Nothing Special   »   [go: up one dir, main page]

003-Heat Exchanger

Download as docx, pdf, or txt
Download as docx, pdf, or txt
You are on page 1of 299

Cover Page

DESIGN CALCULATION
In Accordance with ASME Section VIII Division 1
ASME Code Version

: 2010 Edition, 2011a Addenda

Analysis Performed by : PROCESS SYSTEM ENGINEERS (I) PVT. LTD


Job File

: E:\DESIGN-\LANSH ENGINEERING\003-HEAT EXCHANGER

Date of Analysis

PV Elite 2012,

Sep 5,2012

January 2012

Title Page

Note: PV Elite performs all calculations internally in Imperial Units


to remain compliant with the ASME Code and any built in
assumptions
in the ASME Code formulas. The customary Imperial database is
used for consistency. The finalized results are reflected to show
the users set of selected units.

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 1
Warnings and Errors :
Step:
0 11:15p Sep 5,2012
Class From To : Basic Element Checks.
=========================================================================
=
Class From To: Check of Additional Element Data
=========================================================================
=
There were no geometry errors or warnings.
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 2
Input Echo :
Step:
1 11:15p Sep 5,2012
PV Elite Vessel Analysis Program: Input Data
Exchanger Design Pressures and Temperatures
Shell Side Design Pressure
Channel Side Design Pressure
Shell Side Design Temperature
Channel Side Design Temperature
Type of Hydrotest
Hydrotest Position
Projection of Nozzle from Vessel Top
Projection of Nozzle from Vessel Bottom
Minimum Design Metal Temperature
Type of Construction
Special Service
Degree of Radiography
Miscellaneous Weight Percent
Use Higher Longitudinal Stresses (Flag)
Select t for Internal Pressure (Flag)
Select t for External Pressure (Flag)
Select t for Axial Stress (Flag)
Select Location for Stiff. Rings (Flag)
Consider Vortex Shedding
Perform a Corroded Hydrotest
Is this a Heat Exchanger
User Defined Hydro. Press. (Used if > 0)
User defined MAWP
User defined MAPnc
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load

Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

11.000
33.000
215
185
UG99-b Note [34]
Horizontal
250.00
250.00
0
Welded
None
RT 1
5.0
Y
N
N
N
N
N
Y
Yes
0.0000
0.0000
0.0000
NP+EW+WI+FW+BW
NP+EW+EE+FS+BS
NP+OW+WI+FW+BW
NP+OW+EQ+FS+BS
NP+HW+HI
NP+HW+HE
IP+OW+WI+FW+BW
IP+OW+EQ+FS+BS
EP+OW+WI+FW+BW
EP+OW+EQ+FS+BS
HP+HW+HI
HP+HW+HE
IP+WE+EW
IP+WF+CW
IP+VO+OW
IP+VE+EW
NP+VO+OW
FS+BS+IP+OW

bar
bar
C
C

mm
mm
C

bar
bar
bar

Load Case 19
Wind Design Code

FS+BS+EP+OW
IS-875

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 3
Input Echo :
Step:
1 11:15p Sep 5,2012
Basic Wind Speed for IS-875
Wind Zone Number
Base Elevation
Percent Wind for Hydrotest
Risk Factor
Terrain Category
Equipment Class
Topography Factor
Damping Factor (Beta) for Wind (Ope)
Damping Factor (Beta) for Wind (Empty)
Damping Factor (Beta) for Wind (Filled)
Seismic Design Code
Importance Factor for IS-1893
Soil Factor
Zone Number
Percent Seismic for Hydrotest

47.000
4
0.0000
33.0
1.0700001
1
1
1.0
0.0100
0.0000
0.0000

mm

IS-1893-SCM
1.500
1.200
4.000
0.000

Design Nozzle for Des. Press. + St. Head


Consider MAP New and Cold in Noz. Design
Consider External Loads for Nozzle Des.
Use ASME VIII-1 Appendix 1-9
Material Database Year

m/sec

Y
N
Y
N

Current w/Addenda or Code Year

Configuration Directives:
Do not use Nozzle MDMT Interpretation VIII-1 01-37
Use Table G instead of exact equation for "A"
Shell Head Joints are Tapered
Compute "K" in corroded condition
Use Code Case 2286
Use the MAWP to compute the MDMT
Using Metric Material Databases, ASME II D

No
Yes
Yes
Yes
No
Yes
No

Complete Listing of Vessel Elements and Details:


Element From Node
Element To Node
Element Type
Description
Distance "FROM" to "TO"
Inside Diameter
Element Thickness
Internal Corrosion Allowance
Nominal Thickness
External Corrosion Allowance
Design Internal Pressure
Design Temperature Internal Pressure
Design External Pressure

10
20
Elliptical
BONNET DISH
40.000 mm
475.00 mm
10.000 mm
3.0000 mm
12.000 mm
0.0000 mm
33.000 bar
185 C
1.0342 bar

Design Temperature External Pressure


Effective Diameter Multiplier
Material Name

185
1.2
SA-516 70

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 4
Input Echo :
Step:
1 11:15p Sep 5,2012
Allowable Stress, Ambient
Allowable Stress, Operating
Allowable Stress, Hydrotest
Material Density
P Number Thickness
Yield Stress, Operating
UCS-66 Chart Curve Designation
External Pressure Chart Name
UNS Number
Product Form
Efficiency, Longitudinal Seam
Efficiency, Circumferential Seam
Elliptical Head Factor
Element From Node
Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Height/Length of Liquid
Liquid Density

20000.
20000.
26000.
0.007750
31.750
32885.
B
CS-2
K02700
Plate
1.0
1.0
2.0
10
Liquid
LIQUID
0.0000
475.00
999.55

psi
psi
psi
kgm/cm
mm
psi

mm
mm
kgm/m

-------------------------------------------------------------------Element From Node


Element To Node
Element Type
Description
Distance "FROM" to "TO"
Inside Diameter
Element Thickness
Internal Corrosion Allowance
Nominal Thickness
External Corrosion Allowance
Design Internal Pressure
Design Temperature Internal Pressure
Design External Pressure
Design Temperature External Pressure
Effective Diameter Multiplier
Material Name
Efficiency, Longitudinal Seam
Efficiency, Circumferential Seam
Element From Node
Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Height/Length of Liquid
Liquid Density
Element From Node

20
30
Cylinder
BONNET SHELL
630.00
475.00
10.000
3.0000
10.000
0.0000
33.000
185
1.0342
185
1.2
SA-516 70
1.0
1.0
20
Liquid
Liquid 20
0.0000
475.00
999.55
20

mm
mm
mm
mm
mm
mm
bar
C
bar
C

mm
mm
kgm/m

Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist

Nozzle
N1
364.00

mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 5
Input Echo :
Step:
1 11:15p Sep 5,2012
Nozzle Diameter
Nozzle Schedule
Nozzle Class
Layout Angle
Blind Flange (Y/N)
Weight of Nozzle ( Used if > 0 )
Grade of Attached Flange
Nozzle Matl

200.0
80
300
180.0
N
0.0000
GR 1.1
SA-106 B

Element From Node


Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Nozzle Diameter
Nozzle Schedule
Nozzle Class
Layout Angle
Blind Flange (Y/N)
Weight of Nozzle ( Used if > 0 )
Grade of Attached Flange
Nozzle Matl

20
Nozzle
N2
325.00
200.0
80
300
0.0
N
0.0000
GR 1.1
SA-106 B

Element From Node


Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Nozzle Diameter
Nozzle Schedule
Nozzle Class
Layout Angle
Blind Flange (Y/N)
Weight of Nozzle ( Used if > 0 )
Grade of Attached Flange
Nozzle Matl

20
Nozzle
N8
65.000
25.0
XXS
300
180.0
N
0.0000
GR 1.1
SA-106 B

mm

kgf

mm
mm

kgf

mm
mm

kgf

-------------------------------------------------------------------Element From Node


Element To Node
Element Type
Description
Distance "FROM" to "TO"
Flange Inside Diameter
Element Thickness
Internal Corrosion Allowance
Nominal Thickness
External Corrosion Allowance
Design Internal Pressure
Design Temperature Internal Pressure
Design External Pressure

30
40
Flange
BONNET FLANGE
90.000
475.00
80.000
3.0000
80.000
0.0000
33.000
185
1.0342

mm
mm
mm
mm
mm
mm
bar
C
bar

Design Temperature External Pressure


Effective Diameter Multiplier
Material Name

185
1.2
SA-105

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 6
Input Echo :
Step:
1 11:15p Sep 5,2012
Allowable Stress, Ambient
Allowable Stress, Operating
Allowable Stress, Hydrotest
Material Density
P Number Thickness
Yield Stress, Operating
UCS-66 Chart Curve Designation
External Pressure Chart Name
UNS Number
Product Form
Perform Flange Stress Calculation (Y/N)
Weight of ANSI B16.5/B16.47 Flange
Class of ANSI B16.5/B16.47 Flange
Grade of ANSI B16.5/B16.47 Flange
Element From Node
Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Height/Length of Liquid
Liquid Density

20000.
20000.
26000.
0.007750
31.750
31150.
B
CS-2
K03504
Forgings
Y
0.0000

30
Liquid
Liquid 30
0.0000
475.00
999.55

psi
psi
psi
kgm/cm
mm
psi

kgf

mm
mm
kgm/m

-------------------------------------------------------------------Element From Node


Element To Node
Element Type
Description
Distance "FROM" to "TO"
Flange Inside Diameter
Element Thickness
Internal Corrosion Allowance
Nominal Thickness
External Corrosion Allowance
Design Internal Pressure
Design Temperature Internal Pressure
Design External Pressure
Design Temperature External Pressure
Effective Diameter Multiplier
Material Name
Perform Flange Stress Calculation (Y/N)
Weight of ANSI B16.5/B16.47 Flange
Class of ANSI B16.5/B16.47 Flange
Grade of ANSI B16.5/B16.47 Flange
Element From Node
Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Height/Length of Liquid

40
50
Flange
SHELL FLANGE
90.000
475.00
80.000
3.0000
80.000
0.0000
11.000
215
1.0342
215
1.2
SA-105
Y
0.0000

40
Liquid
Liquid 40
0.0000
475.00

mm
mm
mm
mm
mm
mm
bar
C
bar
C

kgf

mm
mm

Liquid Density

999.55

kgm/m

--------------------------------------------------------------------

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 7
Input Echo :
Step:
1 11:15p Sep 5,2012
Element From Node
Element To Node
Element Type
Description
Distance "FROM" to "TO"
Inside Diameter
Element Thickness
Internal Corrosion Allowance
Nominal Thickness
External Corrosion Allowance
Design Internal Pressure
Design Temperature Internal Pressure
Design External Pressure
Design Temperature External Pressure
Effective Diameter Multiplier
Material Name
Allowable Stress, Ambient
Allowable Stress, Operating
Allowable Stress, Hydrotest
Material Density
P Number Thickness
Yield Stress, Operating
UCS-66 Chart Curve Designation
External Pressure Chart Name
UNS Number
Product Form
Efficiency, Longitudinal Seam
Efficiency, Circumferential Seam

50
60
Cylinder
SHELL
3006.0
475.00
10.000
3.0000
10.000
0.0000
11.000
215
1.0342
215
1.2
SA-516 70
20000.
20000.
26000.
0.007750
31.750
32216.
B
CS-2
K02700
Plate
1.0
1.0

Element From Node


Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Width of Saddle
Height of Saddle at Bottom
Saddle Contact Angle
Height of Composite Ring Stiffener
Width of Wear Plate
Thickness of Wear Plate
Contact Angle, Wear Plate (degrees)

50
Saddle
Lft Sdl
630.00
133.00
498.00
120.0
0.0000
200.00
10.000
131.0

Element From Node


Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Width of Saddle
Height of Saddle at Bottom
Saddle Contact Angle
Height of Composite Ring Stiffener

50
Saddle
Sdl 2 Fr50
2090.0
133.00
498.00
120.0
0.0000

mm
mm
mm
mm
mm
mm
bar
C
bar
C
psi
psi
psi
kgm/cm
mm
psi

mm
mm
mm
mm
mm
mm

mm
mm
mm
mm

Width of Wear Plate


Thickness of Wear Plate
Contact Angle, Wear Plate (degrees)

200.00
10.000
131.0

mm
mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 8
Input Echo :
Step:
1 11:15p Sep 5,2012
Element From Node
Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Height/Length of Liquid
Liquid Density

50
Liquid
Liquid 50
0.0000
475.00
999.55

Element From Node


Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Nozzle Diameter
Nozzle Schedule
Nozzle Class
Layout Angle
Blind Flange (Y/N)
Weight of Nozzle ( Used if > 0 )
Grade of Attached Flange
Nozzle Matl

50
Nozzle
N3
190.00
65.0
160
300
0.0
N
0.0000
GR 1.1
SA-106 B

Element From Node


Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Nozzle Diameter
Nozzle Schedule
Nozzle Class
Layout Angle
Blind Flange (Y/N)
Weight of Nozzle ( Used if > 0 )
Grade of Attached Flange
Nozzle Matl

50
Nozzle
N6
1390.0
50.0
160
300
0.0
N
0.0000
GR 1.1
SA-106 B

Element From Node


Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Nozzle Diameter
Nozzle Schedule
Nozzle Class
Layout Angle
Blind Flange (Y/N)
Weight of Nozzle ( Used if > 0 )
Grade of Attached Flange
Nozzle Matl

50
Nozzle
N9
2140.0
50.0
160
300
0.0
N
0.0000
GR 1.1
SA-106 B

Element From Node


Detail Type
Detail ID

50
Nozzle
N7

mm
mm
kgm/m

mm
mm

kgf

mm
mm

kgf

mm
mm

kgf

Dist. from "FROM" Node / Offset dist


Nozzle Diameter
Nozzle Schedule

190.00
25.0
XXS

mm
mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 9
Input Echo :
Step:
1 11:15p Sep 5,2012
Nozzle Class
Layout Angle
Blind Flange (Y/N)
Weight of Nozzle ( Used if > 0 )
Grade of Attached Flange
Nozzle Matl

300
180.0
N
0.0000
GR 1.1
SA-106 B

Element From Node


Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Nozzle Diameter
Nozzle Schedule
Nozzle Class
Layout Angle
Blind Flange (Y/N)
Weight of Nozzle ( Used if > 0 )
Grade of Attached Flange
Nozzle Matl

50
Nozzle
N5
2875.0
40.0
160
300
0.0
N
0.0000
GR 1.1
SA-106 B

Element From Node


Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Nozzle Diameter
Nozzle Schedule
Nozzle Class
Layout Angle
Blind Flange (Y/N)
Weight of Nozzle ( Used if > 0 )
Grade of Attached Flange
Nozzle Matl

50
Nozzle
N4
2618.0
40.0
160
300
180.0
N
0.0000
GR 1.1
SA-106 B

kgf

mm
mm

kgf

mm
mm

kgf

-------------------------------------------------------------------Element From Node


Element To Node
Element Type
Description
Distance "FROM" to "TO"
Inside Diameter
Element Thickness
Internal Corrosion Allowance
Nominal Thickness
External Corrosion Allowance
Design Internal Pressure
Design Temperature Internal Pressure
Design External Pressure
Design Temperature External Pressure
Effective Diameter Multiplier

60
70
Elliptical
DISHED END
40.000 mm
475.00 mm
10.000 mm
3.0000 mm
12.000 mm
0.0000 mm
11.000 bar
215 C
1.0342 bar
215 C
1.2

Material Name
Efficiency, Longitudinal Seam
Efficiency, Circumferential Seam

SA-516 70
1.0
1.0

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 10
Input Echo :
Step:
1 11:15p Sep 5,2012
Elliptical Head Factor
Element From Node
Detail Type
Detail ID
Dist. from "FROM" Node / Offset dist
Height/Length of Liquid
Liquid Density

2.0
60
Liquid
Liquid 60
0.0000
475.00
999.55

mm
mm
kgm/m

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.


2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 11
XY Coordinate Calculations :
Step:
2 11:15p Sep 5,2012
XY Coordinate Calculations
|
|
|
|
|
|
From| To | X (Horiz.)| Y (Vert.) |DX (Horiz.)| DY (Vert.) |
|
|
mm
|
mm
|
mm
|
mm
|
-------------------------------------------------------------BONNET DIS|
40.0000 |
... |
40.0000 |
... |
BONNET SHE|
670.000 |
... |
630.000 |
... |
BONNET FLA|
670.000 |
... | -90.0000 |
... |
SHELL FLAN|
834.000 |
... |
90.0000 |
... |
SHELL|
3750.00 |
... |
3006.00 |
... |
DISHED END|
3790.00 |
... |
40.0000 |
... |
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 12
Flg Calc [Int P] : FLANGE
Flng:
7 11:15p Sep 5,2012
Flange Input Data Values
:

Description: FLANGE

BONNET FLANGE
Description of Flange Geometry (Type)
Design Pressure
P
Design Temperature
Internal Corrosion Allowance
ci
External Corrosion Allowance
ce
Use Corrosion Allowance in Thickness Calcs.
Attached Shell Inside Diameter
Integral Ring Inside Diameter
Flange Outside Diameter
Flange Thickness
Thickness of Hub at Small End
Thickness of Hub at Large End
Length of Hub

Ring
bar
C
mm
mm

A
t
go
g1
h

475.0000
495.0000
625.000
80.0000
10.0000
20.0000
10.0000

mm
mm
mm
mm
mm
mm
mm

Sfo
Sfa

SA-105
K03504
20000.00
20000.00

psi
psi

Bolt Material
Bolt Allowable Stress At Temperature
Bolt Allowable Stress At Ambient

Sb
Sa

SA-193 B7
25000.00
25000.00

psi
psi

Length of Weld Leg at Back of Ring


Number of Splits in Ring Flange

tw
n

0.0000
0

mm

Diameter of Bolt Circle


Nominal Bolt Diameter
Type of Threads
Number of Bolts

C
dB

570.000
22.0000
TEMA Metric
20

mm
mm

Fod
538.000
Fid
475.000
1, Code Sketch 1a

mm
mm

Flange
Flange
Flange
Flange

Material
Material UNS number
Allowable Stress At Temperature
Allowable Stress At Ambient

Flange Face Outside Diameter


Flange Face Inside Diameter
Flange Facing Sketch
Gasket
Gasket
Gasket
Gasket

Outside Diameter
Inside Diameter
Factor
Design Seating Stress

Column for Gasket Seating


Gasket Thickness

Integral
33.05
185
3.0000
0.0000
Yes

Go
Gi
m
y

515.000
495.000
2.5000
10000.00

2, Code Column II
tg
4.5000

mm
mm
psi
mm

Length of
Width of
Partition
Partition

Partition Gasket
lp
Partition Gasket
tp
Gasket Factor
mPart
Gasket Design Seating Stress yPart

525.0000
8.0000
2.5000
10000.00

mm
mm
psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 13
Flg Calc [Int P] : FLANGE
Flng:
7 11:15p Sep 5,2012
ASME Code, Section VIII, Division 1, 2010, 2011a
Corroded Flange Thickness, tc
Corroded Flange ID,
Bcor
Corroded Large Hub,
g1Cor
Corroded Small Hub,
g0Cor
Code R Dimension,
R

=
=
=
=
=

T-ci
B+2*Fcor
g1-ci
go-ci
((C-Bcor)/2)-g1cor

77.000
481.000
17.000
7.000
27.500

mm
mm
mm
mm
mm

Gasket Contact Width,


Basic Gasket Width,
Effective Gasket Width,
Gasket Reaction Diameter,

=
=
=
=

(Go - Gi) / 2
N / 2
bo
(Go + Gi) / 2

10.000
5.000
5.000
505.000

mm
mm
mm
mm

N
bo
b
G

Basic Flange and Bolt Loads:


Hydrostatic End Load due to Pressure [H]:
= 0.785 * G * Peq
= 0.785 * 505.0000 * 33.047
= 67495.555 kgf
Contact Load on Gasket Surfaces [Hp]:
= 2 * b * Pi * G * m * P + 2 * lp * bPart * mPart * P
= 2 * 5.0000 * 3.1416 * 505.0000 * 2.5000 * 33.05
+ 2.0 * 525.0000 * 4.0000 * 2.5000 * 33.0466
= 16903.727 kgf
Hydrostatic End Load at Flange ID [Hd]:
= Pi * Bcor * P / 4
= 3.1416 * 481.0000 *33.0466/4
= 61232.594 kgf
Pressure Force on Flange Face [Ht]:
= H - Hd
= 67495 - 61232
= 6262.958 kgf
Operating Bolt Load [Wm1]:
= max( H + Hp + H'p, 0 )
= max( 67495 + 16903 + 0 , 0 )
= 84399.281 kgf
= 91245.602 kgf , Mating Flange Load Governs
Gasket Seating Bolt Load [Wm2]:
= y * b * Pi * G + yPart * bPart * lp
= 10000.00*5.0000*3.141*505.000+10000.00*4.0000*525.00
= 70535.523 kgf
= 92685.398 kgf , Mating Flange Load Governs
Required Bolt Area [Am]:
= Maximum of Wm1/Sb, Wm2/Sa
= Maximum of 91245/25000 , 92685/25000
= 5273.188 mm
ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3)
[Bsmax]:

= 2a + 6t/(m + 0.5)
= 2 * 22.000 + 6 * 77.000/(2.50 + 0.5)
= 198.000 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 14
Flg Calc [Int P] : FLANGE
Flng:
7 11:15p Sep 5,2012
Actual Circumferential Bolt Spacing [Bs]:
= C * sin( pi / n ) )
= 570.000 * sin( 3.142/20 )
= 89.168 mm
ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]:
= max( sqrt( Bs/( 2a + t )), 1 )
= max( sqrt( 89.168/( 2 * 22.000 + 77.000 )), 1 )
= 1.0000
Bolting Information for TEMA Metric Thread Series (Non Mandatory):
Distance Across Corners for Nuts
41.570 mm
Circular Wrench End Diameter
a
0.000 mm
---------------------------------------------------------------------------Minimum
Actual
Maximum
---------------------------------------------------------------------------Bolt Area, mm
5273.188
5448.380
Radial distance bet. hub and bolts
25.400
47.500
Radial distance bet. bolts and the edge
25.400
27.500
Circumferential spacing between bolts
53.980
89.168
198.000
---------------------------------------------------------------------------Min. Gasket Contact Width (Brownell Young) [Not an ASME Calc] [Nmin]:
= Ab * Sa/( y * Pi * (Go + Gi) )
= 5448.380 * 25000.00/(10000.00 * 3.14 * (515.000 + 495.00 ) )
= 4.293 mm
Flange Design Bolt Load, Gasket Seating [W]:
= Sa * ( Am + Ab ) / 2
= 25000.00 * ( 5273.1885 + 5448.3799 )/2
= 94225.04 kgf
Gasket Load for the Operating Condition [HG]:
= Wm1 - H
= 91245 - 67495
= 23750.05 kgf
Moment Arm Calculations:
Distance to Gasket Load Reaction [hg]:
= (C - G ) / 2
= ( 570.0000 - 505.0000 )/2
= 32.5000 mm
Distance to Face Pressure Reaction [ht]:
= ( R + g1 + hg ) / 2
= ( 27.5000 + 17.0000 + 32.5000 )/2
= 38.5000 mm
Distance to End Pressure Reaction [hd]:
= R + ( g1 / 2 )

= 27.5000 + ( 17.0000/2.0 )
= 36.0000 mm
Summary of Moments for Internal Pressure:
Loading
Force
Distance Bolt Corr
End Pressure,
Md
61233.
36.0000
1.0000

Moment
2204. kgf-m.

