Nothing Special   »   [go: up one dir, main page]

Chapter 7 3

Download as pdf or txt
Download as pdf or txt
You are on page 1of 29

7.

3 Operational Properties 1
First Translation Theorem (s-axis):
{ }
{ }
{ }


( ) ( )
( )
( )
at
s s a
s s a
e f t f t
F s
F s a


=
=
=
L L
Find the Laplace Transform of f (t) then replace s by s a
Formula no. 9 - 14
( ) F s a =
{ } { }
2 3 3
2
4
2
4
3

6

2
!
( )
t
s s
s s
e t t
s
s


=

=
`
)
=

L L
Example 1:
a = 2, f(t) = t
3
Replace s by s - 2
Can directly use formula no. 10 from table of Laplace
Transform:
{ }
1
!
( )
at n
n
n
e t
s a
+
=

L
a = 2, n = 3
{ }
{ }
5
5
2
5
2
3 3
3

9
3

5 9
sin sin
( )
t
s s
s s
e t t
s
s

+
+
=

=
`
+ )
=
+ +
L L
Example 2:
a = -5, f(t) = sin 3t
Replace s by s + 5
5 9 ( ) s + +
Can directly use formula no. 12 from table of Laplace
Transform:
{ }
2 2
sin
( )
at
k
e kt
s a k
=
+
L
a = -5, k = 3
{ } { }
{ }
2 2 2
2
2
2
1 1
2 1
2 2 1
=
( ) ( )
t
s s
s s
e t t
t t


=
= +

+
`
L L
L
Example 3:
a = 2, f(t) = (t - 1)
2
Replace s by s 2
3 2
2
3 2
2 2 1
=
2 2 1

2
2 2
( )
( ) ( )
s s
s
s s
s
s s

+
`
)
= +


Replace s by s 2
Inverse Laplace of First Translation Theorem:
{ } { }
1 1

( ) ( )
( )
s s a
at
F s a F s
e f t


=
=
L L
Find the inverse Laplace Transform of F(s) then multiply
together with e
at
(Formula no. 9 14)
1 1 3
4 4
1 1 1
3
1
!
( )
t t
e t e
s s




= =
` `
+ )

)
L L
Example 4:
a = -1
Can directly use formula no. 10 from table of Laplace
Transform:
{ }
1
1 1
1 1 !
!
( ) ( )
at n at n
n n
n
e t e t
n
s a s a

+ +


= =
`


)
L L
a = -1, n = 3
1
2
1
2
1
1 1
1
( )
( )
( )
s
s
s
s



`
+

)

+

=
`
+

)
L
L
Example 4:
Doesnt match any formula
term-wise division
1
2 2
1
2
1 1
1 1
1 1
1
1
( )
( ) ( )
( )
( )
s
s s
s
s

)

+

=
`
+ +

)


=
`
+
+

)
L
L
Now, can use
formula (6) and
formula (9)
(a = -1) (a = -1, n = 1)
1
2
1
2
6 11
3 9 11 ( )
s
s s
s
s


`
+ + )


=
`
+ +

)
L
L
Example 5:
Doesnt match any formula
cannot factor the
denominator, use
completing the square
1
2
1
2
3 2
3 3
3 2
( )
( )
( )
s
s
s
s



=
`
+ +

)

+

=
`
+ +

)
L
L
Look similar with formula
no. 12, but need to modify
1 1
2 2
3 3
3 2 3 2
( )
( ) ( )
s
s s


+

=
` `
+ + + +

) )
L L
Example 5 (continue):
Formula no. 12
a = -3 , k = 2
Formula no. 11
a = -3 , k = 2
3 1 3 1
2 2
3 3
1
3
2 2
3
2 2
2
cos sin
t t
t t
s
e e
s s
e t e t



=
` `
+ + ) )
=
L L
Second Translation Theorem (t-axis):
Definition 1: (Unit Step Function)
0 0
1
,
( )
,
t a
u t a
t a
<

