reduced back to iron(II) ions again.

Both of these individual stages in the overall reaction involve collision between positive and negative ions. This will be much more likely to be successful than collision between two negative ions in the uncatalysed reaction. What happens if you use iron(III) ions as the catalyst instead of iron(II) ions? The reactions simply happen in a different order.

The destruction of atmospheric ozone This is a good example of homogeneous catalysis where everything is present as a gas. Ozone, O3, is constantly being formed and broken up again in the high atmosphere by the action of ultraviolet light. Ordinary oxygen molecules absorb ultraviolet light and break into individual oxygen atoms. These have unpaired electrons, and are known as free radicals. They are very reactive.

The oxygen radicals can then combine with ordinary oxygen molecules to make ozone.

Ozone can also be split up again into ordinary oxygen and an oxygen radical by absorbing ultraviolet light.
6

This formation and breaking up of ozone is going on all the time. Taken together, these reactions stop a lot of harmful ultraviolet radiation penetrating the atmosphere to reach the surface of the Earth. The catalytic reaction we are interested in destroys the ozone and so stops it absorbing UV in this way. Chlorofluorocarbons (CFCs) like CF2Cl2, for example, were used extensively in aerosols and as refrigerants. Their slow breakdown in the atmosphere produces chlorine atoms - chlorine free radicals. These catalyse the destruction of the ozone. This happens in two stages. In the first, the ozone is broken up and a new free radical is produced.

The chlorine radical catalyst is regenerated by a second reaction. This can happen in two ways depending on whether the ClO radical hits an ozone molecule or an oxygen radical. If it hits an oxygen radical (produced from one of the reactions we've looked at previously):

ACID CATALYSIS IN ORGANIC CHEMISTRY The nitration of benzene Benzene is treated with a mixture of concentrated nitric acid and concentrated sulphuric acid at a temperature not exceeding 50C. As the temperature increases there is a greater chance of getting more than one nitro group, -NO2, substituted onto the ring. Nitrobenzene is formed.

or:

The concentrated sulphuric acid is acting as a catalyst. Because everything is present in the same liquid phase, this is a good example of homogeneous catalysis.

The hydration of ethene to make ethanol Ethene is mixed with steam and passed over a catalyst consisting of solid silicon dioxide coated with phosphoric(V) acid. The temperature used is 300C and the pressure is about 60 to 70 atmospheres. Because the catalyst is in a different phase from the reactants, this is an example of heterogeneous catalysis.

This is a reversible reaction and only about 5% of the ethene reacts on each pass over the catalyst. When the reaction mixture is cooled, the ethanol and any excess steam condense, and the gaseous ethene can be recycled through the process. A conversion rate of about 95% is achieved by continual recycling in this way.

Making esters - the esterification reaction Esters are what is formed when an organic acid reacts with an alcohol in the presence of concentrated sulphuric acid as the catalyst. Everything is present in a single liquid phase, and so this is an example of homogeneous catalysis. For example, ethanoic acid reacts with ethanol to produce ethyl ethanoate.

The ethyl ethanoate has the lowest boiling point of anything in the mixture, and so is distilled off as soon as it is formed. This helps to reduce the reverse reaction.

The acid catalysed hydrolysis of esters In principle, this is the reverse of the esterification reaction but, in practice, it has to be done slightly differently. The ester is heated under reflux with a dilute acid such as dilute hydrochloric acid or dilute sulphuric acid.
8

The equation for the reaction is simply the esterification equation written backwards.

The dilute acid used as the catalyst also provides the water for the reaction. You need a large excess of water in order to increase the chances of the forward reaction happening and the ester hydrolysing. You would normally hydrolyse esters quite differently by heating them with sodium hydroxide solution (alkaline hydrolysis). This isn't an example of a catalytic reaction because the hydroxide ions are used up during the reaction.

The main advantage of doing it like this is that it is a one-way reaction. The ester can be completely hydrolysed rather than only partially if the reaction is reversible.

You might also like