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 15
Flg Calc [Int P] : FLANGE
Flng:
7 11:15p Sep 5,2012
Face Pressure, Mt
Gasket Load,
Mg
Gasket Seating, Matm

6263.
23750.
94225.

38.5000
32.5000
32.5000

1.0000
1.0000
1.0000

Total Moment for Operation,


Mop
Total Moment for Gasket seating, Matm

241. kgf-m.
772. kgf-m.
3062. kgf-m.
3217. kgf-m.
3062. kgf-m.

Effective Hub Length, ho = sqrt(Bcor*goCor)


Hub Ratio,
h/h0 = HL / H0
Thickness Ratio,
g1/g0 = (g1Cor/goCor)

58.026
0.172
2.429

Flange Factors for Integral Flange:


Factor F per 2-7.2
Factor V per 2-7.3
Factor f per 2-7.6
Factors from Figure 2-7.1
T =
1.798
Y =
7.560
d = 65769.977 mm
Stress Factors
BETA =
2.584
DELTA =
6.941

0.895
0.359
4.145
1.299
8.307
3.905
0.0154 mm ^-1
2.188
1.217
8.158

K
U
Z
e
ALPHA
GAMMA
Lamda

Longitudinal Hub Stress, Operating [SHo]:


= ( f * Mop / Bcor ) / ( L * g1 )
= (4.1446*3217/481.0000)/(8.1584*17.0000)
= 16723.81 psi
Longitudinal Hub Stress, Seating [SHa]:
= ( f * Matm / Bcor ) / ( L * g1 )
= (4.1446*3062/481.0000)/(8.1584*17.0000)
= 15917.82 psi
Radial Flange Stress, Operating [SRo]:
= ( Beta * Mop / Bcor ) / ( L * t )
= (2.5837*3217/481.0000)/(8.1584*77.0000)
= 508.18 psi
Radial Flange Stress, Seating [SRa]:
= ( Beta * Matm/Bcor ) / ( L * t )
= (2.5837*3062/481.0000)/(8.1584*77.0000)
= 483.68 psi
Tangential Flange Stress, Operating [STo]:
= ( Y * Mo / (t * Bcor) ) - Z * SRo
= (7.5598*3217/(77.0000*481.0000))-3.9054*508
= 10146.07 psi
Tangential Flange Stress, Seating [STa]:
= ( y * Matm / (t * Bcor) ) - Z * SRa
= (7.5598*3062/(77.0000*481.0000))-3.9054*483
= 9657.09 psi

=
=
=
=
=
=
=

mm

Average Flange Stress, Operating [SAo]:


= ( SHo + max( SRo, STo ) ) / 2
= (16723+max(508,10146))/2

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 16
Flg Calc [Int P] : FLANGE
Flng:
7 11:15p Sep 5,2012
= 13434.94 psi
Average Flange Stress, Seating [SAa]:
= ( SHa + max( SRa, STa ) ) / 2
= (15917+max(483,9657))/2
= 12787.46 psi
Bolt Stress, Operating [BSo]:
= ( Wm1 / Ab )
= (91245/5448.3799)
= 23820.26 psi
Bolt Stress, Seating [BSa]:
= ( Wm2 / Ab )
= (92685/5448.3799)
= 24196.13 psi
Stress Computation Results:
Operating
Actual
Allowed
Longitudinal Hub
16724.
30000.
Radial Flange
508.
20000.
Tangential Flange
10146.
20000.
Maximum Average
13435.
20000.
Bolting
23820.
25000.

Gasket Seating
Actual
Allowed
15918.
30000.
484.
20000.
9657.
20000.
12787.
20000.
24196.
25000.

Minimum Required Flange Thickness


Estimated M.A.W.P. ( Operating )
Estimated Finished Weight of Flange at given Thk.
Estimated Unfinished Weight of Forging at given Thk

67.183
34.7
80.4
80.4

psi
psi
psi
psi
psi
mm
bar
kg.
kg.

Flange Rigidity Based on Required Thickness [ASME]:


Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]:
= 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki )
= 52.14 * 3062.3/1.0000 * 1422333 * 0.359/( 5.126 * 29400000 *
7.000^(2) * 58.026 * 0.300 )
= 0.635 (should be <= 1)
Flange Rigidity Index Operating (rotation check) per APP. 2 [J]:
= 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )
= 52.14 * 3217.4/1.0000 * 1422333 * 0.359/( 5.126 * 28040116
* 7.000^(2) * 58.026 * 0.300 )
= 0.699 (should be <= 1)
Flange Rigidity Based on Given Thickness [ASME]:
Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]:
= 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki )
= 52.14 * 3062.3/1.0000 * 1422333 * 0.359/( 8.158 * 29400000 *
7.000^(2) * 58.026 * 0.300 )
= 0.399 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]:


= 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 17
Flg Calc [Int P] : FLANGE
Flng:
7 11:15p Sep 5,2012
= 52.14 * 3217.4/1.0000 * 1422333 * 0.359/( 8.158 * 28040116
* 7.000^(2) * 58.026 * 0.300 )
= 0.439 (should be <= 1)
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 18
Flg Calc [Int P] : FLANGE
Flng:
8 11:15p Sep 5,2012
Flange Input Data Values
:

Description: FLANGE

SHELL FLANGE
Description of Flange Geometry (Type)
Design Pressure
P
Design Temperature
Internal Corrosion Allowance
ci
External Corrosion Allowance
ce
Use Corrosion Allowance in Thickness Calcs.
Attached Shell Inside Diameter
Integral Ring Inside Diameter
Flange Outside Diameter
Flange Thickness
Thickness of Hub at Small End
Thickness of Hub at Large End
Length of Hub

Ring
bar
C
mm
mm

A
t
go
g1
h

475.0000
495.0000
625.000
80.0000
10.0000
20.0000
10.0000

mm
mm
mm
mm
mm
mm
mm

Sfo
Sfa

SA-105
K03504
19924.13
20000.00

psi
psi

Bolt Material
Bolt Allowable Stress At Temperature
Bolt Allowable Stress At Ambient

Sb
Sa

SA-193 B7
25000.00
25000.00

psi
psi

Length of Weld Leg at Back of Ring


Number of Splits in Ring Flange

tw
n

0.0000
0

mm

Diameter of Bolt Circle


Nominal Bolt Diameter
Type of Threads
Number of Bolts

C
dB

570.000
22.0000
TEMA Metric
20

mm
mm

Fod
538.000
Fid
475.000
1, Code Sketch 1a

mm
mm

Flange
Flange
Flange
Flange

Material
Material UNS number
Allowable Stress At Temperature
Allowable Stress At Ambient

Flange Face Outside Diameter


Flange Face Inside Diameter
Flange Facing Sketch
Gasket
Gasket
Gasket
Gasket

Outside Diameter
Inside Diameter
Factor
Design Seating Stress

Column for Gasket Seating


Gasket Thickness

Integral
11.05
215
3.0000
0.0000
Yes

Go
Gi
m
y

515.000
495.000
2.5000
10000.00

2, Code Column II
tg
4.5000

mm
mm
psi
mm

Mating Flange Operating Bolt Load


Mating Flange Seating Bolt Load
Mating Flange Design Bolt Load

91245.60
92685.40
94225.04

kgf
kgf
kgf

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 19
Flg Calc [Int P] : FLANGE
Flng:
8 11:15p Sep 5,2012
ASME Code, Section VIII, Division 1, 2010, 2011a
Corroded Flange Thickness, tc
Corroded Flange ID,
Bcor
Corroded Large Hub,
g1Cor
Corroded Small Hub,
g0Cor
Code R Dimension,
R

=
=
=
=
=

T-ci
B+2*Fcor
g1-ci
go-ci
((C-Bcor)/2)-g1cor

77.000
481.000
17.000
7.000
27.500

mm
mm
mm
mm
mm

Gasket Contact Width,


Basic Gasket Width,
Effective Gasket Width,
Gasket Reaction Diameter,

=
=
=
=

(Go - Gi) / 2
N / 2
bo
(Go + Gi) / 2

10.000
5.000
5.000
505.000

mm
mm
mm
mm

N
bo
b
G

Basic Flange and Bolt Loads:


Hydrostatic End Load due to Pressure [H]:
= 0.785 * G * Peq
= 0.785 * 505.0000 * 11.047
= 22561.918 kgf
Contact Load on Gasket Surfaces [Hp]:
= 2 * b * Pi * G * m * P
= 2 * 5.0000 * 3.1416 * 505.0000 * 2.5000 * 11.05
= 4467.705 kgf
Hydrostatic End Load at Flange ID [Hd]:
= Pi * Bcor * P / 4
= 3.1416 * 481.0000 *11.0466/4
= 20468.383 kgf
Pressure Force on Flange Face [Ht]:
= H - Hd
= 22561 - 20468
= 2093.534 kgf
Operating Bolt Load [Wm1]:
= max( H + Hp + H'p, 0 )
= max( 22561 + 4467 + 0 , 0 )
= 27029.621 kgf
= 91245.602 kgf , Mating Flange Load Governs
Gasket Seating Bolt Load [Wm2]:
= y * b * Pi * G + yPart * bPart * lp
= 10000.00*5.0000*3.141*505.000+0.00*0.0000*0.00
= 55771.074 kgf
= 92685.398 kgf , Mating Flange Load Governs
Required Bolt Area [Am]:
= Maximum of Wm1/Sb, Wm2/Sa
= Maximum of 91245/25000 , 92685/25000
= 5273.188 mm
ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3)
[Bsmax]:
= 2a + 6t/(m + 0.5)
= 2 * 22.000 + 6 * 77.000/(2.50 + 0.5)

= 198.000 mm
Actual Circumferential Bolt Spacing [Bs]:
= C * sin( pi / n ) )

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 20
Flg Calc [Int P] : FLANGE
Flng:
8 11:15p Sep 5,2012
= 570.000 * sin( 3.142/20 )
= 89.168 mm
ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]:
= max( sqrt( Bs/( 2a + t )), 1 )
= max( sqrt( 89.168/( 2 * 22.000 + 77.000 )), 1 )
= 1.0000
Bolting Information for TEMA Metric Thread Series (Non Mandatory):
Distance Across Corners for Nuts
41.570 mm
Circular Wrench End Diameter
a
0.000 mm
---------------------------------------------------------------------------Minimum
Actual
Maximum
---------------------------------------------------------------------------Bolt Area, mm
5273.188
5448.380
Radial distance bet. hub and bolts
25.400
47.500
Radial distance bet. bolts and the edge
25.400
27.500
Circumferential spacing between bolts
53.980
89.168
198.000
---------------------------------------------------------------------------Min. Gasket Contact Width (Brownell Young) [Not an ASME Calc] [Nmin]:
= Ab * Sa/( y * Pi * (Go + Gi) )
= 5448.380 * 25000.00/(10000.00 * 3.14 * (515.000 + 495.00 ) )
= 4.293 mm
Flange Design Bolt Load, Gasket Seating [W]:
= Sa * ( Am + Ab ) / 2
= 25000.00 * ( 5273.1885 + 5448.3799 )/2
= 94225.04 kgf
Gasket Load for the Operating Condition [HG]:
= Wm1 - H
= 91245 - 22561
= 68683.68 kgf
Moment Arm Calculations:
Distance to Gasket Load Reaction [hg]:
= (C - G ) / 2
= ( 570.0000 - 505.0000 )/2
= 32.5000 mm
Distance to Face Pressure Reaction [ht]:
= ( R + g1 + hg ) / 2
= ( 27.5000 + 17.0000 + 32.5000 )/2
= 38.5000 mm
Distance to End Pressure Reaction [hd]:
= R + ( g1 / 2 )
= 27.5000 + ( 17.0000/2.0 )
= 36.0000 mm

Summary of Moments for Internal Pressure:


Loading
Force
Distance Bolt Corr
End Pressure,
Md
20468.
36.0000
1.0000
Face Pressure, Mt
2094.
38.5000
1.0000
Gasket Load,
Mg
68684.
32.5000
1.0000

Moment
737. kgf-m.
81. kgf-m.
2232. kgf-m.

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 21
Flg Calc [Int P] : FLANGE
Flng:
8 11:15p Sep 5,2012
Gasket Seating, Matm

94225.

32.5000

1.0000

Total Moment for Operation,


Mop
Total Moment for Gasket seating, Matm

3062. kgf-m.
3050. kgf-m.
3062. kgf-m.

Effective Hub Length, ho = sqrt(Bcor*goCor)


Hub Ratio,
h/h0 = HL / H0
Thickness Ratio,
g1/g0 = (g1Cor/goCor)

58.026
0.172
2.429

Flange Factors for Integral Flange:


Factor F per 2-7.2
Factor V per 2-7.3
Factor f per 2-7.6
Factors from Figure 2-7.1
T =
1.798
Y =
7.560
d = 65769.977 mm
Stress Factors
BETA =
2.584
DELTA =
6.941

0.895
0.359
4.145
1.299
8.307
3.905
0.0154 mm ^-1
2.188
1.217
8.158

K
U
Z
e
ALPHA
GAMMA
Lamda

Longitudinal Hub Stress, Operating [SHo]:


= ( f * Mop / Bcor ) / ( L * g1 )
= (4.1446*3049/481.0000)/(8.1584*17.0000)
= 15852.16 psi
Longitudinal Hub Stress, Seating [SHa]:
= ( f * Matm / Bcor ) / ( L * g1 )
= (4.1446*3062/481.0000)/(8.1584*17.0000)
= 15917.82 psi
Radial Flange Stress, Operating [SRo]:
= ( Beta * Mop / Bcor ) / ( L * t )
= (2.5837*3049/481.0000)/(8.1584*77.0000)
= 481.69 psi
Radial Flange Stress, Seating [SRa]:
= ( Beta * Matm/Bcor ) / ( L * t )
= (2.5837*3062/481.0000)/(8.1584*77.0000)
= 483.68 psi
Tangential Flange Stress, Operating [STo]:
= ( Y * Mo / (t * Bcor) ) - Z * SRo
= (7.5598*3049/(77.0000*481.0000))-3.9054*481
= 9617.25 psi
Tangential Flange Stress, Seating [STa]:
= ( y * Matm / (t * Bcor) ) - Z * SRa
= (7.5598*3062/(77.0000*481.0000))-3.9054*483
= 9657.09 psi
Average Flange Stress, Operating [SAo]:
= ( SHo + max( SRo, STo ) ) / 2

=
=
=
=
=
=
=

mm

= (15852+max(481,9617))/2
= 12734.71 psi
Average Flange Stress, Seating [SAa]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 22
Flg Calc [Int P] : FLANGE
Flng:
8 11:15p Sep 5,2012
= ( SHa + max( SRa, STa ) ) / 2
= (15917+max(483,9657))/2
= 12787.46 psi
Bolt Stress, Operating [BSo]:
= ( Wm1 / Ab )
= (91245/5448.3799)
= 23820.26 psi
Bolt Stress, Seating [BSa]:
= ( Wm2 / Ab )
= (92685/5448.3799)
= 24196.13 psi
Stress Computation Results:
Operating
Actual
Allowed
Longitudinal Hub
15852.
29886.
Radial Flange
482.
19924.
Tangential Flange
9617.
19924.
Maximum Average
12735.
19924.
Bolting
23820.
25000.

Gasket Seating
Actual
Allowed
15918.
30000.
484.
20000.
9657.
20000.
12787.
20000.
24196.
25000.

Minimum Required Flange Thickness

65.710

psi
psi
psi
psi
psi
mm

Note: MAWP Cannot be calculated due to Entered Mating Flange Loads.


Estimated Finished Weight of Flange at given Thk.
Estimated Unfinished Weight of Forging at given Thk

80.4
80.4

kg.
kg.

Flange Rigidity Based on Required Thickness [ASME]:


Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]:
= 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki )
= 52.14 * 3062.3/1.0000 * 1422333 * 0.359/( 4.839 * 29400000 *
7.000^(2) * 58.026 * 0.300 )
= 0.672 (should be <= 1)
Flange Rigidity Index Operating (rotation check) per APP. 2 [J]:
= 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )
= 52.14 * 3049.7/1.0000 * 1422333 * 0.359/( 4.839 * 27786202
* 7.000^(2) * 58.026 * 0.300 )
= 0.708 (should be <= 1)
Flange Rigidity Based on Given Thickness [ASME]:
Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]:
= 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki )
= 52.14 * 3062.3/1.0000 * 1422333 * 0.359/( 8.158 * 29400000 *
7.000^(2) * 58.026 * 0.300 )
= 0.399 (should be <= 1)

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]:


= 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 23
Flg Calc [Int P] : FLANGE
Flng:
8 11:15p Sep 5,2012
= 52.14 * 3049.7/1.0000 * 1422333 * 0.359/( 8.158 * 27786202
* 7.000^(2) * 58.026 * 0.300 )
= 0.420 (should be <= 1)
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 24
Internal Pressure Calculations :
Step:
5 11:15p Sep 5,2012
Element Thickness, Pressure, Diameter and Allowable Stress :
|

| Int. Press |

Nominal | Total Corr|

Element |

Allowable

|
From| To | + Liq. Hd | Thickness | Allowance |
Diameter |
Stress(SE)|
|
|
bar
|
mm
|
mm
|
mm
|
psi
|
-------------------------------------------------------------------------BONNET DIS|
33.047 |
12.000 |
3.0000 |
475.00 |
20000.
|
BONNET SHE|
33.047 |
10.000 |
3.0000 |
475.00 |
20000.
|
BONNET FLA|
33.047 |
80.000 |
3.0000 |
475.00 |
20000.
|
SHELL FLAN|
11.047 |
80.000 |
3.0000 |
475.00 |
19924.
|
SHELL|
11.047 |
10.000 |
3.0000 |
475.00 |
20000.
|
DISHED END|
11.047 |
12.000 |
3.0000 |
475.00 |
20000.
|
Element Required Thickness and MAWP :
|
|
Design |
M.A.W.P. |
M.A.P. |
Minimum |
Required |
From| To |
Pressure | Corroded | New & Cold | Thickness |
Thickness |
|
|
bar
|
bar
|
bar
|
mm
|
mm
|
--------------------------------------------------------------------------BONNET DIS|
33.0000 |
40.6350 |
57.8180 |
10.0000 |
8.68312 |
BONNET SHE|
33.0000 |
39.4003 |
56.6308 |
10.0000 |
8.84768 |
BONNET FLA|
33.0000 |
34.6364 |
37.4967 |
80.0000 |
67.1830 |
SHELL FLAN|
11.0466 |
No Calc |
No Calc |
80.0000 |
65.7098 |
SHELL|
11.0000 |
39.4003 |
56.6308 |
10.0000 |
4.93595 |
DISHED END|
11.0000 |
40.6350 |
57.8180 |
10.0000 |
4.89671 |
Summary of Heat Exchanger Maximum Allowable Working Pressures :
Note: For ASME UHX designs, the following values include MAWPs that

consider the tubesheet, tubes, tube/tubesheet joint etc. These


values were determined by iteration. Review the tubesheet analysis
report for more information.
Shell Side MAWP
Shell Side MAPnc
Channel Side MAWP
Channel Side MAPnc

=
=
=
=

39.400
51.101
34.636
37.497

bar
bar
bar
bar

Note: PV Elite could not compute the MAWP of one of the Flanges.
Please check the reported MAWP by entering it as the design
pressure and performing an extra analysis.
Internal Pressure Calculation Results :
ASME Code, Section VIII, Division 1, 2010, 2011a
Elliptical Head From 10 To 20 SA-516 70 , UCS-66 Crv. B at 185 C
BONNET DISH
Material UNS Number:

K02700

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 25
Internal Pressure Calculations :
Step:
5 11:15p Sep 5,2012
Required Thickness due to Internal Pressure [tr]:
= (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c)
= (33.047*481.0000*0.984)/(2*20000.00*1.00-0.2*33.047)
= 5.6831 + 3.0000 = 8.6831 mm
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
Less Operating Hydrostatic Head Pressure of 0.047 bar
= (2*S*E*t)/(Kcor*D+0.2*t) per Appendix 1-4 (c)
= (2*20000.00*1.00*7.0000)/(0.984*481.0000+0.2*7.0000)
= 40.682 - 0.047 = 40.635 bar
Maximum Allowable Pressure, New and Cold [MAPNC]:
= (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c)
= (2*20000.00*1.00*10.0000)/(1.000*475.0000+0.2*10.0000)
= 57.818 bar
Actual stress at given pressure and thickness, corroded [Sact]:
= (P*(Kcor*D+0.2*t))/(2*E*t)
= (33.047*(0.984*481.0000+0.2*7.0000))/(2*1.00*7.0000)
= 16246.503 psi
Straight Flange Required Thickness:
= (P*R)/(S*E-0.6*P) + c
per UG-27 (c)(1)
= (33.047*240.5000)/(20000.00*1.00-0.6*33.047)+3.000
= 8.848 mm
Straight Flange Maximum Allowable Working Pressure:
Less Operating Hydrostatic Head Pressure of 0.047 bar
= (S*E*t)/(R+0.6*t) per UG-27 (c)(1)
= (20000.00 * 1.00 * 9.0000 )/(240.5000 + 0.6 * 9.0000 )
= 50.470 - 0.047 = 50.423 bar
Factor K, corroded condition [Kcor]:
= ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))^(2))/6
= ( 2 + ( 481.000/( 2 * 121.750 ))^(2))/6
= 0.983674
Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 10.375 %
Note: Please Check Requirements of UCS-79 as Elongation is > 5%.
MDMT Calculations in the Knuckle Portion:
Govrn. thk, tg = 10.000 , tr = 6.442 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.920 , Temp. Reduction = 4 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
MDMT Calculations in the Head Straight Flange:

-29 C
-33 C

Govrn. thk, tg = 12.000 , tr = 6.640 , c = 3.0000 mm , E* = 1.00


Stress Ratio = tr * (E*)/(tg - c) = 0.738 , Temp. Reduction = 15 C

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 26
Internal Pressure Calculations :
Step:
5 11:15p Sep 5,2012
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Min Metal Temp. w/o impact per UG-20(f)

-23 C
-38 C
-29 C

Cylindrical Shell From 20 To 30 SA-516 70 , UCS-66 Crv. B at 185 C


BONNET SHELL
Material UNS Number:

K02700

Required Thickness due to Internal Pressure [tr]:


= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (33.047*240.5000)/(20000.00*1.00-0.6*33.047)
= 5.8477 + 3.0000 = 8.8477 mm
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
Less Operating Hydrostatic Head Pressure of 0.047 bar
= (S*E*t)/(R+0.6*t) per UG-27 (c)(1)
= (20000.00*1.00*7.0000)/(240.5000+0.6*7.0000)
= 39.447 - 0.047 = 39.400 bar
Maximum Allowable Pressure, New and Cold [MAPNC]:
= (S*E*t)/(R+0.6*t) per UG-27 (c)(1)
= (20000.00*1.00*10.0000)/(237.5000+0.6*10.0000)
= 56.631 bar
Actual stress at given pressure and thickness, corroded [Sact]:
= (P*(R+0.6*t))/(E*t)
= (33.047*(240.5000+0.6*7.0000))/(1.00*7.0000)
= 16755.000 psi
Percent Elongation per UCS-79

(50*tnom/Rf)*(1-Rf/Ro)

2.062 %

Minimum Design Metal Temperature Results:


Govrn. thk, tg = 10.000 , tr = 6.640 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.949 , Temp. Reduction = 3 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-32 C

Cylindrical Shell From 50 To 60 SA-516 70 , UCS-66 Crv. B at 215 C


SHELL
Material UNS Number:

K02700

Required Thickness due to Internal Pressure [tr]:


= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.047*240.5000)/(20000.00*1.00-0.6*11.047)

= 1.9360 + 3.0000 = 4.9360 mm


Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 27
Internal Pressure Calculations :
Step:
5 11:15p Sep 5,2012
Less Operating Hydrostatic Head Pressure of 0.047 bar
= (S*E*t)/(R+0.6*t) per UG-27 (c)(1)
= (20000.00*1.00*7.0000)/(240.5000+0.6*7.0000)
= 39.447 - 0.047 = 39.400 bar
Maximum Allowable Pressure, New and Cold [MAPNC]:
= (S*E*t)/(R+0.6*t) per UG-27 (c)(1)
= (20000.00*1.00*10.0000)/(237.5000+0.6*10.0000)
= 56.631 bar
Actual stress at given pressure and thickness, corroded [Sact]:
= (P*(R+0.6*t))/(E*t)
= (11.047*(240.5000+0.6*7.0000))/(1.00*7.0000)
= 5600.837 psi
Percent Elongation per UCS-79

(50*tnom/Rf)*(1-Rf/Ro)

2.062 %

Minimum Design Metal Temperature Results:


Govrn. thk, tg = 10.000 , tr = 6.992 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.999 , Temp. Reduction = 0 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-29 C

Elliptical Head From 60 To 70 SA-516 70 , UCS-66 Crv. B at 215 C


DISHED END
Material UNS Number:

K02700

Required Thickness due to Internal Pressure [tr]:


= (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c)
= (11.047*481.0000*0.984)/(2*20000.00*1.00-0.2*11.047)
= 1.8967 + 3.0000 = 4.8967 mm
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
Less Operating Hydrostatic Head Pressure of 0.047 bar
= (2*S*E*t)/(Kcor*D+0.2*t) per Appendix 1-4 (c)
= (2*20000.00*1.00*7.0000)/(0.984*481.0000+0.2*7.0000)
= 40.682 - 0.047 = 40.635 bar
Maximum Allowable Pressure, New and Cold [MAPNC]:
= (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c)
= (2*20000.00*1.00*10.0000)/(1.000*475.0000+0.2*10.0000)
= 57.818 bar
Actual stress at given pressure and thickness, corroded [Sact]:
= (P*(Kcor*D+0.2*t))/(2*E*t)
= (11.047*(0.984*481.0000+0.2*7.0000))/(2*1.00*7.0000)

= 5430.857 psi
Straight Flange Required Thickness:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 28
Internal Pressure Calculations :
Step:
5 11:15p Sep 5,2012
= (P*R)/(S*E-0.6*P) + c
per UG-27 (c)(1)
= (11.047*240.5000)/(20000.00*1.00-0.6*11.047)+3.000
= 4.936 mm
Straight Flange Maximum Allowable Working Pressure:
Less Operating Hydrostatic Head Pressure of 0.047 bar
= (S*E*t)/(R+0.6*t) per UG-27 (c)(1)
= (20000.00 * 1.00 * 9.0000 )/(240.5000 + 0.6 * 9.0000 )
= 50.470 - 0.047 = 50.423 bar
Factor K, corroded condition [Kcor]:
= ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))^(2))/6
= ( 2 + ( 481.000/( 2 * 121.750 ))^(2))/6
= 0.983674
Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 10.375 %
Note: Please Check Requirements of UCS-79 as Elongation is > 5%.
MDMT Calculations in the Knuckle Portion:
Govrn. thk, tg = 10.000 , tr = 6.779 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.968 , Temp. Reduction = 2 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-31 C

MDMT Calculations in the Head Straight Flange:


Govrn. thk, tg = 12.000 , tr = 6.992 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.777 , Temp. Reduction = 12 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Min Metal Temp. w/o impact per UG-20(f)

-23 C
-35 C
-29 C

Note: Heads and Shells Exempted to -20F (-29C) by paragraph UG-20F


Hydrostatic Test Pressure Results:
Exchanger Shell Side Hydrostatic Test Pressures:
Pressure
Pressure
Pressure
Pressure
Pressure

per
per
per
per
per

UG99b
UG99b[34]
UG99c
UG100
PED

=
=
=
=
=

1.3 * M.A.W.P. * Sa/S


1.3 * Design Pres * Sa/S
1.3 * M.A.P. - Head(Hyd)
1.1 * M.A.W.P. * Sa/S
1.43 * MAWP

Exchanger Channel Side Hydrostatic Test Pressures:

51.220
14.300
66.383
43.340
56.342

bar
bar
bar
bar
bar

Pressure per UG99b


= 1.3 * M.A.W.P. * Sa/S
Pressure per UG99b[34] = 1.3 * Design Pres * Sa/S
Pressure per UG99c
= 1.3 * M.A.P. - Head(Hyd)

45.027
42.900
48.746

bar
bar
bar

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 29
Internal Pressure Calculations :
Step:
5 11:15p Sep 5,2012
Pressure per UG100
Pressure per PED

= 1.1 * M.A.W.P. * Sa/S


= 1.43 * MAWP

38.100
49.530

bar
bar

UG-99(b) Note 34, Test Pressure Calculation [Shell Side]:


= Test Factor * Design Pressure * Stress Ratio
= 1.3 * 11.000 * 1.000
= 14.300 bar
UG-99(b) Note 34, Test Pressure Calculation [Channel Side]:
= Test Factor * Design Pressure * Stress Ratio
= 1.3 * 33.000 * 1.000
= 42.900 bar
Horizontal Test performed per: UG-99b (Note 34)
Please note that Nozzle, Shell, Head, Flange, etc MAWPs are all
considered
when determining the hydrotest pressure for those test types that are
based
on the MAWP of the vessel.
Stresses on Elements due to Hydrostatic Test Pressure:
From To
BONNET DISH
BONNET SHELL
SHELL
DISHED END

Stress
21113.4
21774.2
7273.8
7053.1

Allowable
26000.0
26000.0
26000.0
26000.0

Ratio
0.812
0.837
0.280
0.271

Pressure
42.95
42.95
14.35
14.35

Elements Suitable for Internal Pressure.


PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 30
External Pressure Calculations :
Step:
6 11:15p Sep 5,2012
External Pressure Calculation Results :
ASME Code, Section VIII, Division 1, 2010, 2011a
Elliptical Head From 10 to 20 Ext. Chart: CS-2 at 185 C
BONNET DISH
Elastic Modulus from Chart: CS-2 at 185 C :

0.199E+07 kgf/cm

Results for Maximum Allowable External Pressure (MAEP):


Tca
OD
D/t
Factor A
B
7.000
495.00
70.71
0.0019641
13830.52
EMAP = B/(K0*D/t) = 13830.5156/(0.9000 *70.7143 ) = 14.9834 bar
Results for Required Thickness (Tca):
Tca
OD
D/t
Factor A
B
1.296
495.00
381.87
0.0003637
5155.57
EMAP = B/(K0*D/t) = 5155.5737/(0.9000 *381.8722 ) = 1.0343 bar
Check the requirements of UG-33(a)(1) using P = 1.67 * External Design
pressure for this head.
Material UNS Number:

K02700

Required Thickness due to Internal Pressure [tr]:


= (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c)
= (1.727*481.0000*0.984)/(2*20000.00*1.00-0.2*1.727)
= 0.2963 + 3.0000 = 3.2963 mm
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
= ((2*S*E*t)/(Kcor*D+0.2*t))/1.67 per Appendix 1-4 (c)
= ((2*20000.00*1.00*7.0000)/(0.984*481.0000+0.2*7.0000))/1.67
= 24.360 bar
Maximum Allowable External Pressure [MAEP]:
= min( MAEP, MAWP )
= min( 14.98 , 24.3604 )
= 14.983 bar
Thickness requirements per UG-33(a)(1) govern the required
thickness of this head.
Cylindrical Shell From 20 to 30 Ext. Chart: CS-2 at 185 C
BONNET SHELL
Elastic Modulus from Chart: CS-2 at 185 C :

0.199E+07 kgf/cm

Results for Maximum Allowable External Pressure (MAEP):


Tca
OD
SLEN
D/t
L/D
Factor A
B
7.000
495.00
709.58
70.71
1.4335 0.0015712 13148.97

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 31
External Pressure Calculations :
Step:
6 11:15p Sep 5,2012
EMAP = (4*B)/(3*(D/t)) = (4*13148.9697)/(3*70.7143 ) = 17.0940 bar
Results for Required Thickness (Tca):
Tca
OD
SLEN
D/t
L/D
Factor A
B
1.860
495.00
709.58
266.07
1.4335 0.0002112 2993.39
EMAP = (4*B)/(3*(D/t)) = (4*2993.3899 )/(3*266.0696 ) = 1.0343 bar
Results for Maximum Stiffened Length (Slen):
Tca
OD
SLEN
D/t
L/D
Factor A
B
7.000
495.00 14379.52
70.71
29.0495 0.0002278 3228.88
EMAP = (4*B)/(3*(D/t)) = (4*3228.8821 )/(3*70.7143 ) = 4.1976 bar
Cylindrical Shell From 50 to 60 Ext. Chart: CS-2 at 215 C
SHELL
Elastic Modulus from Chart: CS-2 at 215 C :

0.196E+07 kgf/cm

Results for Maximum Allowable External Pressure (MAEP):


Tca
OD
SLEN
D/t
L/D
Factor A
B
7.000
495.00
3085.58
70.71
6.2335 0.0003160 4394.27
EMAP = (4*B)/(3*(D/t)) = (4*4394.2705 )/(3*70.7143 ) = 5.7127 bar
Results for Required Thickness (Tca):
Tca
OD
SLEN
D/t
L/D
Factor A
B
3.510
495.00
3085.58
141.04
6.2335 0.0001141 1586.76
EMAP = (4*B)/(3*(D/t)) = (4*1586.7565 )/(3*141.0417 ) = 1.0342 bar
Results for Maximum Stiffened Length (Slen):
Tca
OD
SLEN
D/t
L/D
Factor A
B
7.000
495.00 ********
70.71
50.0000 0.0002272 3159.39
EMAP = (4*B)/(3*(D/t)) = (4*3159.3948 )/(3*70.7143 ) = 4.1073 bar
Elliptical Head From 60 to 70 Ext. Chart: CS-2 at 215 C
DISHED END
Elastic Modulus from Chart: CS-2 at 215 C :

0.196E+07 kgf/cm

Results for Maximum Allowable External Pressure (MAEP):


Tca
OD
D/t
Factor A
B
7.000
495.00
70.71
0.0019641
12868.06
EMAP = B/(K0*D/t) = 12868.0586/(0.9000 *70.7143 ) = 13.9407 bar
Results for Required Thickness (Tca):
Tca
OD
D/t
Factor A
B
1.309
495.00
378.22
0.0003672
5106.24
EMAP = B/(K0*D/t) = 5106.2417/(0.9000 *378.2181 ) = 1.0343 bar
Check the requirements of UG-33(a)(1) using P = 1.67 * External Design

pressure for this head.


Material UNS Number:

K02700

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 32
External Pressure Calculations :
Step:
6 11:15p Sep 5,2012
Required Thickness due to Internal Pressure [tr]:
= (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c)
= (1.727*481.0000*0.984)/(2*20000.00*1.00-0.2*1.727)
= 0.2963 + 3.0000 = 3.2963 mm
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
= ((2*S*E*t)/(Kcor*D+0.2*t))/1.67 per Appendix 1-4 (c)
= ((2*20000.00*1.00*7.0000)/(0.984*481.0000+0.2*7.0000))/1.67
= 24.360 bar
Maximum Allowable External Pressure [MAEP]:
= min( MAEP, MAWP )
= min( 13.94 , 24.3604 )
= 13.941 bar
Thickness requirements per UG-33(a)(1) govern the required
thickness of this head.
External Pressure Calculations
|

Section |

From| To |

Length |

Outside |

Corroded |

Factor

Factor

|
Diameter | Thickness |

|
|
|
mm
|
mm
|
mm
|
|
psi
|
-------------------------------------------------------------------------10| 20|
No Calc |
495.000 |
7.00000 | 0.0019641 |
13830.5
|
20| 30|
709.583 |
495.000 |
7.00000 | 0.0015712 |
13149.0
|
30| 40|
No Calc |
... |
77.0000 |
No Calc |
No Calc
|
40| 50|
No Calc |
... |
77.0000 |
No Calc |
No Calc
|
50| 60|
3085.58 |
495.000 |
7.00000 | 0.00031602 |
4394.27
|
60| 70|
No Calc |
495.000 |
7.00000 | 0.0019641 |
12868.1
|
External Pressure Calculations
|
|
External |
External | External |
External |
From| To | Actual T. | Required T.|Des. Press. |
M.A.W.P. |
|
|
mm
|
mm
|
bar
|
bar
|
---------------------------------------------------------------10| 20|
10.0000 |
4.50000 |
1.03421 |
14.9834 |
20| 30|
10.0000 |
4.86041 |
1.03421 |
17.0940 |

30| 40|
40| 50|
50| 60|
60| 70|
Minimum

80.0000
80.0000
10.0000
10.0000

|
|
|
|

62.0014
65.7098
6.50960
4.50000

|
|
|
|

1.03421
1.03421
1.03421
1.03421

|
|
|
|

No Calc
No Calc
5.71268
13.9407
5.713

|
|
|
|

External Pressure Calculations


|
| Actual Len.| Allow. Len.| Ring Inertia | Ring Inertia |
From| To | Bet. Stiff.| Bet. Stiff.|
Required |
Available |
|
|
mm
|
mm
|
cm**4
|
cm**4
|
------------------------------------------------------------------10| 20|
No Calc |
No Calc |
No Calc |
No Calc |

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 33
External Pressure Calculations :
Step:
6 11:15p Sep 5,2012
20|
30|
40|
50|
60|

30|
40|
50|
60|
70|

709.583
No Calc
No Calc
3085.58
No Calc

|
|
|
|
|

14379.5
No Calc
No Calc
115477.
No Calc

|
|
|
|
|

No
No
No
No
No

Calc
Calc
Calc
Calc
Calc

|
|
|
|
|

No
No
No
No
No

Calc
Calc
Calc
Calc
Calc

|
|
|
|
|

Elements Suitable for External Pressure.


PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 34
Element and Detail Weights :
Step:
7 11:15p Sep 5,2012
Element and Detail Weights
|

Element |

Element |

Corroded |

Corroded | Extra due

|
From| To | Metal Wgt. | ID

Volume |Metal Wgt. |

ID Volume | Misc %

|
|
|
kg.
|
ltr
|
kg.
|
ltr
|
kg.
|
-------------------------------------------------------------------------10| 20|
32.0916 |
21.1208 |
24.0687 |
21.8395 |
1.60458
|
20| 30|
74.3968 |
111.659 |
52.3998 |
114.498 |
3.71984
|
30| 40|
80.3500 |
... |
80.3500 |
... |
4.01750
|
40| 50|
80.3500 |
... |
80.3500 |
... |
4.01750
|
50| 60|
354.979 |
419.347 |
250.022 |
432.892 |
17.7489
|
60| 70|
32.0916 |
21.1208 |
24.0687 |
21.8395 |
1.60458
|
-------------------------------------------------------------------------Total
654
573.25
511
591.07
32
For elements specified as shell side elements, the volume(s) shown
above for those elements, reflects the displacement of the tubes.
Weight of Details
|
| Weight of | X Offset, | Y Offset, |
From|Type|
Detail | Dtl. Cent. |Dtl. Cent. | Description
|
|
kg.
|
mm
|
mm
|
------------------------------------------------10|Liqd|
21.1075 |
-39.5833 |
0.00002 |
LIQUID
20|Liqd|
111.589 |
315.000 |
... |
Liquid 20
20|Nozl|
48.5419 |
364.000 |
334.337 |
N1
20|Nozl|
48.5419 |
325.000 |
334.337 |
N2
20|Nozl|
3.10793 |
65.0000 |
245.107 |
N8
30|Liqd|
... |
45.0000 |
... |
Liquid 30
40|Liqd|
... |
45.0000 |
... |
Liquid 40
50|Sadl|
41.0286 |
630.000 |
357.750 |
Lft Sdl
50|Sadl|
41.0286 |
2090.00 |
357.750 |
Sdl 2 Fr50
50|Liqd|
419.084 |
1503.00 |
... |
Liquid 50
50|Nozl|
9.28453 |
190.000 |
264.488 |
N3
50|Nozl|
6.51293 |
1390.00 |
258.925 |
N6
50|Nozl|
6.51293 |
2140.00 |
258.925 |
N9

50|Nozl|
50|Nozl|
50|Nozl|
60|Liqd|
30|FTsh|
30|Tube|

3.10793
4.90170
4.90170
21.1075
114.016
269.566

|
|
|
|
|
|

190.000
2875.00
2618.00
79.5833
117.000
1472.50

|
|
|
|
|
|

245.107
254.493
254.493
0.00002
...
...

|
|
|
|
|
|

N7
N5
N4
Liquid 60
TUBE SHEET

Total Weight of Each Detail Type


Total Weight of Saddles
82.1
Total Weight of Liquid
572.9
Total Weight of Nozzles
135.4
Total Weight of Exchanger Components
383.6
--------------------------------------------------------------Sum of the Detail Weights
1173.9 kg.

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 35
Element and Detail Weights :
Step:
7 11:15p Sep 5,2012

Weight Summation
Fabricated
Shop Test
Shipping
Erected
Empty
Operating
----------------------------------------------------------------------------687.0
1288.0
687.0
1288.0
687.0
1288.0
82.1
572.9
82.1
...
82.1
572.9
135.4
...
135.4
...
...
...
...
78.8
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
135.4
...
383.6
...
383.6
...
...
...
...
...
...
...
383.6
...
----------------------------------------------------------------------------1288.0
1939.7
1288.0
1288.0
1288.0
1860.9
kg.
Miscellaneous Weight Percent: 5.0 %
Note that the above value for the miscellaneous weight percent has
been applied to the shells/heads/flange/tubesheets/tubes etc. in the
weight calculations for metallic components.
Note: The shipping total has been modified because some items have
been specified as being installed in the shop.
Weight Summary
Fabricated Wt.
Shop Test Wt.
Shipping Wt.
Erected Wt.
Ope. Wt. no Liq
Operating Wt.
Oper. Wt. + CA
Field Test Wt.
Exchanger
Volume of
Weight of
Weight of
Note:

Bare Weight W/O Removable Internals


Fabricated Weight + Water ( Full )
Fab. Wt + Rem. Intls.+ Shipping App.
Fab. Wt + Rem. Intls.+ Insul. (etc)
Fab. Wt + Intls. + Details + Wghts.
Empty Wt + Operating Liq. Uncorroded
Corr Wt. + Operating Liquid
Empty Weight + Water (Full)

Tube Data
Exchanger tubes :
Ope Liq in tubes :
Water in tubes
:

1288.0
1939.7
1288.0
1288.0
1288.0
1860.9
1710.8
1807.4
78.9 ltr
0.0 kg.
78.8 kg.

The Corroded Weight and thickness are used in the Horizontal


Vessel Analysis (Ope Case) and Earthquake Load Calculations.

kg.
kg.
kg.
kg.
kg.
kg.
kg.
kg.

Note:

The Field Test weight as computed in the corroded condition.