The unit step function (or the Heaviside function) is defined as:
t
u(t a)
If a = 0, u(t) = 1
Piecewise Defined Function in terms of Unit Step
Function
A piecewise-defined function can be expressed in terms of unit
step function (single/compact form):
a t
a t
t h
t g
t f

<

=
0
) (
) (
) (
u(t 0) = 1
In unit step function:
or
f(t) = g(t)[u(t 0) u(t a)] + h(t)u(t a)
a t t h

) (
u(t 0) = 1
f(t) = g(t)[1 u(t a)] + h(t)u(t a)
Example 1:
f(t) = g(t)[1 u(t a)] + h(t)u(t a)
2
0
, 0 1
( )
, 1
t
f t
t
t

<

In unit step function:


a = 1,
g(t) = 0
h(t) = t
2
f(t) = g(t)[1 u(t a)] + h(t)u(t a)
Example 1:
f(t) = g(t)[1 u(t a)] + h(t)u(t a)
2
0
, 0 1
( )
, 1
t
f t
t
t

<

In unit step function:


a = 1,
g(t) = 0
h(t) = t
2
f(t) = g(t)[1 u(t a)] + h(t)u(t a)
f(t) = 0[1 u(t 1)] + t
2
u(t 1)
= t
2
u(t 1)
Example 2:
f(t) = g(t)[1 u(t a)] + h(t)u(t a)
sin , 0
( )
1 ,
t t
f t
t

<

In unit step function:


a = ,
g(t) = sin t
h(t) = 1
f(t) = g(t)[1 u(t a)] + h(t)u(t a)
Example 2:
f(t) = g(t)[1 u(t a)] + h(t)u(t a)
sin , 0
( )
1 ,
t t
f t
t

<

In unit step function:


a = ,
g(t) = sin t
h(t) = 1
f(t) = g(t)[1 u(t a)] + h(t)u(t a)
= sin t sin t u(t ) + u(t )
f(t) = sin t[1 u(t )] + u(t )
= sin t + [1 sin t]u(t )
Second Translation Theorem (t-axis):
Find the Laplace Transform of f (t) then multiply together
with e
-as
(Formula no. 20-21)
{ } { }
( ) ( ) ( ) ( )
as as
f t a u t a e f t e F s

= = L L
{ } { }
( ) ( ) ( )
as
g t u t a e g t a

= + L L
(Formula no. 22)
Use this formula if the independent variable in g(t) doesnt
match the independent variable in the unit step function.
{ }
1 ( )
s
e
u t
s

= L
Examples:
Formula no. 20
{ }
( )
as
e
u t a
s

= L
{ }
{ } { }
1
1
1
1
1
( )
( )
( ) ( )
s
t s t s
e
u t
s
e u t e e e
s


=
= =

L
L L
Examples:
Formula no. 20
Formula no. 21
{ }
( ) ( ) ( )
as
f t a u t a e F s

= L
{ }
( )
as
e
u t a
s

= L
Formula no. 21
{ }
( ) ( ) ( )
as
f t a u t a e F s

= L
{ }
{ } { }
1
1
1
1
1
( )
( )
( ) ( )
s
t s t s
e
u t
s
e u t e e e
s


=
= =

L
L L
Examples:
Formula no. 20
Formula no. 21
{ }
( ) ( ) ( )
as
f t a u t a e F s

= L
{ }
( )
as
e
u t a
s

= L
{ } { }
2
1 1
1 1 ( ) ( )
s s
t u t e t e
s
s

| |
= + = +
|
\
L L
Formula no. 21
Formula no. 22
{ } { }
( ) ( ) ( )
as
g t u t a e g t a

= + L L
{ }
( ) ( ) ( )
as
f t a u t a e F s

= L
Example: Find the Laplace Transform of the function
defined by:
2
0
, 0 1
( )
, 1
t
f t
t
t

<

From the previous example, we can write f(t) in unit


step function as:
a = 1,
g(t) = 0
h(t) = t
2
2
( ) ( 1) f t t u t =
Example: Find the Laplace Transform of the function
defined by:
2
0
, 0 1
( )
, 1
t
f t
t
t

