Method of Integration Word
Method of Integration Word
Method of Integration Word
Recall
Consider
=
=
which produces a more difficult expression
Now consider
=
=
Consider
V U
(
(
(
]
d U V U V
(
(
(
]
d
x x e
x
(
(
(
]
d x e
x
( )
x ( )
(
(
(
]
d
x e
x
( )
d
x
2
2
|
\
|
|
.
|
\
|
|
.
(
(
(
(
]
d
x
2
2
|
\
|
|
.
e
x
( )
x
x
2
2
|
\
|
|
.
d e
x
( )
(
(
(
(
]
d
x
2
2
|
\
|
|
.
e
x
( )
x
x
2
2
|
\
|
|
.
e
x
(
(
(
(
]
d
x x e
x
(
(
(
]
d x x ( ) d e
x
( ) ( )
(
(
(
]
d
x e
x
x e
x
( )
d x ( )
(
(
(
]
d x e
x
x e
x
( )
1 ( )
(
(
(
]
d
x e
x
x e
x
(
(
(
]
d x e
x
e
x
k +
x x
2
e
x
(
(
(
]
d x e
x
( )
x
2
( )
(
(
(
]
d
=
=
which produces a more difficult expression
Now consider
=
=
Consider
=
=
Consider
x e
x
( )
d
x
3
3
|
\
|
|
.
|
\
|
|
.
(
(
(
(
]
d
x
3
3
|
\
|
|
.
e
x
( )
x
x
3
3
|
\
|
|
.
d e
x
( )
(
(
(
(
]
d
x
3
3
|
\
|
|
.
e
x
( )
x
x
3
3
|
\
|
|
.
e
x
(
(
(
(
]
d
x x
2
e
x
(
(
(
]
d x x
2
( )
d e
x
( ) ( )
(
(
(
]
d x
2
e
x
x e
x
( )
d x
2
( )
(
(
(
]
d
x
2
e
x
x e
x
( )
2 x ( )
(
(
(
]
d x
2
e
x
2 x x e
x
(
(
(
]
d
|
\
|
|
|
.
x
2
e
x
2 e
x
x 1 ( )
e
x
x
2
2 x 2 +
( )
k +
x x e
x
(
(
(
]
d x x d e
x
( )
(
(
(
]
d
x e
x
x e
x
( )
d x ( )
(
(
(
]
d x e
x
x e
x
1 ( )
(
(
(
]
d +
x e
x
x e
x
(
(
(
]
d + x e
x
e
x
x x
2
e
x
(
(
(
]
d x x
2
d e
x
( )
(
(
(
]
d
=
=
Consider
=
=
=
consider
=
=
=
x
2
e
x
x e
x
( )
d x
2
( )
(
(
(
]
d x
2
e
x
2 x x e
x
(
(
(
]
d +
x
2
e
x
2 x e
x
e
x
( )
+
x ln x ( )
(
(
(
]
d x ln x ( ) ( ) 1 ( )
(
(
(
]
d
x ln x ( ) ( ) d x ( ) ( )
(
(
(
]
d xln x ( ) x x d ln x ( ) ( )
(
(
(
]
d
x ln x ( ) x x ( )
1
x
|
\
|
|
.
(
(
(
]
d x ln x ( ) x 1
(
(
(
]
d
x ln x ( ) x k +
x x ln x ( ) ( )
(
(
(
]
d x ln x ( ) ( ) d
x
2
2
|
\
|
|
.
|
\
|
|
.
(
(
(
(
]
d
x
2
2
|
\
|
|
.
ln x ( ) x
x
2
2
|
\
|
|
.
d ln x ( ) ( )
(
(
(
(
]
d
x
2
2
|
\
|
|
.
ln x ( ) x
x
2
2
|
\
|
|
.
1
x
|
\
|
|
.
(
(
(
(
]
d
x
2
2
|
\
|
|
.
ln x ( ) x
x
2
|
\
|
|
.
(
(
(
]
d
x
2
2
|
\
|
|
.
ln x ( )
x
2
4
k +
consider
=
=
=
consider
=
=
=
consider
x x
3
ln x ( ) ( )
(
(
(
]
d x ln x ( ) ( ) x
3
( )
(
(
(
]
d
x ln x ( ) ( ) d
x
4
4
|
\
|
|
.
|
\
|
|
.
(
(
(
(
]
d
x
4
ln x ( )
4
x
x
4
4
d ln x ( ) ( )
(
(
(
(
]
d
x
4
ln x ( )
4
x
x
4
4
|
\
|
|
.
1
x
|
\
|
|
.
(
(
(
(
]
d
x
4
ln x ( )
4
x
x
3
4
|
\
|
|
.
(
(
(
(
]
d
x
4
ln x ( )
4
x
4
16
k +
x x sin 2 x ( ) ( )
(
(
(
]
d x x d
cos 2 x ( )
2
|
\
|
|
.
|
\
|
|
.
(
(
(
]
d
x cos 2 x ( )
2
x
cos 2 x ( )
2
|
\
|
|
.
d x ( )
(
(
(
]
d
x cos 2 x ( )
2
x
cos 2 x ( )
2
|
\
|
|
.