Outside Surface Areas of Elements


|
|
From| To |

Surface
Area

|
|

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 36
Element and Detail Weights :
Step:
7 11:15p Sep 5,2012
|
|
mm
|
---------------------------10| 20|
332620. |
20| 30|
979706. |
30| 40|
286670. |
40| 50|
286670. |
50| 60|
4.675E+06 |
60| 70|
332620. |
----------------------------Total
6892881.500 mm
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 37
Nozzle Flange MAWP :
Step:
8 11:15p Sep 5,2012
Nozzle Flange MAWP Results :
Nozzle
Description
Grade|Group

----- Flange Rating


Operating
Ambient

Temperature

Class

bar
bar
C
--------------------------------------------------------------------------N1
44.2
51.1
185
300
GR
1.1
N2
44.2
51.1
185
300
GR
1.1
N8
44.2
51.1
185
300
GR
1.1
N3
43.2
51.1
215
300
GR
1.1
N6
43.2
51.1
215
300
GR
1.1
N9
43.2
51.1
215
300
GR
1.1
N7
43.2
51.1
215
300
GR
1.1
N5
43.2
51.1
215
300
GR
1.1
N4
43.2
51.1
215
300
GR
1.1
Shellside Flange Rating
Lowest Flange Pressure Rating was (Ope)[ShellSide]:
Lowest Flange Pressure Rating was (Amb)[ShellSide]:

43.231
51.101

bar
bar

Channelside Flange Rating


Lowest Flange Pressure Rating was (Ope)[TubeSide ]:
Lowest Flange Pressure Rating was (Amb)[TubeSide ]:

44.191
51.101

bar
bar

Note: ANSI Ratings are per ANSI/ASME B16.5 2009 Metric Edition
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 38
Wind Load Calculation :
Step:
9 11:15p Sep 5,2012
Wind Load Calculations per India Std. IS-875 (Part-3) - 1987, Amd. 1&2
(2003):
Actual Vessel Height to Diameter ratio
Force Coefficient per IS:875 Table 23, Cf
User Entered Basic Wind Speed
Base Elevation
Wind Zone Number
Risk Factor (k1)
Terrain Category
Equipment Class
Topography Factor (k3)
Use Gust Response Factor (Dynamic Analysis)
User entered Beta Value ( Operating Case )

0.000
0.700
47.0 m/sec
0.00 m
4
1.0700
1
A
1.0000
No
0.0100

From
fo`
FO
E
S
G(ope)
G(emp)
G(tst)
-----------------------------------------------------------------10
824.50
4.19
0.0060
0.2421
1.0000
1.0000
1.0000
20
824.50
4.19
0.0060
0.2421
1.0000
1.0000
1.0000
30
824.50
4.19
0.0060
0.2421
1.0000
1.0000
1.0000
40
824.50
4.19
0.0060
0.2421
1.0000
1.0000
1.0000
50
824.50
4.19
0.0060
0.2421
1.0000
1.0000
1.0000
60
824.50
4.19
0.0060
0.2421
1.0000
1.0000
1.0000
Design Wind Speed (Vz):
= Basic Wind Speed * k1 * k2 * k3
Height Factor :
= 0.6 * Vz
Element Wind Load :
= Wind Area * Cf * Height Factor
From

Height
k1
k2
k3
Vz
Cf
m
m/sec
-----------------------------------------------------------10
0.50
1.0700
1.0548
1.0000
53.04
0.7000
20
0.50
1.0700
1.0548
1.0000
53.04
0.7000
30
0.50
1.0700
1.0548
1.0000
53.04
0.7000
40
0.50
1.0700
1.0548
1.0000
53.04
0.7000
50
0.50
1.0700
1.0548
1.0000
53.04
0.7000
60
0.50
1.0700
1.0548
1.0000
53.04
0.7000
Wind Load Calculation
|
|

Wind

Wind |

Wind |

Wind

Element

From| To |

Height

Diameter |

Area |

Pressure

Wind Load

|
|
|
mm
|
mm
|
mm
|
kgf/m
|
kgf
|
-------------------------------------------------------------------------10| 20|
498.000 |
594.000 |
73814.4 |
172.212 |
8.89499
|
20| 30|
498.000 |
594.000 |
374220. |
172.212 |
45.0953
|
30| 40|
498.000 |
570.000 | -51300.0 |
172.212 |
-6.18190
|

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 39
Wind Load Calculation :
Step:
9 11:15p Sep 5,2012
40|

50|

498.000 |

570.000 |

51300.0 |

172.212 |

6.18190

50|

60|

498.000 |

594.000 | 1.786E+06 |

172.212 |

215.169

60|

70|

498.000 |

594.000 |

172.212 |

8.89499

|
|
73814.4 |

|
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 40
Earthquake Load Calculation :
Step:
10 11:15p Sep 5,2012
Seismic Analysis Results per IS-1893 (1984), Seismic Coefficient Method.
Soil Factor
Importance Factor as Entered by User
Zone Number
Value of Alpha o per table 2 and Zone

1.2000
I 1.5000
4
0.0500

Horizontal Seismic Coefficient (Alpha h):


= * I * Alpha o
= 1.2000 * 1.5000 * 0.0500
= 0.0900
Earthquake Element Load, for the first Element:
= Earthquake Weight * Alpha h
= 213.85 * 0.0900
= 19.2 kgf
Earthquake Load Calculation
|
| Earthquake | Earthquake |
Element |
From| To |
Height |
Weight | Ope Load |
|
|
mm
|
kgf
|
kgf
|
------------------------------------------------10| 20|
237.500 |
213.845 |
19.2461 |
20| 30|
237.500 |
213.845 |
19.2461 |
30| 40|
237.500 |
213.845 |
19.2461 |
40| 50|
237.500 |
213.845 |
19.2461 |
50|Sadl|
237.500 |
213.845 |
19.2461 |
Sadl| 60|
237.500 |
213.845 |
19.2461 |
50| 60|
237.500 |
213.845 |
19.2461 |
60| 70|
237.500 |
213.845 |
19.2461 |
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 41
Center of Gravity Calculation :
Step:
11 11:15p Sep 5,2012
Shop/Field Installation Options :
Note : The CG is computed from the first Element From Node
Center
Center
Center
Center
Center

of
of
of
of
of

Gravity
Gravity
Gravity
Gravity
Gravity

of
of
of
of
of

Saddles
Liquid
Nozzles
Tubesheet(s)
Tubes

2104.000
1852.531
857.598
877.000
2232.500

mm
mm
mm
mm
mm

Center of Gravity of Bare Shell New and Cold


Center of Gravity of Bare Shell Corroded

1619.069 mm
1535.887 mm

Vessel CG in the Operating Condition


Vessel CG in the Fabricated (Shop/Empty) Condition

1681.337 mm
1632.603 mm

Rigging Analysis Results:


Total Effective Length of Vessel for this analysis
Total vessel weight (No Liquid)
Twt
Impact weight multiplication factor
Imp
Design lifting weight, DWT = Imp * Twt
Elevation of the Tailing Lug (bottom)
Elevation of the Lifting Lug (top
)
Design Reaction force at the tailing lug
Design Reaction force at the lifting lug
CG Distance from Tailing Lug
CG Distance from the Nearer Lifting Lug

3896.00
1288.02
1.50
1932.04
1265.00
3250.00
1574.24
357.79

mm
kgf
kgf
mm
mm
kgf
kgf

367.60 mm
367.60 mm

Critical Values:
Max Stress
Elevation
Allowables
psi
mm
psi
-----------|-----------|---------------|-----------------------Bending
|
626.30 |
1451.20
|
17332.61
(UG-23)
Shear
|
-109.72 |
850.00
|
14000.00
(0.7*S)
-----------|-----------|---------------|-----------------------Forces and Moments at selected elevations (not all analysis points
shown):
Distance
Bending Moment
Bending Stress
Shear Force
Shear
Stress
mm
kgf-m.
psi
kgf
psi
-----------------------------------------------------------------------------

0.00

0.0

0.0

-418.6

40.00

29.0

22.8

-450.8

670.00

307.9

241.8

-692.3

760.00

369.5

290.2

-933.8

850.00
109.7
3856.00
3.0

452.8

355.6

-1175.3

18.7

14.7

32.2

39.1
42.1
64.6
87.2
-

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 42
Center of Gravity Calculation :
Step:
11 11:15p Sep 5,2012
Unity Check (Actual Stress / Allowable Stress):
Maximum Unity Check is 0.0361 at elevation 1451.2001 mm - Must be <=1
Note: The rigging analysis is performed using a uniformly distributed
load.
--- Plot data successfully generated ...---PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 43
Lifting Lug Calcs : Left Side
Step:
12 11:15p Sep 5,2012
Lifting Lug Calculations: Lug(s) on Left End of Vessel
Input Values:
Lifting Lug Material
Lifting Lug Yield Stress

Yield

Total Height of Lifting Lug


Thickness of Lifting Lug
Diameter of Hole in Lifting Lug
Radius of Semi-Circular Arc of Lifting Lug
Height of Lug from bottom to Center of Hole
Offset from Vessel OD to Center of Hole
Lug Fillet Weld Size
Length of weld along side of Lifting Lug
Length of Weld along Bottom of Lifting Lug
Thickness of Collar (if any)
Diameter of Collar (if any)
Impact Factor
Sling Angle from Horizontal
Number of Lugs in Group

w
t
dh
r
h
off
tw
wl
wb
tc
dc
Impfac

SA-516 70
38000.00 psi
65.0000
16.0000
30.0000
32.5000
32.5000
40.0000
10.0000
65.0000
16.0000
0.0000
0.0000
1.50
90.0000
1

mm
mm
mm
mm
mm
mm
mm
mm
mm
mm
mm
deg

Lifting Lug Orientation to Vessel: Perpendicular


Lift Orientation : Horizontal Lift
PV Elite does not compute weak axis bending forces on the lugs. It is
assumed that a spreader bar is used.
Computed Results:
Force Along Vessel Axis
Force Normal to Vessel
Force Tangential to Vessel

Fax
Fn
Ft

0.00 kgf
1574.24 kgf
0.00 kgf

Converting the weld leg dimension (tw) to the weld throat dimension.
Weld Group Inertia Calculations:
Weld Group Inertia about the
Weld Group Centroid distance
Dist. of Weld Group Centroid
Weld Group Inertia about the
Weld Group Centroid Distance

Circumferential Axis
Ilc
in the Long. Direction Yll
from Lug bottom
Yll_b
Longitudinal Axis
Ill
in the Circ. Direction Ylc

61.832
39.570
32.500
2.698
8.000

Note: The Impact Factor is applied to the Forces acting on the Lug.
Primary Shear Stress in the Welds due to Shear Loads [Ssll]:
= sqrt( Fax^(2) + Ft^(2) + Fn^(2) )/(( 2 * (wl + wb) ) * tw )
= sqrt(0^(2)+0^(2)+1574^(2))/((2*(65.0+16.0))*7.0700)

cm**4
mm
mm
cm**4
mm

= 1954.97 psi
Shear Stress in the Welds due to Bending Loads [Sblf]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 44
Lifting Lug Calcs : Left Side
Step:
12 11:15p Sep 5,2012
= (Fn*(h-Yll_b)) *Yll/Ilc + (Fax*off *Yll/Ilc) + (Ft*off *Ylc/Ill)
= (1574 *(32.500 -32.500 )) * 39.570/61.832 +
(0 *0.000 * 39.570/61.832 ) +
(0 *0.000 * 8.000/2.698 )
= 0.00 psi
Total Shear Stress for Combined Loads [St]:
= Ssll + Sblf
= 1954.966 + 0.000
= 1954.97 psi
Allowable Shear Stress for Combined Loads [Sta]:
= 0.4 * Yield * Occfac (AISC Shear Allowable)
= 0.4 * 38000 * 1.00
= 15200.00 psi
Shear Stress in Lug above Hole [Shs]:
= sqrt( Pl^(2) + Fax^(2) ) / Sha
= sqrt( 1574^(2) + 0^(2) )/560.000
= 3998.39 psi
Allowable Shear Stress in Lug above Hole [Sas]:
= 0.4 * Yield * Occfac
= 0.4 * 38000 * 1.00
= 15200.00 psi
Pin Hole Bearing Stress [Pbs]:
= sqrt( Fax^(2) + Fn^(2) ) / ( t * dh )
= sqrt( 0^(2) + 1574^(2) )/( 16.000 * 30.000 )
= 4664.79 psi
Allowable Bearing Stress [Pba]:
= min( 0.75 * Yield * Occfac, 0.9 * Yield ) AISC Bearing All.
= min( 0.75 * 38000 * 1.00 , 34200.0 )
= 28500.00 psi
Bending Stress at the Base of the Lug [Fbs]:
= Ft * off/(w * t^(2)/6) + Fax * off/(w^(2) * t/6)
= 0 * 40.000/(65.000 * 16.000^(2)/6) +
0 * 40.000/(65.000^(2) * 16.000/6)
= 0.00 psi
Tensile Stress at the Base of the Lug [Fa]:
= Fn / (w * t)
= 0/(65.000 * 16.000 )
= 2152.98 psi
Total Combined Stress at the Base of the Lug:
= Fbs + Fa
= 0.0 + 2153.0

= 2152.98 psi
Lug Allowable Stress for Bending and Tension:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 45
Lifting Lug Calcs : Left Side
Step:
12 11:15p Sep 5,2012
= min( 0.66 * Yield * Occfac, 0.75 * Yield )
= min( 0.66 * 38000 * 1.00 , 28500.0 )
= 25080.00 psi
Required Shackle Pin Diameter [Spd]:
= sqrt[(2 * sqrt(Fn^(2) + Fax^(2))/( Pi * Sta))]
= sqrt[2 * sqrt(1574^(2) + 0^(2))/( Pi * 15200 )]
= 9.6840 mm
WRC 107 Stress Analysis for the Lifting Lug to Shell Junction in
the new and Cold Condition (no corrosion applied).
Input Echo, WRC107 Item

1,

Description: Lift Lug

Diameter Basis for Vessel


Cylindrical or Spherical Vessel
Internal Corrosion Allowance
Vessel Diameter
Vessel Thickness

Vbasis
Cylsph
Cas
Dv
Tv

Design Temperature

ID
Cylindrical
0.0000 mm
475.000 mm
10.000 mm
37.78

Attachment Type
Parameter C11
Parameter C22

Type
C11
C22

Design Internal Pressure


Include Pressure Thrust

Dp

Rectangular
36.00 mm
85.00 mm
0.000
No

External Forces and Moments in WRC 107 Convention:


Radial Load
(SUS)
P
Longitudinal Shear
(SUS)
Vl
Circumferential Shear
(SUS)
Vc
Circumferential Moment (SUS)
Mc
Longitudinal Moment
(SUS)
Ml
Torsional Moment
(SUS)
Mt
Use Interactive Control
WRC107 Version

Version

Include Pressure Stress Indices per Div. 2


Compute Pressure Stress per WRC-368
WRC 107 Stress Calculation for SUStained loads:
Radial Load
P
Circumferential Shear
VC
Longitudinal Shear
VL
Circumferential Moment
MC
Longitudinal Moment
ML

-1574.2
0.0
0.0
0.0
0.0
0.0
No
March

bar

kgf
kgf
kgf
kgf-m.
kgf-m.
kgf-m.

1979
No
No

-1574.2
0.0
0.0
0.0
0.0

kgf
kgf
kgf
kgf-m.
kgf-m.

Torsional Moment
Dimensionless Parameters used :

MT
Gamma =

24.25

0.0

kgf-m.

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 46
Lifting Lug Calcs : Left Side
Step:
12 11:15p Sep 5,2012
Dimensionless Loads for Cylindrical Shells at Attachment Junction:
------------------------------------------------------------------Curves read for 1979
Beta Figure
Value
Location
------------------------------------------------------------------N(PHI) / ( P/Rm )
0.156
4C
3.951
(A,B)
N(PHI) / ( P/Rm )
0.156
3C
3.207
(C,D)
M(PHI) / ( P )
0.104
2C1
0.108
(A,B)
M(PHI) / ( P )
0.104
1C
0.145
(C,D)
N(PHI) / ( MC/(Rm**2 * Beta) )
0.099
3A
0.600
(A,B,C,D)
M(PHI) / ( MC/(Rm
* Beta) )
0.114
1A
0.098
(A,B,C,D)
N(PHI) / ( ML/(Rm**2 * Beta) )
0.132
3B
2.486
(A,B,C,D)
M(PHI) / ( ML/(Rm
* Beta) )
0.122
1B
0.046
(A,B,C,D)
N(x)
N(x)
M(x)
M(x)
N(x)
M(x)
N(x)
M(x)

/
/
/
/
/
/
/
/

(
(
(
(
(
(
(
(

P/Rm )
P/Rm )
P )
P )
MC/(Rm**2
MC/(Rm
ML/(Rm**2
ML/(Rm

*
*
*
*

Beta)
Beta)
Beta)
Beta)

)
)
)
)

0.132
0.132
0.136
0.136
0.099
0.146
0.132
0.149

Stress Concentration Factors Kn = 1.00,

3C
4C
1C1
2C
4A
2A
4B
2B

3.547
4.179
0.120
0.082
0.797
0.050
0.717
0.068

(A,B)
(C,D)
(A,B)
(C,D)
(A,B,C,D)
(A,B,C,D)
(A,B,C,D)
(A,B,C,D)

Kb = 1.00

Stresses in the Vessel at the Attachment Junction


-----------------------------------------------------------------------|
Stress Values at
Type of
|
(psi
)
---------------|-------------------------------------------------------Stress
Load|
Au
Al
Bu
Bl
Cu
Cl
Du
Dl
---------------|-------------------------------------------------------Circ. Memb. P |
3648
3648
3648
3648
2960
2960
2960
2960
Circ. Bend. P | 14468 -14468 14468 -14468 19466 -19466 19466 -19466
Circ. Memb. MC |
0
0
0
0
0
0
0
0
Circ. Bend. MC |
0
0
0
0
0
0
0
0
Circ. Memb. ML |
0
0
0
0
0
0
0
0
Circ. Bend. ML |
0
0
0
0
0
0
0
0
|
Tot. Circ. Str.| 18116 -10820 18116 -10820 22426 -16505 22426 -16505
-----------------------------------------------------------------------Long. Memb. P |
3275
3275
3275
3275
3858
3858
3858
3858
Long. Bend. P | 16176 -16176 16176 -16176 11037 -11037 11037 -11037
Long. Memb. MC |
0
0
0
0
0
0
0
0
Long. Bend. MC |
0
0
0
0
0
0
0
0
Long. Memb. ML |
0
0
0
0
0
0
0
0
Long. Bend. ML |
0
0
0
0
0
0
0
0
|
Tot. Long. Str.| 19452 -12901 19452 -12901 14896 -7178 14896 -7178

-----------------------------------------------------------------------Shear VC |
0
0
0
0
0
0
0
0
Shear VL |
0
0
0
0
0
0
0
0

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 47
Lifting Lug Calcs : Left Side
Step:
12 11:15p Sep 5,2012
Shear MT |
0
0
0
0
0
0
0
0
|
Tot. Shear|
0
0
0
0
0
0
0
0
-----------------------------------------------------------------------Str. Int. | 19452 12901 19452 12901 22426 16505 22426 16505
-----------------------------------------------------------------------WRC 107 Stress Summations:
Vessel Stress Summation at Attachment Junction
-----------------------------------------------------------------------Type of
|
Stress Values at
Stress Int. |
(psi
)
---------------|-------------------------------------------------------Location
|
Au
Al
Bu
Bl
Cu
Cl
Du
Dl
---------------|-------------------------------------------------------Circ. Pm (SUS) |
0
0
0
0
0
0
0
0
Circ. Pl (SUS) |
3648
3648
3648
3648
2960
2960
2960
2960
Circ. Q (SUS) | 14468 -14468 14468 -14468 19466 -19466 19466 -19466
-----------------------------------------------------------------------Long. Pm (SUS) |
0
0
0
0
0
0
0
0
Long. Pl (SUS) |
3275
3275
3275
3275
3858
3858
3858
3858
Long. Q (SUS) | 16176 -16176 16176 -16176 11037 -11037 11037 -11037
-----------------------------------------------------------------------Shear Pm (SUS) |
0
0
0
0
0
0
0
0
Shear Pl (SUS) |
0
0
0
0
0
0
0
0
Shear Q (SUS) |
0
0
0
0
0
0
0
0
-----------------------------------------------------------------------Pm (SUS)
|
0
0
0
0
0
0
0
0
-----------------------------------------------------------------------Pm+Pl (SUS)
|
3648
3648
3648
3648
3858
3858
3858
3858
-----------------------------------------------------------------------Pm+Pl+Q (Total)| 19452 12901 19452 12901 22426 16505 22426 16505
----------------------------------------------------------------------------------------------------------------------------------------------Type of
|
Max. S.I.
S.I. Allowable
|
Result
Stress Int. |
psi
|
---------------|-------------------------------------------------------Pm (SUS)
|
0
20000
|
Passed
Pm+Pl (SUS)
|
3858
30000
|
Passed
Pm+Pl+Q (TOTAL)|
22426
60000
|
Passed
-----------------------------------------------------------------------PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 48
Lifting Lug Calcs : Right Side
Step:
13 11:15p Sep 5,2012
Lifting Lug Calculations: Lug(s) on Right End of Vessel
Input Values:
Lifting Lug Material
Lifting Lug Yield Stress

Yield

Total Height of Lifting Lug


Thickness of Lifting Lug
Diameter of Hole in Lifting Lug
Radius of Semi-Circular Arc of Lifting Lug
Height of Lug from bottom to Center of Hole
Offset from Vessel OD to Center of Hole
Lug Fillet Weld Size
Length of weld along side of Lifting Lug
Length of Weld along Bottom of Lifting Lug
Thickness of Collar (if any)
Diameter of Collar (if any)
Impact Factor
Sling Angle from Horizontal
Number of Lugs in Group

w
t
dh
r
h
off
tw
wl
wb
tc
dc
Impfac

SA-516 70
38000.00 psi
65.0000
16.0000
30.0000
32.5000
32.5000
40.0000
10.0000
65.0000
16.0000
0.0000
0.0000
1.50
90.0000
1

mm
mm
mm
mm
mm
mm
mm
mm
mm
mm
mm
deg

Lifting Lug Orientation to Vessel: Perpendicular


Lift Orientation : Horizontal Lift
PV Elite does not compute weak axis bending forces on the lugs. It is
assumed that a spreader bar is used.
Computed Results:
Force Along Vessel Axis
Force Normal to Vessel
Force Tangential to Vessel

Fax
Fn
Ft

0.00 kgf
357.79 kgf
0.00 kgf

Converting the weld leg dimension (tw) to the weld throat dimension.
Weld Group Inertia Calculations:
Weld Group Inertia about the
Weld Group Centroid distance
Dist. of Weld Group Centroid
Weld Group Inertia about the
Weld Group Centroid Distance

Circumferential Axis
Ilc
in the Long. Direction Yll
from Lug bottom
Yll_b
Longitudinal Axis
Ill
in the Circ. Direction Ylc

61.832
39.570
32.500
2.698
8.000

Note: The Impact Factor is applied to the Forces acting on the Lug.
Primary Shear Stress in the Welds due to Shear Loads [Ssll]:
= sqrt( Fax^(2) + Ft^(2) + Fn^(2) )/(( 2 * (wl + wb) ) * tw )
= sqrt(0^(2)+0^(2)+357^(2))/((2*(65.0+16.0))*7.0700)

cm**4
mm
mm
cm**4
mm

= 444.33 psi
Shear Stress in the Welds due to Bending Loads [Sblf]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 49
Lifting Lug Calcs : Right Side
Step:
13 11:15p Sep 5,2012
= (Fn*(h-Yll_b)) *Yll/Ilc + (Fax*off *Yll/Ilc) + (Ft*off *Ylc/Ill)
= (357 *(32.500 -32.500 )) * 39.570/61.832 +
(0 *0.000 * 39.570/61.832 ) +
(0 *0.000 * 8.000/2.698 )
= 0.00 psi
Total Shear Stress for Combined Loads [St]:
= Ssll + Sblf
= 444.326 + 0.000
= 444.33 psi
Allowable Shear Stress for Combined Loads [Sta]:
= 0.4 * Yield * Occfac (AISC Shear Allowable)
= 0.4 * 38000 * 1.00
= 15200.00 psi
Shear Stress in Lug above Hole [Shs]:
= sqrt( Pl^(2) + Fax^(2) ) / Sha
= sqrt( 357^(2) + 0^(2) )/560.000
= 908.76 psi
Allowable Shear Stress in Lug above Hole [Sas]:
= 0.4 * Yield * Occfac
= 0.4 * 38000 * 1.00
= 15200.00 psi
Pin Hole Bearing Stress [Pbs]:
= sqrt( Fax^(2) + Fn^(2) ) / ( t * dh )
= sqrt( 0^(2) + 357^(2) )/( 16.000 * 30.000 )
= 1060.22 psi
Allowable Bearing Stress [Pba]:
= min( 0.75 * Yield * Occfac, 0.9 * Yield ) AISC Bearing All.
= min( 0.75 * 38000 * 1.00 , 34200.0 )
= 28500.00 psi
Bending Stress at the Base of the Lug [Fbs]:
= Ft * off/(w * t^(2)/6) + Fax * off/(w^(2) * t/6)
= 0 * 40.000/(65.000 * 16.000^(2)/6) +
0 * 40.000/(65.000^(2) * 16.000/6)
= 0.00 psi
Tensile Stress at the Base of the Lug [Fa]:
= Fn / (w * t)
= 0/(65.000 * 16.000 )
= 489.33 psi
Total Combined Stress at the Base of the Lug:
= Fbs + Fa
= 0.0 + 489.3

= 489.33 psi
Lug Allowable Stress for Bending and Tension:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 50
Lifting Lug Calcs : Right Side
Step:
13 11:15p Sep 5,2012
= min( 0.66 * Yield * Occfac, 0.75 * Yield )
= min( 0.66 * 38000 * 1.00 , 28500.0 )
= 25080.00 psi
Required Shackle Pin Diameter [Spd]:
= sqrt[(2 * sqrt(Fn^(2) + Fax^(2))/( Pi * Sta))]
= sqrt[2 * sqrt(357^(2) + 0^(2))/( Pi * 15200 )]
= 4.6167 mm
WRC 107 Stress Analysis for the Lifting Lug to Shell Junction in
the new and Cold Condition (no corrosion applied).
Input Echo, WRC107 Item

1,

Description: Lift Lug

Diameter Basis for Vessel


Cylindrical or Spherical Vessel
Internal Corrosion Allowance
Vessel Diameter
Vessel Thickness

Vbasis
Cylsph
Cas
Dv
Tv

ID
Cylindrical
0.0000 mm
475.000 mm
10.000 mm

Design Temperature

37.78

Attachment Type
Parameter C11
Parameter C22

Type
C11
C22

Design Internal Pressure


Include Pressure Thrust

Dp

Rectangular
36.00 mm
85.00 mm
0.000
No

External Forces and Moments in WRC 107 Convention:


Radial Load
(SUS)
P
Longitudinal Shear
(SUS)
Vl
Circumferential Shear
(SUS)
Vc
Circumferential Moment (SUS)
Mc
Longitudinal Moment
(SUS)
Ml
Torsional Moment
(SUS)
Mt
Use Interactive Control
WRC107 Version

Version

Include Pressure Stress Indices per Div. 2


Compute Pressure Stress per WRC-368
WRC 107 Stress Calculation for SUStained loads:
Radial Load
P
Circumferential Shear
VC
Longitudinal Shear
VL
Circumferential Moment
MC
Longitudinal Moment
ML

-357.8
0.0
0.0
0.0
0.0
0.0
No
March

bar

kgf
kgf
kgf
kgf-m.
kgf-m.
kgf-m.