<

From the previous example, we can write f(t) in unit


step function as:
a = 1,
g(t) = 0
h(t) = t
2
{ }
{ }
2
2
( ) ( 1)
( ) ( 1)
f t t u t
f t t u t
=
= L L
Example: Find the Laplace Transform of the function
defined by:
2
0
, 0 1
( )
, 1
t
f t
t
t

<

From the previous example, we can write f(t) in unit


step function as:
a = 1,
g(t) = 0
h(t) = t
2
{ }
{ }
{ }
{ }
2
2
2
2
( ) ( 1)
( ) ( 1)
( 1)
2 1
s
s
f t t u t
f t t u t
e t
e t t

=
=
= +
= + +
L L
L
L
Formula no. 22
Example: Find the Laplace Transform of the function
defined by:
2
0
, 0 1
( )
, 1
t
f t
t
t

<

From the previous example, we can write f(t) in unit


step function as:
a = 1,
g(t) = 0
h(t) = t
2
{ }
{ }
{ }
{ }
2
2
2
2
3 2
( ) ( 1)
( ) ( 1)
( 1)
2 2 1
2 1
s
s s
f t t u t
f t t u t
e t
e t t e
s
s s


=
=
= +
(
= + + = + +
(

L L
L
L
{ }
1
( ) ( ) ( )
as
e F s f t a u t a

= L
Inverse of Second Translation Theorem:
(Formula no. 21)
where:
{ }
1
( ) ( ) f t F s

= L
then find f(t a) and multiply together with unit step
function u(t a).
{ }
( ) ( ) f t F s = L
Example 1:
1 2
3
1
s
e
s


`
)
L
{ }
1
( ) ( ) ( )
as
e F s f t a u t a

= L
use formula no. 21
where:
3
1
2 ( ) , F s a
s
= =
By using this formula:
need to find f(t 2 );
1 2
3
1
2 2 ( ) ( )
s
e f t u t
s


=
`
)
L
Example 1:
1 2
3
1
s
e
s


`
)
L
{ }
1
( ) ( ) ( )
as
e F s f t a u t a

= L
use formula no. 21
where:
3
1 2 2
1
2
1 1 1
( ) , F s a
s

= =

= = =
Therefore:
1 2 2
3
1 1 1
2 2
2 2
( ) ( ) ( ) f t t f t t
s


= = =
`
)
L
1 2
3
2
1
2 2
1
2 2
2
( ) ( )
( ) ( )
s
e f t u t
s
t u t


=
`
)
=
L
Example 2:
1 2
2
4
s
s
e
s


`
+ )
L
{ }
1
( ) ( ) ( )
as
e F s f t a u t a

= L
use formula no. 21
where:
2
2
4
( ) ,
s
F s a
s
= =
+
Therefore:
1
2
2 2 2 2
4
( ) cos ( ) cos ( )
s
f t t f t t
s


= = =
`
+ )
L
1 2
2
2 2
4
2 2 2
( ) ( )
cos ( ) ( )
s
s
e f t u t
s
t u t





=
`
+ )
=
L
Example 3:
1
1 ( )
s
e
s s



`
+

)
L
use formula no. 21
1
1
1
1
( ) ,
( )
( ) ?
( ) ?
F s a
s s
f t
f t
= =
+
=
=
use partial fraction
Therefore:
1 ( ) ? f t =
1
1 1
1
1
( ) ( )
( )
[ ? ] ( )
s
e
f t u t
s s
u t



=
`
+

)
=
L
Example 3:
1
1 ( )
s
e
s s



`
+

)
L
use formula no. 21
1
1
1
1
1 1
1
1
( ) ,
( )
( )
t
F s a
s s
f t e
s s

= =
+

= =
`
+
)
L
Therefore:
1
1
1
1 1
( )
( )
( )
t
f t e
s s
f t e

= =
`
+
)
=
L
1
1
1 1
1
1 1
( )
( ) ( )
( )
[ ] ( )
s
t
e
f t u t
s s
e u t




=
`
+

)
=
L

You might also like