1 ( )
(
(
(
]
d +
x cos 2x ( )
2
x
cos 2x ( )
2
|
\
|
|
.
(
(
(
]
d +
xcos 2x ( )
2
sin 2x ( )
4
+ k +
x x cos 2x ( ) ( )
(
(
(
]
d x x d
sin 2x ( )
2
|
\
|
|
.
|
\
|
|
.
(
(
(
]
d
=
=
=
=
consider
=
=
=
=
x sin 2x ( )
2
x
sin 2x ( )
2
|
\
|
|
.
d x ( ) ( )
(
(
(
]
d
x sin 2 x ( )
2
x
sin 2x ( )
2
|
\
|
|
.
1 ( )
(
(
(
]
d
x sin x ( )
2
1
2
x sin 2x ( ) ( )
(
(
(
]
d
(
(
(
x cos 2x ( )
2
x
cos 2x ( )
2
|
\
|
|
.
(
(
(
]
d +
xcos 2x ( )
2
sin 2x ( )
4
+ k +
x x cos 2x ( ) ( )
(
(
(
]
d x x d
sin 2x ( )
2
|
\
|
|
.
|
\
|
|
.
(
(
(
]
d
x sin 2x ( )
2
x
sin 2x ( )
2
|
\
|
|
.
d x ( ) ( )
(
(
(
]
d
x sin 2 x ( )
2
x
sin 2x ( )
2
|
\
|
|
.
1 ( )
(
(
(
]
d
x sin 2x ( )
2
1
2
x sin 2x ( ) ( )
(
(
(
]
d
(
(
(
x sin 2x ( )
2
1
2
cos 2x ( )
2
|
\
|
|
.
x sin 2x ( )
2
cos 2x ( )
4
+ k +
consider
=
=
=
=
=
consider
=
=
x x
2
cos x ( ) ( )
(
(
(
]
d x x
2
d sin x ( ) ( ) ( )
(
(
(
]
d
x
2
( )
sin x ( ) x sin x ( ) ( ) d x
2
( ) ( )
(
(
(
]
d
x
2
( )
sin x ( ) x 2 x ( )sin x ( )
(
(
(
]
d
x
2
( )
sin x ( ) 2 x x sin x ( ) ( )
(
(
(
]
d
(
(
(
x
2
( )
sin x ( ) 2 x cos x ( ) sin x ( ) + ( )
x
2
( )
sin x ( ) 2 x cos x ( ) + 2 sin x ( )
t e
st
t ( )
(
(
(
]
d t t d
e
st
s
|
\
|
|
.
|
\
|
|
.
(
(
(
(
]
d
t ( )
e
st
s
|
\
|
|
.
t
e
st
s
|
\
|
|
.
d t ( ) ( )
(
(
(
(
]
d
t e
st
s
t
e
st
s
|
\
|
|
.
1 ( )
(
(
(
(
]
d +
=
=
consider
=
=
=
=
=
=
t e
st
s
t
e
st
s
|
\
|
|
.
(
(
(
(
]
d +
t e
st
s
e
st
s
2
t e
st
sin kt ( ) ( )
(
(
(
]
d t sin kt ( ) ( ) ( ) d
e
st
s
|
\
|
|
.
|
\
|
|
.
(
(
(
(
]
d
sin kt ( ) ( )
e
st
s
|
\
|
|
.
t
e
st
s
|
\
|
|
.
d sin kt ( ) ( ) ( )
(
(
(
(
]
d
sin kt ( ) ( ) e
st
s
1
s
t e
st
( )
k cos kt ( ) ( )
(
(
(
]
d +
sin kt ( ) ( ) e
st
s
k
s
t cos kt ( ) ( ) d
e
st
s
|
\
|
|
.
|
\
|
|
.
(
(
(
(
]
d +
sin kt ( ) ( ) e
st
s
k
s
e
st
s
|
\
|
|
.
cos kt ( ) ( ) t
e
st
s
|
\
|
|
.
d cos kt ( ) ( ) ( )
(
(
(
(
]
d
(
(
(
(
+
sin kt ( ) ( ) e
st
s
k e
st
s
2
cos kt ( ) ( )
k
s
|
\
|
|
.
t
e
st
s
|
\
|
|
.
k sin kt ( ) ( )
(
(
(
(
]
d +
sin kt ( ) ( ) e
st
s
k e
st
s
2
cos kt ( ) ( )
k
2
s
2
t e
st
( )
sin kt ( ) ( )
(
(
(
]
d
Hence
1
k
2
s
2
+
|
\
|
|
|
.
t e
st
( )
sin kt ( ) ( )
(
(
(
]
d
sin kt ( ) ( ) e
st
s
k e
st
s
2
cos kt ( ) ( )
t e
st
( )
sin kt ( ) ( )
(
(
(
]
d
k
2
s
2
+
k
2
|
\
|
|
|
.
sin kt ( ) ( ) e
st
s
k e
st
s
2
cos kt ( ) ( )
(
(
(