1979
No
No

-357.8
0.0
0.0
0.0
0.0

kgf
kgf
kgf
kgf-m.
kgf-m.

Torsional Moment
Dimensionless Parameters used :

MT
Gamma =

24.25

0.0

kgf-m.

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 51
Lifting Lug Calcs : Right Side
Step:
13 11:15p Sep 5,2012
Dimensionless Loads for Cylindrical Shells at Attachment Junction:
------------------------------------------------------------------Curves read for 1979
Beta Figure
Value
Location
------------------------------------------------------------------N(PHI) / ( P/Rm )
0.156
4C
3.951
(A,B)
N(PHI) / ( P/Rm )
0.156
3C
3.207
(C,D)
M(PHI) / ( P )
0.104
2C1
0.108
(A,B)
M(PHI) / ( P )
0.104
1C
0.145
(C,D)
N(PHI) / ( MC/(Rm**2 * Beta) )
0.099
3A
0.600
(A,B,C,D)
M(PHI) / ( MC/(Rm
* Beta) )
0.114
1A
0.098
(A,B,C,D)
N(PHI) / ( ML/(Rm**2 * Beta) )
0.132
3B
2.486
(A,B,C,D)
M(PHI) / ( ML/(Rm
* Beta) )
0.122
1B
0.046
(A,B,C,D)
N(x)
N(x)
M(x)
M(x)
N(x)
M(x)
N(x)
M(x)

/
/
/
/
/
/
/
/

(
(
(
(
(
(
(
(

P/Rm )
P/Rm )
P )
P )
MC/(Rm**2
MC/(Rm
ML/(Rm**2
ML/(Rm

*
*
*
*

Beta)
Beta)
Beta)
Beta)

)
)
)
)

0.132
0.132
0.136
0.136
0.099
0.146
0.132
0.149

Stress Concentration Factors Kn = 1.00,

3C
4C
1C1
2C
4A
2A
4B
2B

3.547
4.179
0.120
0.082
0.797
0.050
0.717
0.068

(A,B)
(C,D)
(A,B)
(C,D)
(A,B,C,D)
(A,B,C,D)
(A,B,C,D)
(A,B,C,D)

Kb = 1.00

Stresses in the Vessel at the Attachment Junction


-----------------------------------------------------------------------|
Stress Values at
Type of
|
(psi
)
---------------|-------------------------------------------------------Stress
Load|
Au
Al
Bu
Bl
Cu
Cl
Du
Dl
---------------|-------------------------------------------------------Circ. Memb. P |
829
829
829
829
672
672
672
672
Circ. Bend. P |
3288 -3288
3288 -3288
4424 -4424
4424 -4424
Circ. Memb. MC |
0
0
0
0
0
0
0
0
Circ. Bend. MC |
0
0
0
0
0
0
0
0
Circ. Memb. ML |
0
0
0
0
0
0
0
0
Circ. Bend. ML |
0
0
0
0
0
0
0
0
|
Tot. Circ. Str.|
4117 -2459
4117 -2459
5097 -3751
5097 -3751
-----------------------------------------------------------------------Long. Memb. P |
744
744
744
744
877
877
877
877
Long. Bend. P |
3676 -3676
3676 -3676
2508 -2508
2508 -2508
Long. Memb. MC |
0
0
0
0
0
0
0
0
Long. Bend. MC |
0
0
0
0
0
0
0
0
Long. Memb. ML |
0
0
0
0
0
0
0
0
Long. Bend. ML |
0
0
0
0
0
0
0
0
|
Tot. Long. Str.|
4421 -2932
4421 -2932
3385 -1631
3385 -1631

-----------------------------------------------------------------------Shear VC |
0
0
0
0
0
0
0
0
Shear VL |
0
0
0
0
0
0
0
0

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 52
Lifting Lug Calcs : Right Side
Step:
13 11:15p Sep 5,2012
Shear MT |
0
0
0
0
0
0
0
0
|
Tot. Shear|
0
0
0
0
0
0
0
0
-----------------------------------------------------------------------Str. Int. |
4421
2932
4421
2932
5097
3751
5097
3751
-----------------------------------------------------------------------WRC 107 Stress Summations:
Vessel Stress Summation at Attachment Junction
-----------------------------------------------------------------------Type of
|
Stress Values at
Stress Int. |
(psi
)
---------------|-------------------------------------------------------Location
|
Au
Al
Bu
Bl
Cu
Cl
Du
Dl
---------------|-------------------------------------------------------Circ. Pm (SUS) |
0
0
0
0
0
0
0
0
Circ. Pl (SUS) |
829
829
829
829
672
672
672
672
Circ. Q (SUS) |
3288 -3288
3288 -3288
4424 -4424
4424 -4424
-----------------------------------------------------------------------Long. Pm (SUS) |
0
0
0
0
0
0
0
0
Long. Pl (SUS) |
744
744
744
744
877
877
877
877
Long. Q (SUS) |
3676 -3676
3676 -3676
2508 -2508
2508 -2508
-----------------------------------------------------------------------Shear Pm (SUS) |
0
0
0
0
0
0
0
0
Shear Pl (SUS) |
0
0
0
0
0
0
0
0
Shear Q (SUS) |
0
0
0
0
0
0
0
0
-----------------------------------------------------------------------Pm (SUS)
|
0
0
0
0
0
0
0
0
-----------------------------------------------------------------------Pm+Pl (SUS)
|
829
829
829
829
877
877
877
877
-----------------------------------------------------------------------Pm+Pl+Q (Total)|
4421
2932
4421
2932
5097
3751
5097
3751
----------------------------------------------------------------------------------------------------------------------------------------------Type of
|
Max. S.I.
S.I. Allowable
|
Result
Stress Int. |
psi
|
---------------|-------------------------------------------------------Pm (SUS)
|
0
20000
|
Passed
Pm+Pl (SUS)
|
877
30000
|
Passed
Pm+Pl+Q (TOTAL)|
5097
60000
|
Passed
-----------------------------------------------------------------------PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 53
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
ASME Horizontal Vessel Analysis: Stresses for the Left Saddle
(per ASME Sec. VIII Div. 2 based on the Zick method.)
Horizontal Vessel Stress Calculations : Operating Case
Input and Calculated Values:
Vessel Mean Radius
Stiffened Vessel Length per 4.15.6
Distance from Saddle to Vessel tangent
Saddle Width
Saddle Bearing Angle
Wear
Wear
Wear
Wear

Plate
Plate
Plate
Plate

Width
Bearing Angle
Thickness
Allowable Stress

Rm
L
a

244.00
3046.00
630.00

b
theta

133.00
120.00

mm
degrees

b1
theta1
tr
Sr

200.00
131.00
10.0
16600.00

mm
degrees
mm
psi

20000.00
19924.13
1.00
1.00

psi
psi

1705.01

kgf

Shell Allowable Stress used in Calculation


Head Allowable Stress used in Calculation
Circumferential Efficiency in Plane of Saddle
Circumferential Efficiency at Mid-Span
Saddle Force Q, Operating Case

mm
mm
mm

Horizontal Vessel Analysis Results:


Actual
Allowable
------------------------------------------------------------------Long. Stress at Top
of Midspan
2524.77
20000.00 psi
Long. Stress at Bottom of Midspan
3048.12
20000.00 psi
Long. Stress at Top
of Saddles
4880.52
20000.00 psi
Long. Stress at Bottom of Saddles
1625.78
20000.00 psi
Tangential Shear in Shell
Circ. Stress at Horn of Saddle
Circ. Compressive Stress in Shell

974.62
1021.96
133.38

16000.00
25000.00
20000.00

psi
psi
psi

Intermediate Results: Saddle Reaction Q due to Wind or Seismic


Saddle Reaction Force due to Wind Ft [Fwt]:
= Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E
= 3.00 * ( 278.1/2 + 0 ) * 498.0000/422.6205
= 491.5 kgf
Saddle Reaction Force due to Wind Fl or Friction [Fwl]:
= Max( Fl, Friction Load, Sum of X Forces) * B / Ls
= Max( 39.77 , 364.06 , 0 ) * 498.0000/1460.0001
= 124.2 kgf

Saddle Reaction Force due to Earthquake Fl or Friction


= Max( Fl, Friction Force, Sum of X Forces ) * B / Ls
= Max( 153.97 , 364.06 , 0 ) * 498.0000/1460.0001

[Fsl]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 54
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
= 124.2 kgf
Saddle Reaction Force due to Earthquake Ft [Fst]:
= Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E
= 3.00 * ( 153/2 + 0 ) * 498.0000/422.6205
= 272.1 kgf
Load Combination Results for Q + Wind or Seismic
= Saddle Load + Max( Fwl, Fwt, Fsl, Fst )
= 1213 + Max( 124 , 491 , 124 , 272 )
= 1705.0 kgf
Summary of Loads at the base of this Saddle:
Vertical Load (including saddle weight)
Transverse Shear Load Saddle
Longitudinal Shear Load Saddle

[Q]:

1746.04
139.03
364.06

kgf
kgf
kgf

Formulas and Substitutions for Horizontal Vessel Analysis:


Note: Wear Plate is Welded to the Shell, k = 0.1
The
K1
K5
K9
K7P

Computed K values from Table 4.15.1:


= 0.1066
K2 = 1.1707
K3 = 0.8799
= 0.7603
K6 = 0.0529
K7 = 0.0529
= 0.2711
K10 = 0.0581
K1* = 0.1923
= 0.0442

K4 = 0.4011
K8 = 0.3405
K6p = 0.0442

The suffix 'p' denotes the values for a wear plate if it exists.
Note: Dimension a is greater than or equal to Rm / 2.
Moment per Equation 4.15.3
[M1]:
= -Q*a [1 - (1- a/L + (R-h2)/(2a*L))/(1+(4h2)/3L)]
= -1705*630.00[1-(1-630.00/3046.00+(244.000-0.000)/
(2*630.00*3046.00))/(1+(4*0.00)/(3*3046.00))]
= -205.5 kgf-m.
Moment per Equation 4.15.4
[M2]:
= Q*L/4(1+2(R-h2)/(L))/(1+(4h2)/( 3L))-4a/L
= 1705*3046/4(1+2(244-0)/(3046))/(1+(4*0)/
(3*3046))-4*629/3046
= 240.9 kgf-m.
Longitudinal Stress at Top of Shell (4.15.6)
[Sigma1]:
= P * Rm/(2t) - M2/(pi*Rmt)
= 11.02 * 244.000/(2*7.000 ) - 240.9/(pi*244.0*7.000 )
= 2524.77 psi
Longitudinal Stress at Bottom of Shell (4.15.7)
= P * Rm/(2t) + M2/(pi * Rm * t)

[Sigma2]:

= 11.02 * 244.000/(2 * 7.000 ) + 240.9/(pi * 244.0 * 7.000 )


= 3048.12 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 55
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
Longitudinal Stress at Top of Shell at Support (4.15.10)
= P * Rm/(2t) - M1/(K1*pi*Rmt)
= 11.02*244.000/(2*7.000)--205.5/(0.1066*pi*244.0*7.000)
= 4880.52 psi

[Sigma*3]:

Longitudinal Stress at Bottom of Shell at Support (4.15.11)


= P * Rm/(2t) + M1/(K1* * pi * Rm * t)
= 11.02*244.000/(2*7.000)+-205.5/(0.1923*pi*244.0*7.000)
= 1625.78 psi

[Sigma*4]:

Maximum Shear Force in the Saddle (4.15.5)


[T]:
= Q(L-2a)/(L+(4*h2/3))
= 1705 ( 3046.00 - 2 * 630.00 )/(3046.00 + ( 4 * 0.00/3))
= 999.7 kgf
Shear Stress in the shell no rings, not stiffened (4.15.14)
= K2 * T / ( Rm * t )
= 1.1707 * 999.72/( 244.0000 * 7.0000 )
= 974.62 psi

[tau2]:

Decay Length (4.15.22)


[x1,x2]:
= 0.78 * sqrt( Rm * t )
= 0.78 * sqrt( 244.000 * 7.000 )
= 32.236 mm
Circumferential Stress in shell, no rings (4.15.23)
[sigma6]:
= -K5 * Q * k / ( t * ( b + X1 + X2 ) )
= -0.7603 * 1705 * 0.1/( 7.000 * ( 133.00 + 32.24 + 32.24 ) )
= -133.38 psi
Effective reinforcing plate width (4.15.1)
[B1]:
= min( b + 1.56 * sqrt( Rm * t ), 2a )
= min( 133.00 + 1.56 * sqrt( 244.000 * 7.000 ), 2 * 630.000 )
= 197.47 mm
Wear Plate/Shell Stress ratio (4.15.29)
= min( Sr/S, 1 )
= min( 16600.000/20000.000 , 1 )
= 0.8300

[eta]:

Circumferential Stress at wear plate (4.15.26)


[sigma6,r]:
= -K5 * Q * k / ( B1( t + eta * tr ) )
= -0.7603 * 1705 * 0.1/( 197.472 ( 7.000 + 0.830 * 10.000 ) )
= -61.02 psi
Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.27)
= -Q/(4(t+eta*tr)b1) - 3*K7*Q/(2(t+eta*tr))
= -1705/(4(7.000 + 0.830 * 10.000 )197.472 ) 3 * 0.053 * 1705/(2(7.000 + 0.830 * 10.000 ))
= -1021.96 psi

[sigma7,r]:

Free Un-Restrained Thermal Expansion between the Saddles [Exp]:


= Alpha * Ls * ( Design Temperature - Ambient Temperature )

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 56
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
= 0.128E-04 * 1460.000 * ( 215.0 - 21.1 )
= 3.637 mm
Results for Vessel Ribs, Web and Base:
Baseplate Length
Bplen
Baseplate Thickness
Bpthk
Baseplate Width
Bpwid
Number of Ribs ( inc. outside ribs )
Nribs
Rib Thickness
Ribtk
Web Thickness
Webtk
Web Location
Webloc

451.2500
25.4000
200.0000
2
8.0000
8.0000
Side

mm
mm
mm
mm
mm

Moment of Inertia of Saddle - Lateral Direction


Shell
Wearplate
Web
BasePlate
Totals
Value
Value
Value

Y
3.
12.
110.
215.
341.

A
1848.
2000.
1485.
5080.
10413.

AY
6468.
24000.
163031.
1093724.
1287223.

C1 = Sumof(Ay)/Sumof(A)
I = Sumof(Io) - C1*Sumof(Ay)
As = Sumof(A) - Ashell

=
=
=

Io
3.
30.
2216.
23575.
25825.
124.
9912.
8565.

mm
cm**4
mm

K1 = (1+Cos(beta)-.5*Sin(beta) )/(pi-beta+Sin(beta)*Cos(beta)) =
0.2035
Fh = K1 * Q = 0.2035 * 1705.014 = 347.0074 kgf
Tension Stress, St = ( Fh/As )
=
Allowed Stress, Sa = 0.6 * Yield Str =
d = B - R*Sin(theta) / theta
Bending Moment, M = Fh * d

57.6267
21600.0000

=
=

269.6081
93.5561

Bending Stress, Sb = ( M * C1 / I ) =
Allowed Stress, Sa = 2/3 * Yield Str =

165.9491
24000.0000

psi
psi
mm
kgf-m.
psi
psi

Minimum Thickness of Baseplate per Moss :


= ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 2 * BasePlateLength *
AllStress ))
= ( 3 * (1705 + 41 ) * 200.00/( 2 * 451.250 * 24000.000 ))
= 8.294 mm
Calculation of Axial Load, Intermediate Values and Compressive Stress
Effective Baseplate Length [e]:
= ( Bplen - Clearance ) / ( Nribs - 1)
= ( 451.2500 - 25.4 )/( 2 - 1 ) = 425.8500 mm

Baseplate Pressure Area [Ap]:


= e * Bpwid / 2
= 425.8500 * 200.0000/2 = 42585.0039 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 57
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
Axial Load [P]:
= Ap * Bp
= 42585.0 * 0.02 = 804.5 kgf
Area of the Rib and Web [Ar]:
= ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk
= ( 200.000 - 25.4 - 8.000 ) * 8.000 + 425.8500/2 * 8.000
= 3036.200 mm
Compressive Stress [Sc]:
= P/Ar
= 804.5/3036.2000 = 376.8853 psi
Check of Outside Ribs:
Inertia of Saddle, Outer Ribs - Longitudinal Direction
Y
A
AY
Ay
Rib
91.3
1166.4
106492.3
313.2
Web
4.0
1703.4
6813.6
214.5
Values
39.5
2869.8
113305.9
527.6

Io
242.5
1.8
244.4

Bending Moment [Rm]:


= Fl /( 2 * Bplen ) * e * rl / 2
= 364.1/( 2 * 451.25 ) * 425.850 * 344.75/2
= 29.611 kgf-m.
KL/R < Cc ( 6.8369 < 126.0992 ) per AISC E2-1
Sca = (1-(Klr)/(2*Cc))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr)/(8*Cc)
Sca = ( 1-( 6.84 )/(2 * 126.10 )) * 36000/
( 5/3+3*(6.84 )/(8* 126.10 )-( 6.84)/(8*126.10)
Sca = 21308.56 psi
AISC Unity Check on Outside Ribs ( must be <= 1.0 )
Check = Sc/Sca + (Rm/Z)/Sba
Check = 376.89/21308.56 + (29.61/5.714 )/24000.00
Check = 0.05
Input Data for Base Plate Bolting Calculations:
Total Number of Bolts per BasePlate
Total Number of Bolts in Tension/Baseplate
Bolt Material Specification
Bolt Allowable Stress
Bolt Corrosion Allowance
Distance from Bolts to Edge
Nominal Bolt Diameter
Thread Series
BasePlate Allowable Stress
Area Available in a Single Bolt

Nbolts
Nbt
Stba
Bca
Edgedis
Bnd
Series
S
BltArea

2
1
SA-36
16600.00 psi
0.0000 mm
80.0100 mm
20.0000 mm
TEMA Metric
16600.00 psi
217.0510 mm

Saddle Load QO (Weight)


Saddle Load QL (Wind/Seismic contribution)
Maximum Transverse Force

QO
QL
Ft

1254.6
124.2
139.0

kgf
kgf
kgf

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 58
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
Maximum Longitudinal Force
Saddle Bolted to Steel Foundation

Fl

364.1
No

kgf

Bolt Area Calculation per Dennis R. Moss


Bolt Area Requirement Due to Longitudinal Load [Bltarearl]:
= 0.0 (QO > QL --> No Uplift in Longitudinal direction)
Bolt Area due to Shear Load [Bltarears]:
= Fl / (Stba * Nbolts)
= 364.06/(16600.00 * 2.00 )
= 15.5970 mm
Bolt Area due to Transverse Load
Moment on Baseplate Due to Transverse Load [Rmom]:
= B * Ft + Sum of X Moments
= 498.00 * 139.03 + 0.00
= 69.24 kgf-m.
Eccentricity (e):
= Rmom / QO
= 69.24/1254.57
= 55.19 mm < Bplen/6 --> No Uplift in Transverse direction
Bolt Area due to Transverse Load [Bltareart]:
= 0 (No Uplift)
Required of a Single Bolt [Bltarear]
= max[Bltarearl, Bltarears, Bltareart]
= max[0.0000 , 15.5970 , 0.0000 ]
= 15.5970 mm
ASME Horizontal Vessel Analysis: Stresses for the Right Saddle
(per ASME Sec. VIII Div. 2 based on the Zick method.)
Input and Calculated Values:
Vessel Mean Radius
Stiffened Vessel Length per 4.15.6
Distance from Saddle to Vessel tangent
Saddle Width
Saddle Bearing Angle
Wear
Wear
Wear
Wear

Plate
Plate
Plate
Plate

Width
Bearing Angle
Thickness
Allowable Stress

Rm
L
a

244.00
3046.00
630.00

mm
mm
mm

b
theta

133.00
120.00

mm
degrees

b1
theta1
tr
Sr

200.00
131.00
10.0
16600.00

mm
degrees
mm
psi

Inside Depth of Head

h2

121.75

mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 59
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
Shell Allowable Stress used in Calculation
Head Allowable Stress used in Calculation
Circumferential Efficiency in Plane of Saddle
Circumferential Efficiency at Mid-Span

20000.00
20000.00
1.00
1.00

psi
psi

906.64

kgf

Saddle Force Q, Operating Case

Horizontal Vessel Analysis Results:


Actual
Allowable
------------------------------------------------------------------Long. Stress at Top
of Midspan
2688.02
20000.00 psi
Long. Stress at Bottom of Midspan
2884.88
20000.00 psi
Long. Stress at Top
of Saddles
4159.46
20000.00 psi
Long. Stress at Bottom of Saddles
2025.44
20000.00 psi
Tangential Shear in Shell
Circ. Stress at Horn of Saddle
Circ. Compressive Stress in Shell

492.03
543.42
70.92

16000.00
25000.00
20000.00

psi
psi
psi

Intermediate Results: Saddle Reaction Q due to Wind or Seismic


Saddle Reaction Force due to Wind Ft [Fwt]:
= Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E
= 3.00 * ( 278.1/2 + 0 ) * 498.0000/422.6205
= 491.5 kgf
Saddle Reaction Force due to Wind Fl or Friction [Fwl]:
= Max( Fl, Friction Load, Sum of X Forces) * B / Ls
= Max( 39.77 , 0.00 , 0 ) * 498.0000/1460.0001
= 13.6 kgf
Saddle Reaction Force due to Earthquake Fl or Friction
= Max( Fl, Friction Force, Sum of X Forces ) * B / Ls
= Max( 153.97 , 0.00 , 0 ) * 498.0000/1460.0001
= 52.5 kgf

[Fsl]:

Saddle Reaction Force due to Earthquake Ft [Fst]:


= Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E
= 3.00 * ( 153/2 + 0 ) * 498.0000/422.6205
= 272.1 kgf
Load Combination Results for Q + Wind or Seismic
= Saddle Load + Max( Fwl, Fwt, Fsl, Fst )
= 415 + Max( 13 , 491 , 52 , 272 )
= 906.6 kgf
Summary of Loads at the base of this Saddle:
Vertical Load (including saddle weight)
Transverse Shear Load Saddle
Longitudinal Shear Load Saddle

[Q]:

947.67
139.03
153.97

kgf
kgf
kgf

Formulas and Substitutions for Horizontal Vessel Analysis:


Note: Wear Plate is Welded to the Shell, k = 0.1

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 60
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
The
K1
K5
K9
K7P

Computed K values from Table 4.15.1:


= 0.1066
K2 = 1.1707
K3 = 0.8799
= 0.7603
K6 = 0.0529
K7 = 0.0529
= 0.2711
K10 = 0.0581
K1* = 0.1923
= 0.0442

K4 = 0.4011
K8 = 0.3405
K6p = 0.0442

The suffix 'p' denotes the values for a wear plate if it exists.
Note: Dimension a is greater than or equal to Rm / 2.
Moment per Equation 4.15.3
[M1]:
= -Q*a [1 - (1- a/L + (R-h2)/(2a*L))/(1+(4h2)/3L)]
= -906*630.00[1-(1-630.00/3046.00+(244.000-121.750)/
(2*630.00*3046.00))/(1+(4*121.75)/(3*3046.00))]
= -134.7 kgf-m.
Moment per Equation 4.15.4
[M2]:
= Q*L/4(1+2(R-h2)/(L))/(1+(4h2)/( 3L))-4a/L
= 906*3046/4(1+2(244-121)/(3046))/(1+(4*121)/
(3*3046))-4*629/3046
= 90.6 kgf-m.
Longitudinal Stress at Top of Shell (4.15.6)
[Sigma1]:
= P * Rm/(2t) - M2/(pi*Rmt)
= 11.02 * 244.000/(2*7.000 ) - 90.6/(pi*244.0*7.000 )
= 2688.02 psi
Longitudinal Stress at Bottom of Shell (4.15.7)
[Sigma2]:
= P * Rm/(2t) + M2/(pi * Rm * t)
= 11.02 * 244.000/(2 * 7.000 ) + 90.6/(pi * 244.0 * 7.000 )
= 2884.88 psi
Longitudinal Stress at Top of Shell at Support (4.15.10)
= P * Rm/(2t) - M1/(K1*pi*Rmt)
= 11.02*244.000/(2*7.000)--134.7/(0.1066*pi*244.0*7.000)
= 4159.46 psi

[Sigma*3]:

Longitudinal Stress at Bottom of Shell at Support (4.15.11)


= P * Rm/(2t) + M1/(K1* * pi * Rm * t)
= 11.02*244.000/(2*7.000)+-134.7/(0.1923*pi*244.0*7.000)
= 2025.44 psi

[Sigma*4]:

Maximum Shear Force in the Saddle (4.15.5)


[T]:
= Q(L-2a)/(L+(4*h2/3))
= 906 ( 3046.00 - 2 * 630.00 )/(3046.00 + ( 4 * 121.75/3))
= 504.7 kgf
Shear Stress in the shell no rings,
= K2 * T / ( Rm * t )

not stiffened (4.15.14)

[tau2]:

= 1.1707 * 504.70/( 244.0000 * 7.0000 )


= 492.03 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 61
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
Decay Length (4.15.22)
[x1,x2]:
= 0.78 * sqrt( Rm * t )
= 0.78 * sqrt( 244.000 * 7.000 )
= 32.236 mm
Circumferential Stress in shell, no rings (4.15.23)
[sigma6]:
= -K5 * Q * k / ( t * ( b + X1 + X2 ) )
= -0.7603 * 906 * 0.1/( 7.000 * ( 133.00 + 32.24 + 32.24 ) )
= -70.92 psi
Effective reinforcing plate width (4.15.1)
[B1]:
= min( b + 1.56 * sqrt( Rm * t ), 2a )
= min( 133.00 + 1.56 * sqrt( 244.000 * 7.000 ), 2 * 630.000 )
= 197.47 mm
Wear Plate/Shell Stress ratio (4.15.29)
= min( Sr/S, 1 )
= min( 16600.000/20000.000 , 1 )
= 0.8300

[eta]:

Circumferential Stress at wear plate (4.15.26)


[sigma6,r]:
= -K5 * Q * k / ( B1( t + eta * tr ) )
= -0.7603 * 906 * 0.1/( 197.472 ( 7.000 + 0.830 * 10.000 ) )
= -32.45 psi
Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.27)
= -Q/(4(t+eta*tr)b1) - 3*K7*Q/(2(t+eta*tr))
= -906/(4(7.000 + 0.830 * 10.000 )197.472 ) 3 * 0.053 * 906/(2(7.000 + 0.830 * 10.000 ))
= -543.42 psi

[sigma7,r]:

Results for Vessel Ribs, Web and Base


Baseplate Length
Baseplate Thickness
Baseplate Width
Number of Ribs ( inc. outside ribs )
Rib Thickness
Web Thickness
Web Location

Bplen
Bpthk
Bpwid
Nribs
Ribtk
Webtk
Webloc

451.2500
25.4000
200.0000
2
8.0000
8.0000
Side

Moment of Inertia of Saddle - Lateral Direction


Shell
Wearplate
Web
BasePlate
Totals

Y
3.
12.
110.
215.
341.

A
1848.
2000.
1485.
5080.
10413.

AY
6468.
24000.
163031.
1093724.
1287223.

Io
3.
30.
2216.
23575.
25825.

mm
mm
mm
mm
mm

Value
Value
Value

C1 = Sumof(Ay)/Sumof(A)
I = Sumof(Io) - C1*Sumof(Ay)
As = Sumof(A) - Ashell

=
=
=

124.
9912.
8565.

mm
cm**4
mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 62
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
K1 = (1+Cos(beta)-.5*Sin(beta) )/(pi-beta+Sin(beta)*Cos(beta)) =
0.2035
Fh = K1 * Q = 0.2035 * 906.637 = 184.5204 kgf
Tension Stress, St = ( Fh/As )
=
Allowed Stress, Sa = 0.6 * Yield Str =
d = B - R*Sin(theta) / theta
Bending Moment, M = Fh * d

30.6429
21600.0000

=
=

269.6081
49.7482

Bending Stress, Sb = ( M * C1 / I ) =
Allowed Stress, Sa = 2/3 * Yield Str =

88.2430
24000.0000

psi
psi
mm
kgf-m.
psi
psi

Minimum Thickness of Baseplate per Moss :


= ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 2 * BasePlateLength *
AllStress ))
= ( 3 * (906 + 41 ) * 200.00/( 2 * 451.250 * 24000.000 ))
= 6.110 mm
Calculation of Axial Load, Intermediate Values and Compressive Stress
Effective Baseplate Length [e]:
= ( Bplen - Clearance ) / ( Nribs - 1)
= ( 451.2500 - 25.4 )/( 2 - 1 ) = 425.8500 mm
Baseplate Pressure Area [Ap]:
= e * Bpwid / 2
= 425.8500 * 200.0000/2 = 42585.0039 mm
Axial Load [P]:
= Ap * Bp
= 42585.0 * 0.01 = 427.8 kgf
Area of the Rib and Web [Ar]:
= ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk
= ( 200.000 - 25.4 - 8.000 ) * 8.000 + 425.8500/2 * 8.000
= 3036.200 mm
Compressive Stress [Sc]:
= P/Ar
= 427.8/3036.2000 = 200.4078 psi
Check of Outside Ribs:
Inertia of Saddle, Outer Ribs - Longitudinal Direction
Y
A
AY
Ay
Rib
91.3
1166.4
106492.3
313.2
Web
4.0
1703.4
6813.6
214.5
Values
39.5
2869.8
113305.9
527.6

Io
242.5
1.8
244.4

Bending Moment [Rm]:


= Fl /( 2 * Bplen ) * e * rl / 2
= 154.0/( 2 * 451.25 ) * 425.850 * 344.75/2

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 63
Horizontal Vessel Analysis (Ope.) :
Step:
14 11:15p Sep 5,2012
= 12.523 kgf-m.
KL/R < Cc ( 6.8369 < 126.0992 ) per AISC E2-1
Sca = (1-(Klr)/(2*Cc))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr)/(8*Cc)
Sca = ( 1-( 6.84 )/(2 * 126.10 )) * 36000/
( 5/3+3*(6.84 )/(8* 126.10 )-( 6.84)/(8*126.10)
Sca = 21308.56 psi
AISC Unity Check on Outside Ribs ( must be <= 1.0 )
Check = Sc/Sca + (Rm/Z)/Sba
Check = 200.41/21308.56 + (12.52/5.714 )/24000.00
Check = 0.02
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 64
Horizontal Vessel Analysis (Test) :
Step:
15 11:15p Sep 5,2012
ASME Horizontal Vessel Analysis: Stresses for the Left Saddle
(per ASME Sec. VIII Div. 2 based on the Zick method.)
Horizontal Vessel Stress Calculations : Test Case
Input and Calculated Values:
Vessel Mean Radius
Stiffened Vessel Length per 4.15.6
Distance from Saddle to Vessel tangent
Saddle Width
Saddle Bearing Angle
Wear
Wear
Wear
Wear

Plate
Plate
Plate
Plate

Width
Bearing Angle
Thickness
Allowable Stress

Rm
L
a

244.00
3046.00
630.00

b
theta

133.00
120.00

mm
degrees

b1
theta1
tr
Sr

200.00
131.00
10.0
16600.00

mm
degrees
mm
psi

20000.00
20000.00
1.00
1.00

psi
psi

1501.83

kgf

Shell Allowable Stress used in Calculation


Head Allowable Stress used in Calculation
Circumferential Efficiency in Plane of Saddle
Circumferential Efficiency at Mid-Span
Saddle Force Q, Test Case, no Ext. Forces

mm
mm
mm

Horizontal Vessel Analysis Results:


Actual
Allowable
------------------------------------------------------------------Long. Stress at Top
of Midspan
3390.29
20000.00 psi
Long. Stress at Bottom of Midspan
3851.27
20000.00 psi
Long. Stress at Top
of Saddles
5465.30
20000.00 psi
Long. Stress at Bottom of Saddles
2598.43
20000.00 psi
Tangential Shear in Shell
Circ. Stress at Horn of Saddle
Circ. Compressive Stress in Shell

858.48
900.17
117.48

16000.00
25000.00
20000.00

psi
psi
psi

Intermediate Results: Saddle Reaction Q due to Wind or Seismic


Saddle Reaction Force due to Wind Ft [Fwt]:
= Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E
= 3.00 * ( 91.8/2 + 0 ) * 498.0000/422.6205
= 162.2 kgf
Saddle Reaction Force due to Wind Fl or Friction [Fwl]:
= Max( Fl, Friction Load, Sum of X Forces) * B / Ls
= Max( 39.77 , 0.00 , 0 ) * 498.0000/1460.0001
= 4.5 kgf

Load Combination Results for Q + Wind or Seismic


= Saddle Load + Max( Fwl, Fwt, Fsl, Fst )
= 1339 + Max( 4 , 162 , 0 , 0 )

[Q]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 65
Horizontal Vessel Analysis (Test) :
Step:
15 11:15p Sep 5,2012
= 1501.8 kgf
Summary of Loads at the base of this Saddle:
Vertical Load (including saddle weight)
Transverse Shear Load Saddle
Longitudinal Shear Load Saddle

1542.86
45.88
13.12

Hydrostatic Test Pressure at center of Vessel:

kgf
kgf
kgf

14.324

bar

Formulas and Substitutions for Horizontal Vessel Analysis:


Note: Wear Plate is Welded to the Shell, k = 0.1
The
K1
K5
K9
K7P

Computed K values from Table 4.15.1:


= 0.1066
K2 = 1.1707
K3 = 0.8799
= 0.7603
K6 = 0.0529
K7 = 0.0529
= 0.2711
K10 = 0.0581
K1* = 0.1923
= 0.0442

K4 = 0.4011
K8 = 0.3405
K6p = 0.0442

The suffix 'p' denotes the values for a wear plate if it exists.
Note: Dimension a is greater than or equal to Rm / 2.
Moment per Equation 4.15.3
[M1]:
= -Q*a [1 - (1- a/L + (R-h2)/(2a*L))/(1+(4h2)/3L)]
= -1501*630.00[1-(1-630.00/3046.00+(244.000-0.000)/
(2*630.00*3046.00))/(1+(4*0.00)/(3*3046.00))]
= -181.0 kgf-m.
Moment per Equation 4.15.4
[M2]:
= Q*L/4(1+2(R-h2)/(L))/(1+(4h2)/( 3L))-4a/L
= 1501*3046/4(1+2(244-0)/(3046))/(1+(4*0)/
(3*3046))-4*629/3046
= 212.2 kgf-m.
Longitudinal Stress at Top of Shell (4.15.6)
[Sigma1]:
= P * Rm/(2t) - M2/(pi*Rmt)
= 14.32 * 244.000/(2*7.000 ) - 212.2/(pi*244.0*7.000 )
= 3390.29 psi
Longitudinal Stress at Bottom of Shell (4.15.7)
[Sigma2]:
= P * Rm/(2t) + M2/(pi * Rm * t)
= 14.32 * 244.000/(2 * 7.000 ) + 212.2/(pi * 244.0 * 7.000 )
= 3851.27 psi
Longitudinal Stress at Top of Shell at Support (4.15.10)
= P * Rm/(2t) - M1/(K1*pi*Rmt)
= 14.32*244.000/(2*7.000)--181.0/(0.1066*pi*244.0*7.000)
= 5465.30 psi

[Sigma*3]:

Longitudinal Stress at Bottom of Shell at Support (4.15.11)


= P * Rm/(2t) + M1/(K1* * pi * Rm * t)
= 14.32*244.000/(2*7.000)+-181.0/(0.1923*pi*244.0*7.000)

[Sigma*4]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 66
Horizontal Vessel Analysis (Test) :
Step:
15 11:15p Sep 5,2012
= 2598.43 psi
Maximum Shear Force in the Saddle (4.15.5)
[T]:
= Q(L-2a)/(L+(4*h2/3))
= 1501 ( 3046.00 - 2 * 630.00 )/(3046.00 + ( 4 * 0.00/3))
= 880.6 kgf
Shear Stress in the shell no rings, not stiffened (4.15.14)
= K2 * T / ( Rm * t )
= 1.1707 * 880.59/( 244.0000 * 7.0000 )
= 858.48 psi

[tau2]:

Decay Length (4.15.22)


[x1,x2]:
= 0.78 * sqrt( Rm * t )
= 0.78 * sqrt( 244.000 * 7.000 )
= 32.236 mm
Circumferential Stress in shell, no rings (4.15.23)
[sigma6]:
= -K5 * Q * k / ( t * ( b + X1 + X2 ) )
= -0.7603 * 1501 * 0.1/( 7.000 * ( 133.00 + 32.24 + 32.24 ) )
= -117.48 psi
Effective reinforcing plate width (4.15.1)
[B1]:
= min( b + 1.56 * sqrt( Rm * t ), 2a )
= min( 133.00 + 1.56 * sqrt( 244.000 * 7.000 ), 2 * 630.000 )
= 197.47 mm
Wear Plate/Shell Stress ratio (4.15.29)
= min( Sr/S, 1 )
= min( 16600.000/20000.000 , 1 )
= 0.8300

[eta]:

Circumferential Stress at wear plate (4.15.26)


[sigma6,r]:
= -K5 * Q * k / ( B1( t + eta * tr ) )
= -0.7603 * 1501 * 0.1/( 197.472 ( 7.000 + 0.830 * 10.000 ) )
= -53.75 psi
Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.27)
= -Q/(4(t+eta*tr)b1) - 3*K7*Q/(2(t+eta*tr))
= -1501/(4(7.000 + 0.830 * 10.000 )197.472 ) 3 * 0.053 * 1501/(2(7.000 + 0.830 * 10.000 ))
= -900.17 psi
Results for Vessel Ribs, Web and Base:
Baseplate Length
Baseplate Thickness
Baseplate Width
Number of Ribs ( inc. outside ribs )
Rib Thickness
Web Thickness

Bplen
Bpthk
Bpwid
Nribs
Ribtk
Webtk

[sigma7,r]:

451.2500
25.4000
200.0000
2
8.0000
8.0000

mm
mm
mm
mm
mm

Web Location

Webloc

Moment of Inertia of Saddle - Lateral Direction

Side

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 67
Horizontal Vessel Analysis (Test) :
Step:
15 11:15p Sep 5,2012

Shell
Wearplate
Web
BasePlate
Totals
Value
Value
Value

Y
3.
12.
110.
215.
341.

A
1848.
2000.
1485.
5080.
10413.

AY
6468.
24000.
163031.
1093724.
1287223.

C1 = Sumof(Ay)/Sumof(A)
I = Sumof(Io) - C1*Sumof(Ay)
As = Sumof(A) - Ashell

=
=
=

Io
3.
30.
2216.
23575.
25825.
124.
9912.
8565.

mm
cm**4
mm

K1 = (1+Cos(beta)-.5*Sin(beta) )/(pi-beta+Sin(beta)*Cos(beta)) =
0.2035
Fh = K1 * Q = 0.2035 * 1501.827 = 305.6545 kgf
Tension Stress, St = ( Fh/As )
=
Allowed Stress, Sa = 0.6 * Yield Str =
d = B - R*Sin(theta) / theta
Bending Moment, M = Fh * d

50.7593
21600.0000

=
=

269.6081
82.4070

Bending Stress, Sb = ( M * C1 / I ) =
Allowed Stress, Sa = 2/3 * Yield Str =

146.1729
24000.0000

psi
psi
mm
kgf-m.
psi
psi

Minimum Thickness of Baseplate per Moss :


= ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 2 * BasePlateLength *
AllStress ))
= ( 3 * (1501 + 41 ) * 200.00/( 2 * 451.250 * 24000.000 ))
= 7.797 mm
Calculation of Axial Load, Intermediate Values and Compressive Stress
Effective Baseplate Length [e]:
= ( Bplen - Clearance ) / ( Nribs - 1)
= ( 451.2500 - 25.4 )/( 2 - 1 ) = 425.8500 mm
Baseplate Pressure Area [Ap]:
= e * Bpwid / 2
= 425.8500 * 200.0000/2 = 42585.0039 mm
Axial Load [P]:
= Ap * Bp
= 42585.0 * 0.02 = 708.6 kgf
Area of the Rib and Web [Ar]:
= ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk
= ( 200.000 - 25.4 - 8.000 ) * 8.000 + 425.8500/2 * 8.000
= 3036.200 mm

Compressive Stress [Sc]:


= P/Ar
= 708.6/3036.2000 = 331.9718 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 68
Horizontal Vessel Analysis (Test) :
Step:
15 11:15p Sep 5,2012
Check of Outside Ribs:
Inertia of Saddle, Outer Ribs - Longitudinal Direction
Y
A
AY
Ay
Rib
91.3
1166.4
106492.3
313.2
Web
4.0
1703.4
6813.6
214.5
Values
39.5
2869.8
113305.9
527.6

Io
242.5
1.8
244.4

Bending Moment [Rm]:


= Fl /( 2 * Bplen ) * e * rl / 2
= 13.1/( 2 * 451.25 ) * 425.850 * 344.75/2
= 1.067 kgf-m.
KL/R < Cc ( 6.8369 < 126.0992 ) per AISC E2-1
Sca = (1-(Klr)/(2*Cc))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr)/(8*Cc)
Sca = ( 1-( 6.84 )/(2 * 126.10 )) * 36000/
( 5/3+3*(6.84 )/(8* 126.10 )-( 6.84)/(8*126.10)
Sca = 21308.56 psi
AISC Unity Check on Outside Ribs ( must be <= 1.0 )
Check = Sc/Sca + (Rm/Z)/Sba
Check = 331.97/21308.56 + (1.07/5.714 )/24000.00
Check = 0.02
Input Data for Base Plate Bolting Calculations:
Total Number of Bolts per BasePlate
Total Number of Bolts in Tension/Baseplate
Bolt Material Specification
Bolt Allowable Stress
Bolt Corrosion Allowance
Distance from Bolts to Edge
Nominal Bolt Diameter
Thread Series
BasePlate Allowable Stress
Area Available in a Single Bolt
Saddle Load QO (Weight)
Saddle Load QL (Wind/Seismic contribution)
Maximum Transverse Force
Maximum Longitudinal Force
Saddle Bolted to Steel Foundation

Nbolts
Nbt
Stba
Bca
Edgedis
Bnd
Series
S
BltArea
QO
QL
Ft
Fl

2
1
SA-36
16600.00 psi
0.0000 mm
80.0100 mm
20.0000 mm
TEMA Metric
16600.00 psi
217.0510 mm
1380.7 kgf
4.5 kgf
45.9 kgf
13.1 kgf
No

Bolt Area Calculation per Dennis R. Moss


Bolt Area Requirement Due to Longitudinal Load [Bltarearl]:
= 0.0 (QO > QL --> No Uplift in Longitudinal direction)
Bolt Area due to Shear Load [Bltarears]:
= Fl / (Stba * Nbolts)

= 13.12/(16600.00 * 2.00 )
= 0.5622 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 69
Horizontal Vessel Analysis (Test) :
Step:
15 11:15p Sep 5,2012
Bolt Area due to Transverse Load
Moment on Baseplate Due to Transverse Load [Rmom]:
= B * Ft + Sum of X Moments
= 498.00 * 45.88 + 0.00
= 22.85 kgf-m.
Eccentricity (e):
= Rmom / QO
= 22.85/1380.67
= 16.55 mm < Bplen/6 --> No Uplift in Transverse direction
Bolt Area due to Transverse Load [Bltareart]:
= 0 (No Uplift)
Required of a Single Bolt [Bltarear]
= max[Bltarearl, Bltarears, Bltareart]
= max[0.0000 , 0.5622 , 0.0000 ]
= 0.5622 mm
ASME Horizontal Vessel Analysis: Stresses for the Right Saddle
(per ASME Sec. VIII Div. 2 based on the Zick method.)
Input and Calculated Values:
Vessel Mean Radius
Stiffened Vessel Length per 4.15.6
Distance from Saddle to Vessel tangent
Saddle Width
Saddle Bearing Angle
Wear
Wear
Wear
Wear

Plate
Plate
Plate
Plate

Width
Bearing Angle
Thickness
Allowable Stress

Rm
L
a

244.00
3046.00
630.00

b
theta

133.00
120.00

mm
degrees

b1
theta1
tr
Sr

200.00
131.00
10.0
16600.00

mm
degrees
mm
psi

h2

121.75

Inside Depth of Head


Shell Allowable Stress used in Calculation
Head Allowable Stress used in Calculation
Circumferential Efficiency in Plane of Saddle
Circumferential Efficiency at Mid-Span
Saddle Force Q, Test Case, no Ext. Forces

mm
mm
mm

mm

20000.00
20000.00
1.00
1.00

psi
psi

680.22

kgf

Horizontal Vessel Analysis Results:


Actual
Allowable
------------------------------------------------------------------Long. Stress at Top
of Midspan
3546.93
20000.00 psi

Long. Stress at Bottom of Midspan


Long. Stress at Top
of Saddles
Long. Stress at Bottom of Saddles

3694.63
4650.90
3049.82

20000.00
20000.00
20000.00

psi
psi
psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 70
Horizontal Vessel Analysis (Test) :
Step:
15 11:15p Sep 5,2012
Tangential Shear in Shell
Circ. Stress at Horn of Saddle
Circ. Compressive Stress in Shell

369.15
407.71
53.21

16000.00
25000.00
20000.00

psi
psi
psi

Intermediate Results: Saddle Reaction Q due to Wind or Seismic


Saddle Reaction Force due to Wind Ft [Fwt]:
= Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E
= 3.00 * ( 91.8/2 + 0 ) * 498.0000/422.6205
= 162.2 kgf
Saddle Reaction Force due to Wind Fl or Friction [Fwl]:
= Max( Fl, Friction Load, Sum of X Forces) * B / Ls
= Max( 39.77 , 0.00 , 0 ) * 498.0000/1460.0001
= 4.5 kgf
Load Combination Results for Q + Wind or Seismic
= Saddle Load + Max( Fwl, Fwt, Fsl, Fst )
= 518 + Max( 4 , 162 , 0 , 0 )
= 680.2 kgf

[Q]:

Summary of Loads at the base of this Saddle:


Vertical Load (including saddle weight)
Transverse Shear Load Saddle
Longitudinal Shear Load Saddle

721.25
45.88
13.12

Hydrostatic Test Pressure at center of Vessel:

kgf
kgf
kgf

14.324

bar

Formulas and Substitutions for Horizontal Vessel Analysis:


Note: Wear Plate is Welded to the Shell, k = 0.1
The
K1
K5
K9
K7P

Computed K values from Table 4.15.1:


= 0.1066
K2 = 1.1707
K3 = 0.8799
= 0.7603
K6 = 0.0529
K7 = 0.0529
= 0.2711
K10 = 0.0581
K1* = 0.1923
= 0.0442

K4 = 0.4011
K8 = 0.3405
K6p = 0.0442

The suffix 'p' denotes the values for a wear plate if it exists.
Note: Dimension a is greater than or equal to Rm / 2.
Moment per Equation 4.15.3
[M1]:
= -Q*a [1 - (1- a/L + (R-h2)/(2a*L))/(1+(4h2)/3L)]
= -680*630.00[1-(1-630.00/3046.00+(244.000-121.750)/
(2*630.00*3046.00))/(1+(4*121.75)/(3*3046.00))]
= -101.1 kgf-m.
Moment per Equation 4.15.4

[M2]:

= Q*L/4(1+2(R-h2)/(L))/(1+(4h2)/( 3L))-4a/L
= 680*3046/4(1+2(244-121)/(3046))/(1+(4*121)/
(3*3046))-4*629/3046

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 71
Horizontal Vessel Analysis (Test) :
Step:
15 11:15p Sep 5,2012
= 68.0 kgf-m.
Longitudinal Stress at Top of Shell (4.15.6)
[Sigma1]:
= P * Rm/(2t) - M2/(pi*Rmt)
= 14.32 * 244.000/(2*7.000 ) - 68.0/(pi*244.0*7.000 )
= 3546.93 psi
Longitudinal Stress at Bottom of Shell (4.15.7)
[Sigma2]:
= P * Rm/(2t) + M2/(pi * Rm * t)
= 14.32 * 244.000/(2 * 7.000 ) + 68.0/(pi * 244.0 * 7.000 )
= 3694.63 psi
Longitudinal Stress at Top of Shell at Support (4.15.10)
= P * Rm/(2t) - M1/(K1*pi*Rmt)
= 14.32*244.000/(2*7.000)--101.1/(0.1066*pi*244.0*7.000)
= 4650.90 psi

[Sigma*3]:

Longitudinal Stress at Bottom of Shell at Support (4.15.11)


= P * Rm/(2t) + M1/(K1* * pi * Rm * t)
= 14.32*244.000/(2*7.000)+-101.1/(0.1923*pi*244.0*7.000)
= 3049.82 psi

[Sigma*4]:

Maximum Shear Force in the Saddle (4.15.5)


[T]:
= Q(L-2a)/(L+(4*h2/3))
= 680 ( 3046.00 - 2 * 630.00 )/(3046.00 + ( 4 * 121.75/3))
= 378.7 kgf
Shear Stress in the shell no rings, not stiffened (4.15.14)
= K2 * T / ( Rm * t )
= 1.1707 * 378.66/( 244.0000 * 7.0000 )
= 369.15 psi
Decay Length (4.15.22)
[x1,x2]:
= 0.78 * sqrt( Rm * t )
= 0.78 * sqrt( 244.000 * 7.000 )
= 32.236 mm

[tau2]:

Circumferential Stress in shell, no rings (4.15.23)


[sigma6]:
= -K5 * Q * k / ( t * ( b + X1 + X2 ) )
= -0.7603 * 680 * 0.1/( 7.000 * ( 133.00 + 32.24 + 32.24 ) )
= -53.21 psi
Effective reinforcing plate width (4.15.1)
[B1]:
= min( b + 1.56 * sqrt( Rm * t ), 2a )
= min( 133.00 + 1.56 * sqrt( 244.000 * 7.000 ), 2 * 630.000 )
= 197.47 mm
Wear Plate/Shell Stress ratio (4.15.29)
= min( Sr/S, 1 )
= min( 16600.000/20000.000 , 1 )

[eta]:

= 0.8300
Circumferential Stress at wear plate (4.15.26)

[sigma6,r]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 72
Horizontal Vessel Analysis (Test) :
Step:
15 11:15p Sep 5,2012
= -K5 * Q * k / ( B1( t + eta * tr ) )
= -0.7603 * 680 * 0.1/( 197.472 ( 7.000 + 0.830 * 10.000 ) )
= -24.35 psi
Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.27)
= -Q/(4(t+eta*tr)b1) - 3*K7*Q/(2(t+eta*tr))
= -680/(4(7.000 + 0.830 * 10.000 )197.472 ) 3 * 0.053 * 680/(2(7.000 + 0.830 * 10.000 ))
= -407.71 psi

[sigma7,r]:

Results for Vessel Ribs, Web and Base


Baseplate Length
Baseplate Thickness
Baseplate Width
Number of Ribs ( inc. outside ribs )
Rib Thickness
Web Thickness
Web Location

Bplen
Bpthk
Bpwid
Nribs
Ribtk
Webtk
Webloc

451.2500
25.4000
200.0000
2
8.0000
8.0000
Side

mm
mm
mm
mm
mm

Moment of Inertia of Saddle - Lateral Direction


Shell
Wearplate
Web
BasePlate
Totals
Value
Value
Value

Y
3.
12.
110.
215.
341.

A
1848.
2000.
1485.
5080.
10413.

AY
6468.
24000.
163031.
1093724.
1287223.

C1 = Sumof(Ay)/Sumof(A)
I = Sumof(Io) - C1*Sumof(Ay)
As = Sumof(A) - Ashell

=
=
=

Io
3.
30.
2216.
23575.
25825.
124.
9912.
8565.

mm
cm**4
mm

K1 = (1+Cos(beta)-.5*Sin(beta) )/(pi-beta+Sin(beta)*Cos(beta)) =
0.2035
Fh = K1 * Q = 0.2035 * 680.219 = 138.4394 kgf
Tension Stress, St = ( Fh/As )
=
Allowed Stress, Sa = 0.6 * Yield Str =
d = B - R*Sin(theta) / theta
Bending Moment, M = Fh * d

22.9903
21600.0000

=
=

269.6081
37.3244

Bending Stress, Sb = ( M * C1 / I ) =
Allowed Stress, Sa = 2/3 * Yield Str =

66.2057
24000.0000

psi
psi
mm
kgf-m.
psi
psi

Minimum Thickness of Baseplate per Moss :


= ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 2 * BasePlateLength *
AllStress ))

= ( 3 * (680 + 41 ) * 200.00/( 2 * 451.250 * 24000.000 ))


= 5.331 mm
Calculation of Axial Load, Intermediate Values and Compressive Stress

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 73
Horizontal Vessel Analysis (Test) :
Step:
15 11:15p Sep 5,2012
Effective Baseplate Length [e]:
= ( Bplen - Clearance ) / ( Nribs - 1)
= ( 451.2500 - 25.4 )/( 2 - 1 ) = 425.8500 mm
Baseplate Pressure Area [Ap]:
= e * Bpwid / 2
= 425.8500 * 200.0000/2 = 42585.0039 mm
Axial Load [P]:
= Ap * Bp
= 42585.0 * 0.01 = 321.0 kgf
Area of the Rib and Web [Ar]:
= ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk
= ( 200.000 - 25.4 - 8.000 ) * 8.000 + 425.8500/2 * 8.000
= 3036.200 mm
Compressive Stress [Sc]:
= P/Ar
= 321.0/3036.2000 = 150.3592 psi
Check of Outside Ribs:
Inertia of Saddle, Outer Ribs - Longitudinal Direction
Y
A
AY
Ay
Rib
91.3
1166.4
106492.3
313.2
Web
4.0
1703.4
6813.6
214.5
Values
39.5
2869.8
113305.9
527.6

Io
242.5
1.8
244.4

Bending Moment [Rm]:


= Fl /( 2 * Bplen ) * e * rl / 2
= 13.1/( 2 * 451.25 ) * 425.850 * 344.75/2
= 1.067 kgf-m.
KL/R < Cc ( 6.8369 < 126.0992 ) per AISC E2-1
Sca = (1-(Klr)/(2*Cc))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr)/(8*Cc)
Sca = ( 1-( 6.84 )/(2 * 126.10 )) * 36000/
( 5/3+3*(6.84 )/(8* 126.10 )-( 6.84)/(8*126.10)
Sca = 21308.56 psi
AISC Unity Check on Outside Ribs ( must be <= 1.0 )
Check = Sc/Sca + (Rm/Z)/Sba
Check = 150.36/21308.56 + (1.07/5.714 )/24000.00
Check = 0.01
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 74
Nozzle Calcs. : N1
Nozl:
10 11:15p Sep 5,2012
INPUT VALUES,

Nozzle Description: N1

Pressure for Reinforcement Calculations


Temperature for Internal Pressure
Design External Pressure
Temperature for External Pressure

From :
P
Temp
Pext
Tempex

33.047
185
1.03
185

20
bar
C
bar
C

Shell Material
Shell Allowable Stress at Temperature
Shell Allowable Stress At Ambient

S
Sa

SA-516 70
20000.00 psi
20000.00 psi

Inside Diameter of Cylindrical Shell


Design Length of Section
Shell Finished (Minimum) Thickness
Shell Internal Corrosion Allowance
Shell External Corrosion Allowance

D
L
t
c
co

475.00
709.5833
10.0000
3.0000
0.0000

mm
mm
mm
mm
mm

404.0000

mm

Distance from Bottom/Left Tangent


User Entered Minimum Design Metal Temperature

0.00

Type of Element Connected to the Shell : Nozzle


Material
Material UNS Number
Material Specification/Type
Allowable Stress at Temperature
Allowable Stress At Ambient

Sn
Sna

Diameter Basis (for tr calc only)


Layout Angle
Diameter
Size and Thickness Basis
Nominal Thickness

ID
180.00
200.0000
tn

Flange Material
Flange Type
Corrosion Allowance
Joint Efficiency of Shell Seam at Nozzle
Joint Efficiency of Nozzle Neck

SA-106 B
K03006
Smls. pipe
17100.00 psi
17100.00 psi
deg
mm.

Nominal
80
SA-105
Slip on

can
E1
En

3.0000
1.00
1.00

mm

Outside Projection
ho
Weld leg size between Nozzle and Pad/Shell
Wo
Groove weld depth between Nozzle and Vessel Wgnv
Inside Projection
h
Weld leg size, Inside Element to Shell
Wi

250.0000
10.0000
8.0000
0.0000
0.0000

mm
mm
mm
mm
mm

Pad Material
Pad Allowable Stress at Temperature
Pad Allowable Stress At Ambient

Sp
Spa

SA-516 70
20000.00 psi
20000.00 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 75
Nozzle Calcs. : N1
Nozl:
10 11:15p Sep 5,2012
Diameter of Pad along vessel surface
Thickness of Pad
Weld leg size between Pad and Shell
Groove weld depth between Pad and Nozzle
Reinforcing Pad Width
ASME Code Weld Type per UW-16

Dp
te
Wp
Wgpn

Class of attached Flange


Grade of attached Flange

320.0000
10.0000
8.0000
8.0000
50.4625
None

mm
mm
mm
mm
mm

300
GR 1.1

The Pressure Design option was Design Pressure + static head.


Nozzle Sketch (may not represent actual weld type/configuration)
| |
| |
| |
| |
__________/| |
____/|__________\| |
|
\ | |
|
\ | |
|________________\|__|
Insert Nozzle With Pad, no Inside projection
Reinforcement CALCULATION, Description: N1
ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45
Actual Inside Diameter Used in Calculation
Actual Thickness Used in Calculation

193.675
12.700

mm.
mm

Nozzle input data check completed without errors.


Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (33.05*240.5000)/(20000*1.00-0.6*33.05)
= 5.8476 mm
Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (33.05*99.84)/(17100*1.00-0.6*33.05)
= 2.8462 mm
Required Nozzle thickness under External Pressure per UG-28 : 0.7502
UG-40, Limits of Reinforcement : [External Pressure]
Parallel to Vessel Wall (Diameter Limit)
Dl
Parallel to Vessel Wall, opening length
d
Normal to Vessel Wall (Thickness Limit), pad side Tlwp

399.3500
199.6750
17.5000

mm
mm
mm

mm

Weld Strength Reduction Factor [fr1]:


= min( 1, Sn/S )

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 76
Nozzle Calcs. : N1
Nozl:
10 11:15p Sep 5,2012
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr2]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr4]:
= min( 1, Sp/S )
= min( 1, 20000.0/20000.0 )
= 1.000
Weld Strength Reduction Factor [fr3]:
= min( fr2, fr4 )
= min( 0.9 , 1.0 )
= 0.855
Results of Nozzle Reinforcement Area Calculations:
AREA AVAILABLE, A1 to A5
Design External
Area Required
Ar
NA
188.356
Area in Shell
A1
NA 1011.789
Area in Nozzle Wall
A2
NA
267.824
Area in Inward Nozzle
A3
NA
0.000
Area in Welds
A41+A42+A43
NA
144.156
Area in Element
A5
NA
756.937
TOTAL AREA AVAILABLE
Atot
NA 2180.707

Mapnc
NA
NA
NA
NA
NA
NA
NA

mm
mm
mm
mm
mm
mm
mm

Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.


The area available with the given pad is Sufficient.
Area Required [A]:
= 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39
= 0.5(199.6750*1.8604*1+2*9.7000*1.8604*1*(1-0.86))
= 188.356 mm
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
= d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
= 199.675 ( 1.00 * 7.0000 - 1.0 * 1.860 ) - 2 * 9.700
( 1.00 * 7.0000 - 1.0 * 1.8604 ) * ( 1 - 0.855 )
= 1011.789 mm
Area Available in Nozzle Wall Projecting Outward [A2]:
= ( 2 * Tlwp ) * ( tn - trn ) * fr2
= ( 2 * 17.50 ) * ( 9.70 - 0.75 ) * 0.8550
= 267.824 mm

Area Available in Welds [A41 + A42 + A43]:


= (Wo - Ar Lost)*Fr3+((Wi-can/0.707) - Ar Lost)*fr2 + Wp*fr4

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 77
Nozzle Calcs. : N1
Nozl:
10 11:15p Sep 5,2012
= (93.7500 ) * 0.86 + (0.0000 ) * 0.86 + 64.0000 * 1.00
= 144.156 mm
Area Available in Element [A5]:
= (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4
= ( 320.0000 - 219.0750 ) * 10.0000 * 1.0000
= 756.937 mm
Note: Per user request, A5 multiplied by 0.75, see UG-37(h).
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int.
Wall Thickness for Internal/External pressures
ta
Wall Thickness per UG16(b),
tr16b
Wall Thickness, shell/head, internal pressure
trb1
Wall Thickness
tb1 = max(trb1, tr16b)
Wall Thickness
tb2 = max(trb2, tr16b)
Wall Thickness per table UG-45
tb3

Press.]
= 5.8462 mm
= 4.5000 mm
= 8.8476 mm
= 8.8476 mm
= 4.5000 mm
= 10.1600 mm

Determine Nozzle Thickness candidate [tb]:


= min[ tb3, max( tb1,tb2) ]
= min[ 10.160 , max( 8.848 , 4.500 ) ]
= 8.8476 mm
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
= max( ta, tb )
= max( 5.8462 , 8.8476 )
= 8.8476 mm
Available Nozzle Neck Thickness = 0.875 * 12.700 = 11.113 mm --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
MDMT of the Nozzle Neck to Flange Weld,
Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 11.113 , tr = 2.846 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.351 , Temp. Reduction = 75 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Min Metal Temp. w/o impact per UG-20(f)

-26 C
-48 C
-29 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle,


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 10.000 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.835 , Temp. Reduction = 9 C
Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1
L-9.3)

Min Metal Temp. w/o impact per UCS-66


Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-38 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad,


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 10.000 , c = 3.0000 mm , E* = 1.00

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 78
Nozzle Calcs. : N1
Nozl:
10 11:15p Sep 5,2012
Stress Ratio = tr * (E*)/(tg - c) = 0.835 , Temp. Reduction = 9 C
Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1
L-9.3)
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-38 C

MDMT of Shell to Pad Weld at Pad OD for pad,


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 10.000 , tr = 5.848 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.835 , Temp. Reduction = 9 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-38 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 10.000 , tr = 5.848 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.835 , Temp. Reduction = 9 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Governing MDMT of the Nozzle
Governing MDMT of the Reinforcement Pad
Governing MDMT of all the sub-joints of this Junction

-29 C
-38 C
:
:
:

-38 C
-38 C
-38 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:


Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c)
Flange MDMT with Temp reduction per UCS-66(b)(1)(b)
Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C
-48 C
-48 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :


Design Pressure/Ambient Rating = 33.05/51.10 = 0.647
Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above
as the calculated nozzle flange MDMT.
Nozzle Calculations per App. 1-10:
Thickness of Nozzle [tn]:
= thickness - corrosion allowance
= 12.700 - 3.000
= 9.700 mm
Effective Pressure Radius [Reff]:

Internal Pressure Case:

= Di/2 + corrosion allowance


= 475.000/2 + 3.000
= 240.500 mm
Effective Length of Vessel Wall [LR]:
Note : Pad Thk >= 0.5T and Pad Width < 8(Shell Thk + Pad Thk)

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 79
Nozzle Calcs. : N1
Nozl:
10 11:15p Sep 5,2012
= 10 * t
= 10 * 7.000
= 70.000 mm
Thickness Limit Candidate [LH1]:
= t + 0.78 * sqrt( Rn * tn )
= 7.000 + 0.78 * sqrt( 99.837 * 9.700 )
= 31.273 mm
Thickness Limit Candidate [LH2]:
= Lpr1 + T
= 250.000 + 7.000
= 257.000 mm
Thickness Limit Candidate [LH3]:
= 8( t + te )
= 8( 7.000 + 10.000 )
= 136.000 mm
Effective Nozzle Wall Length Outside the Vessel [LH]:
= min[ LH1, LH2, LH3 ]
= min[ 31.273 , 257.000 , 136.000 )
= 31.273 mm
Effective Vessel Thickness [teff]:
= t
= 7.000 mm
Determine Parameter [Lamda]:
= min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )
= min( 10, (199.67 + 9.700 )/( sqrt((481.00 + 7.000 ) * 7.000 )) )
= 3.582
Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :
Area Contributed by the Vessel Wall [A1]:
= t * LR * max( Lamda/4, 1 )
= 7.000 * 70.000 * max( 3.582/4, 1 )
= 490.000 mm
Area Contributed by the Nozzle Outside the Vessel Wall [A2]:
= tn * LH
= 9.700 * 31.273
= 303.350 mm
Area Contributed by the Pad Fillet Weld [A42]:
= 0.5 * Leg42^(2)
= 0.5 * 8.000^(2)
= 32.000 mm

Area Contributed by the Outside Fillet Weld [A41]:


= 0.5 * Leg41^(2)
= 0.5 * 10.000^(2)

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 80
Nozzle Calcs. : N1
Nozl:
10 11:15p Sep 5,2012
= 50.000 mm
Area Contributed by the Reinforcing Pad [A5]:
= min( W * te , LR * te )
= min( 50.462 * 10.000 , 70.000 * 10.000 )
= 504.625 mm
The total area contributed by A1 through A5 [AT]:
= A1 + frn( A2 + A3 ) + A41 + A42 + A43 + frp( A5 )
= 490.000+1.000(303.350+0.000)+50.000+32.000+0.000+1.000(504.625)
= 1379.975 mm
Allowable Local Primary Membrane Stress [Sallow]:
= 1.5 * S * E
= 1.5 * 20000.000 * 1.000
= 30000.0 psi
Determine Force acting on the Nozzle [fN]:
= P * Rn( LH - t )
= 33.047 * 99.837 ( 31.273 - 7.000 )
= 816.6 kgf
Determine Force acting on the Shell [fS]:
= P * Reff * ( LR + tn )
= 33.047 * 240.500 * ( 70.000 + 9.700 )
= 6459.2 kgf
Discontinuity Force from Internal Pressure [fY]:
= P * Reff * Rnc
= 33.047 * 240.500 * 99.837
= 8091.2 kgf
Area Resisting Internal Pressure [Ap]:
= Rn( LH - t ) + Reff( LR + tn + Rnc )
= 99.837 ( 31.273 - 7.000 ) + 240.500 ( 70.000 + 9.700 + 99.837 )
= 45602.1 mm
Maximum Allowable Working Pressure Candidate [Pmax1]:
= Sallow /( 2 * Ap/AT - Rxs/teff )
= 30000.000/( 2 * 45602.148/1379.975 - 240.500/7.000 )
= 65.2 bar
Maximum Allowable Working Pressure Candidate [Pmax2]:
= S[t/Reff]
= 20000.000 [7.000/240.500 ]
= 40.1 bar
Maximum Allowable Working Pressure [Pmax]:
= min( Pmax1, Pmax2 )
= min( 65.180 , 40.136 )

= 40.136 bar
Average Primary Membrane Stress [SigmaAvg]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 81
Nozzle Calcs. : N1
Nozl:
10 11:15p Sep 5,2012
= ( fN + fS + fY ) / AT
= ( 816.627 + 6459.159 + 8091.170 )/1379.975
= 15838.668 psi
General Primary Membrane Stress [SigmaCirc]:
= P * Reff / teff
= 33.047 * 240.500/7.000
= 16467.3 psi
Maximum Local Primary Membrane Stress [PL]:
= max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )
= max( 2 * 15838.668 - 16467.273 , 16467.273 )
= 16467.3 psi
Summary of Nozzle Pressure/Stress Results:
Allowed Local Primary Membrane Stress
Sallow
Local Primary Membrane Stress
PL
Maximum Allowable Working Pressure
Pmax

30000.00
16467.27
40.14

psi
psi
bar

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)


Discontinuity Force Factor [ky]:
= ( Rnc + tn ) / Rnc
= ( 99.837 + 9.700 )/99.837
= 1.097 For set-in Nozzles
Weld Length of Nozzle to Shell Weld [Ltau]:
= pi/2 * ( Rn + tn )
= pi/2 * ( 99.837 + 9.700 )
= 172.061 mm
Weld Length of Pad to Shell Weld [LtauP]:
= pi/2 * ( Rn + tn + W )
= pi/2 * ( 99.837 + 9.700 + 50.462 )
= 251.327 mm
Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]:
= 7.071,
5.657,
0.000, mm
Weld Load Value [fwelds]:
= min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )
= min(8091*1.10,1.5*17100.0(303.350+0.000),pi/4*33.0*99.84^2*1.10^2)
= 3175.543 kgf
Discontinuity Force [fws]:
= fwelds * t * S/( t * S + te * Sp )
= 3175.5*7.00*20000/(7.000*20000+10.000*20000)
= 1307.577 kgf
Discontinuity Force [fwp]:

= fwelds * te * Sp / ( t * S + te * Sp )
= 3175.5*10.00*20000/(7.000*20000+10.000*20000)
= 1867.967 kgf

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 82
Nozzle Calcs. : N1
Nozl:
10 11:15p Sep 5,2012
Shear Stress [tau1]:
= fws / ( Ltau * ( 0.6 * tw1 + 0.49 * L43T ) )
= 1307.577/( 172.061 * ( 0.6 * 7.000 + 0.49 * 0.000 ) )
= 2573.577 psi
Shear Stress [tau2]:
= fwp / ( Ltau * ( 0.6 * tw2 + 0.49 * L41T ) )
= 1867.967/( 172.061 * ( 0.6 * 8.000 + 0.49 * 7.071 ) )
= 1868.343 psi
Shear Stress [tau3]:
= fwp / ( Ltau * ( 0.49 * L42T ) )
= 1867.967/( 251.327 * ( 0.49 * 5.657 ) )
= 3813.857 psi
Maximum Shear Stress in the Welds:
= max( tau1, tau2, tau3 )
= max( 2573.577 , 1868.343 , 3813.857 )
= 3813.9 must be less than or equal to 20000.0 psi
Weld Size Calculations, Description: N1
Intermediate Calc. for nozzle/shell Welds
Tmin
Intermediate Calc. for pad/shell Welds
TminPad

9.7000
7.0000

mm
mm

Results Per UW-16.1:


Nozzle Weld
Pad Weld

Required Thickness
6.7900 = 0.7 * tmin.
3.5000 = 0.5*TminPad

Actual Thickness
7.0700 = 0.7 * Wo mm
5.6560 = 0.7 * Wp mm

Maximum Allowable Pressure for this Nozzle at this Location:


Converged Max. Allow. Pressure in Operating case
39.447

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.
Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 26.7684 mm


The Cut Length for this Nozzle is, Drop + Ho + H + T : 286.7684 mm
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 83
Nozzle Calcs. : N2
Nozl:
11 11:15p Sep 5,2012
INPUT VALUES,

Nozzle Description: N2

Pressure for Reinforcement Calculations


Temperature for Internal Pressure
Design External Pressure
Temperature for External Pressure

From :
P
Temp
Pext
Tempex

33.000
185
1.03
185

20
bar
C
bar
C

Shell Material
Shell Allowable Stress at Temperature
Shell Allowable Stress At Ambient

S
Sa

SA-516 70
20000.00 psi
20000.00 psi

Inside Diameter of Cylindrical Shell


Design Length of Section
Shell Finished (Minimum) Thickness
Shell Internal Corrosion Allowance
Shell External Corrosion Allowance

D
L
t
c
co

475.00
709.5833
10.0000
3.0000
0.0000

mm
mm
mm
mm
mm

365.0000

mm

Distance from Bottom/Left Tangent


User Entered Minimum Design Metal Temperature

0.00

Type of Element Connected to the Shell : Nozzle


Material
Material UNS Number
Material Specification/Type
Allowable Stress at Temperature
Allowable Stress At Ambient

Sn
Sna

Diameter Basis (for tr calc only)


Layout Angle
Diameter
Size and Thickness Basis
Nominal Thickness

ID
0.00
200.0000
tn

Flange Material
Flange Type
Corrosion Allowance
Joint Efficiency of Shell Seam at Nozzle
Joint Efficiency of Nozzle Neck

SA-106 B
K03006
Smls. pipe
17100.00 psi
17100.00 psi
deg
mm.

Nominal
80
SA-105
Slip on

can
E1
En

3.0000
1.00
1.00

mm

Outside Projection
ho
Weld leg size between Nozzle and Pad/Shell
Wo
Groove weld depth between Nozzle and Vessel Wgnv
Inside Projection
h
Weld leg size, Inside Element to Shell
Wi

250.0000
10.0000
8.0000
0.0000
0.0000

mm
mm
mm
mm
mm

Pad Material
Pad Allowable Stress at Temperature
Pad Allowable Stress At Ambient

Sp
Spa

SA-516 70
20000.00 psi
20000.00 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 84
Nozzle Calcs. : N2
Nozl:
11 11:15p Sep 5,2012
Diameter of Pad along vessel surface
Thickness of Pad
Weld leg size between Pad and Shell
Groove weld depth between Pad and Nozzle
Reinforcing Pad Width
ASME Code Weld Type per UW-16

Dp
te
Wp
Wgpn

Class of attached Flange


Grade of attached Flange

320.0000
10.0000
8.0000
8.0000
50.4625
None

mm
mm
mm
mm
mm

300
GR 1.1

The Pressure Design option was Design Pressure + static head.


Nozzle Sketch (may not represent actual weld type/configuration)
| |
| |
| |
| |
__________/| |
____/|__________\| |
|
\ | |
|
\ | |
|________________\|__|
Insert Nozzle With Pad, no Inside projection
Reinforcement CALCULATION, Description: N2
ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45
Actual Inside Diameter Used in Calculation
Actual Thickness Used in Calculation

193.675
12.700

mm.
mm

Nozzle input data check completed without errors.


Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (33.00*240.5000)/(20000*1.00-0.6*33.00)
= 5.8393 mm
Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (33.00*99.84)/(17100*1.00-0.6*33.00)
= 2.8421 mm
Required Nozzle thickness under External Pressure per UG-28 : 0.7502
UG-40, Limits of Reinforcement : [External Pressure]
Parallel to Vessel Wall (Diameter Limit)
Dl
Parallel to Vessel Wall, opening length
d
Normal to Vessel Wall (Thickness Limit), pad side Tlwp

399.3500
199.6750
17.5000

mm
mm
mm

mm

Weld Strength Reduction Factor [fr1]:


= min( 1, Sn/S )

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 85
Nozzle Calcs. : N2
Nozl:
11 11:15p Sep 5,2012
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr2]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr4]:
= min( 1, Sp/S )
= min( 1, 20000.0/20000.0 )
= 1.000
Weld Strength Reduction Factor [fr3]:
= min( fr2, fr4 )
= min( 0.9 , 1.0 )
= 0.855
Results of Nozzle Reinforcement Area Calculations:
AREA AVAILABLE, A1 to A5
Design External
Area Required
Ar
NA
188.356
Area in Shell
A1
NA 1011.789
Area in Nozzle Wall
A2
NA
267.824
Area in Inward Nozzle
A3
NA
0.000
Area in Welds
A41+A42+A43
NA
144.156
Area in Element
A5
NA
756.937
TOTAL AREA AVAILABLE
Atot
NA 2180.707

Mapnc
NA
NA
NA
NA
NA
NA
NA

mm
mm
mm
mm
mm
mm
mm

Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.


The area available with the given pad is Sufficient.
Area Required [A]:
= 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39
= 0.5(199.6750*1.8604*1+2*9.7000*1.8604*1*(1-0.86))
= 188.356 mm
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
= d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
= 199.675 ( 1.00 * 7.0000 - 1.0 * 1.860 ) - 2 * 9.700
( 1.00 * 7.0000 - 1.0 * 1.8604 ) * ( 1 - 0.855 )
= 1011.789 mm
Area Available in Nozzle Wall Projecting Outward [A2]:
= ( 2 * Tlwp ) * ( tn - trn ) * fr2
= ( 2 * 17.50 ) * ( 9.70 - 0.75 ) * 0.8550
= 267.824 mm

Area Available in Welds [A41 + A42 + A43]:


= (Wo - Ar Lost)*Fr3+((Wi-can/0.707) - Ar Lost)*fr2 + Wp*fr4

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 86
Nozzle Calcs. : N2
Nozl:
11 11:15p Sep 5,2012
= (93.7500 ) * 0.86 + (0.0000 ) * 0.86 + 64.0000 * 1.00
= 144.156 mm
Area Available in Element [A5]:
= (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4
= ( 320.0000 - 219.0750 ) * 10.0000 * 1.0000
= 756.937 mm
Note: Per user request, A5 multiplied by 0.75, see UG-37(h).
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int.
Wall Thickness for Internal/External pressures
ta
Wall Thickness per UG16(b),
tr16b
Wall Thickness, shell/head, internal pressure
trb1
Wall Thickness
tb1 = max(trb1, tr16b)
Wall Thickness
tb2 = max(trb2, tr16b)
Wall Thickness per table UG-45
tb3

Press.]
= 5.8421 mm
= 4.5000 mm
= 8.8393 mm
= 8.8393 mm
= 4.5000 mm
= 10.1600 mm

Determine Nozzle Thickness candidate [tb]:


= min[ tb3, max( tb1,tb2) ]
= min[ 10.160 , max( 8.839 , 4.500 ) ]
= 8.8393 mm
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
= max( ta, tb )
= max( 5.8421 , 8.8393 )
= 8.8393 mm
Available Nozzle Neck Thickness = 0.875 * 12.700 = 11.113 mm --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
MDMT of the Nozzle Neck to Flange Weld,
Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 11.113 , tr = 2.842 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.350 , Temp. Reduction = 75 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Min Metal Temp. w/o impact per UG-20(f)

-26 C
-48 C
-29 C

MDMT of Nozzle Neck to Pad Weld for the Nozzle,


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 10.000 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.834 , Temp. Reduction = 9 C
Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1
L-9.3)

Min Metal Temp. w/o impact per UCS-66


Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-38 C

MDMT of Nozzle Neck to Pad Weld for Reinforcement pad,


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 10.000 , c = 3.0000 mm , E* = 1.00

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 87
Nozzle Calcs. : N2
Nozl:
11 11:15p Sep 5,2012
Stress Ratio = tr * (E*)/(tg - c) = 0.834 , Temp. Reduction = 9 C
Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1
L-9.3)
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-38 C

MDMT of Shell to Pad Weld at Pad OD for pad,


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 10.000 , tr = 5.839 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.834 , Temp. Reduction = 9 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-38 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 10.000 , tr = 5.839 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.834 , Temp. Reduction = 9 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Governing MDMT of the Nozzle
Governing MDMT of the Reinforcement Pad
Governing MDMT of all the sub-joints of this Junction

-29 C
-38 C
:
:
:

-38 C
-38 C
-38 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:


Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c)
Flange MDMT with Temp reduction per UCS-66(b)(1)(b)
Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C
-48 C
-48 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :


Design Pressure/Ambient Rating = 33.00/51.10 = 0.646
Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above
as the calculated nozzle flange MDMT.
Nozzle Calculations per App. 1-10:
Thickness of Nozzle [tn]:
= thickness - corrosion allowance
= 12.700 - 3.000
= 9.700 mm
Effective Pressure Radius [Reff]:

Internal Pressure Case:

= Di/2 + corrosion allowance


= 475.000/2 + 3.000
= 240.500 mm
Effective Length of Vessel Wall [LR]:
Note : Pad Thk >= 0.5T and Pad Width < 8(Shell Thk + Pad Thk)

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 88
Nozzle Calcs. : N2
Nozl:
11 11:15p Sep 5,2012
= 10 * t
= 10 * 7.000
= 70.000 mm
Thickness Limit Candidate [LH1]:
= t + 0.78 * sqrt( Rn * tn )
= 7.000 + 0.78 * sqrt( 99.837 * 9.700 )
= 31.273 mm
Thickness Limit Candidate [LH2]:
= Lpr1 + T
= 250.000 + 7.000
= 257.000 mm
Thickness Limit Candidate [LH3]:
= 8( t + te )
= 8( 7.000 + 10.000 )
= 136.000 mm
Effective Nozzle Wall Length Outside the Vessel [LH]:
= min[ LH1, LH2, LH3 ]
= min[ 31.273 , 257.000 , 136.000 )
= 31.273 mm
Effective Vessel Thickness [teff]:
= t
= 7.000 mm
Determine Parameter [Lamda]:
= min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )
= min( 10, (199.67 + 9.700 )/( sqrt((481.00 + 7.000 ) * 7.000 )) )
= 3.582
Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :
Area Contributed by the Vessel Wall [A1]:
= t * LR * max( Lamda/4, 1 )
= 7.000 * 70.000 * max( 3.582/4, 1 )
= 490.000 mm
Area Contributed by the Nozzle Outside the Vessel Wall [A2]:
= tn * LH
= 9.700 * 31.273
= 303.350 mm
Area Contributed by the Pad Fillet Weld [A42]:
= 0.5 * Leg42^(2)
= 0.5 * 8.000^(2)
= 32.000 mm

Area Contributed by the Outside Fillet Weld [A41]:


= 0.5 * Leg41^(2)
= 0.5 * 10.000^(2)

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 89
Nozzle Calcs. : N2
Nozl:
11 11:15p Sep 5,2012
= 50.000 mm
Area Contributed by the Reinforcing Pad [A5]:
= min( W * te , LR * te )
= min( 50.462 * 10.000 , 70.000 * 10.000 )
= 504.625 mm
The total area contributed by A1 through A5 [AT]:
= A1 + frn( A2 + A3 ) + A41 + A42 + A43 + frp( A5 )
= 490.000+1.000(303.350+0.000)+50.000+32.000+0.000+1.000(504.625)
= 1379.975 mm
Allowable Local Primary Membrane Stress [Sallow]:
= 1.5 * S * E
= 1.5 * 20000.000 * 1.000
= 30000.0 psi
Determine Force acting on the Nozzle [fN]:
= P * Rn( LH - t )
= 33.000 * 99.837 ( 31.273 - 7.000 )
= 815.5 kgf
Determine Force acting on the Shell [fS]:
= P * Reff * ( LR + tn )
= 33.000 * 240.500 * ( 70.000 + 9.700 )
= 6450.1 kgf
Discontinuity Force from Internal Pressure [fY]:
= P * Reff * Rnc
= 33.000 * 240.500 * 99.837
= 8079.8 kgf
Area Resisting Internal Pressure [Ap]:
= Rn( LH - t ) + Reff( LR + tn + Rnc )
= 99.837 ( 31.273 - 7.000 ) + 240.500 ( 70.000 + 9.700 + 99.837 )
= 45602.1 mm
Maximum Allowable Working Pressure Candidate [Pmax1]:
= Sallow /( 2 * Ap/AT - Rxs/teff )
= 30000.000/( 2 * 45602.148/1379.975 - 240.500/7.000 )
= 65.2 bar
Maximum Allowable Working Pressure Candidate [Pmax2]:
= S[t/Reff]
= 20000.000 [7.000/240.500 ]
= 40.1 bar
Maximum Allowable Working Pressure [Pmax]:
= min( Pmax1, Pmax2 )
= min( 65.180 , 40.136 )

= 40.136 bar
Average Primary Membrane Stress [SigmaAvg]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 90
Nozzle Calcs. : N2
Nozl:
11 11:15p Sep 5,2012
= ( fN + fS + fY ) / AT
= ( 815.476 + 6450.058 + 8079.771 )/1379.975
= 15816.353 psi
General Primary Membrane Stress [SigmaCirc]:
= P * Reff / teff
= 33.000 * 240.500/7.000
= 16444.1 psi
Maximum Local Primary Membrane Stress [PL]:
= max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )
= max( 2 * 15816.353 - 16444.072 , 16444.072 )
= 16444.1 psi
Summary of Nozzle Pressure/Stress Results:
Allowed Local Primary Membrane Stress
Sallow
Local Primary Membrane Stress
PL
Maximum Allowable Working Pressure
Pmax

30000.00
16444.07
40.14

psi
psi
bar

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)


Discontinuity Force Factor [ky]:
= ( Rnc + tn ) / Rnc
= ( 99.837 + 9.700 )/99.837
= 1.097 For set-in Nozzles
Weld Length of Nozzle to Shell Weld [Ltau]:
= pi/2 * ( Rn + tn )
= pi/2 * ( 99.837 + 9.700 )
= 172.061 mm
Weld Length of Pad to Shell Weld [LtauP]:
= pi/2 * ( Rn + tn + W )
= pi/2 * ( 99.837 + 9.700 + 50.462 )
= 251.327 mm
Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]:
= 7.071,
5.657,
0.000, mm
Weld Load Value [fwelds]:
= min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )
= min(8079*1.10,1.5*17100.0(303.350+0.000),pi/4*33.0*99.84^2*1.10^2)
= 3171.069 kgf
Discontinuity Force [fws]:
= fwelds * t * S/( t * S + te * Sp )
= 3171.1*7.00*20000/(7.000*20000+10.000*20000)
= 1305.734 kgf
Discontinuity Force [fwp]:

= fwelds * te * Sp / ( t * S + te * Sp )
= 3171.1*10.00*20000/(7.000*20000+10.000*20000)
= 1865.335 kgf

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 91
Nozzle Calcs. : N2
Nozl:
11 11:15p Sep 5,2012
Shear Stress [tau1]:
= fws / ( Ltau * ( 0.6 * tw1 + 0.49 * L43T ) )
= 1305.734/( 172.061 * ( 0.6 * 7.000 + 0.49 * 0.000 ) )
= 2569.951 psi
Shear Stress [tau2]:
= fwp / ( Ltau * ( 0.6 * tw2 + 0.49 * L41T ) )
= 1865.335/( 172.061 * ( 0.6 * 8.000 + 0.49 * 7.071 ) )
= 1865.711 psi
Shear Stress [tau3]:
= fwp / ( Ltau * ( 0.49 * L42T ) )
= 1865.335/( 251.327 * ( 0.49 * 5.657 ) )
= 3808.483 psi
Maximum Shear Stress in the Welds:
= max( tau1, tau2, tau3 )
= max( 2569.951 , 1865.711 , 3808.483 )
= 3808.5 must be less than or equal to 20000.0 psi
Weld Size Calculations, Description: N2
Intermediate Calc. for nozzle/shell Welds
Tmin
Intermediate Calc. for pad/shell Welds
TminPad

9.7000
7.0000

mm
mm

Results Per UW-16.1:


Nozzle Weld
Pad Weld

Required Thickness
6.7900 = 0.7 * tmin.
3.5000 = 0.5*TminPad

Actual Thickness
7.0700 = 0.7 * Wo mm
5.6560 = 0.7 * Wp mm

Maximum Allowable Pressure for this Nozzle at this Location:


Converged Max. Allow. Pressure in Operating case
39.400

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.
Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 26.7684 mm


The Cut Length for this Nozzle is, Drop + Ho + H + T : 286.7684 mm
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 92
Nozzle Calcs. : N8
Nozl:
12 11:15p Sep 5,2012
INPUT VALUES,

Nozzle Description: N8

Pressure for Reinforcement Calculations


Temperature for Internal Pressure
Design External Pressure
Temperature for External Pressure

From :
P
Temp
Pext
Tempex

33.047
185
1.03
185

20
bar
C
bar
C

Shell Material
Shell Allowable Stress at Temperature
Shell Allowable Stress At Ambient

S
Sa

SA-516 70
20000.00 psi
20000.00 psi

Inside Diameter of Cylindrical Shell


Design Length of Section
Shell Finished (Minimum) Thickness
Shell Internal Corrosion Allowance
Shell External Corrosion Allowance

D
L
t
c
co

475.00
709.5833
10.0000
3.0000
0.0000

mm
mm
mm
mm
mm

105.0000

mm

Distance from Bottom/Left Tangent


User Entered Minimum Design Metal Temperature

0.00

Type of Element Connected to the Shell : Nozzle


Material
Material UNS Number
Material Specification/Type
Allowable Stress at Temperature
Allowable Stress At Ambient

Sn
Sna

Diameter Basis (for tr calc only)


Layout Angle
Diameter
Size and Thickness Basis
Nominal Thickness

ID
180.00
25.0000
tn

Flange Material
Flange Type
Corrosion Allowance
Joint Efficiency of Shell Seam at Nozzle
Joint Efficiency of Nozzle Neck

SA-106 B
K03006
Smls. pipe
17100.00 psi
17100.00 psi
deg
mm.

Nominal
XXS
SA-105
Slip on

can
E1
En

3.0000
1.00
1.00

mm

Outside Projection
ho
Weld leg size between Nozzle and Pad/Shell
Wo
Groove weld depth between Nozzle and Vessel Wgnv
Inside Projection
h
Weld leg size, Inside Element to Shell
Wi
ASME Code Weld Type per UW-16

250.0000
8.0000
8.0000
0.0000
0.0000
C

mm
mm
mm
mm
mm

Class of attached Flange


Grade of attached Flange

300
GR 1.1

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 93
Nozzle Calcs. : N8
Nozl:
12 11:15p Sep 5,2012
The Pressure Design option was Design Pressure + static head.
Nozzle Sketch (may not represent actual weld type/configuration)
| |
| |
| |
| |
____________/| |
|
\ | |
|
\ | |
|____________\|__|
Insert Nozzle No Pad, no Inside projection
Reinforcement CALCULATION, Description: N8
ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45
Actual Inside Diameter Used in Calculation
Actual Thickness Used in Calculation

15.215
9.093

mm.
mm

Nozzle input data check completed without errors.


Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (33.05*240.5000)/(20000*1.00-0.6*33.05)
= 5.8476 mm
Reqd thk per App. 1 of Nozzle Wall, Trn
= R( exp([P/(SE)] - 1 ) per Appendix 1-2 (a)(1)
= 10.607(exp([33.05/(17100.00*1.00]-1)
= 0.3015 mm

[Int. Press]

Required Nozzle thickness under External Pressure per UG-28 : 0.2551


UG-40, Limits of Reinforcement : [External Pressure]
Parallel to Vessel Wall (Diameter Limit)
Dl
Parallel to Vessel Wall
Rn+tn+t
Normal to Vessel Wall (Thickness Limit), no pad
Tlnp
Weld Strength Reduction Factor [fr1]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr2]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )

47.4010
23.7005
15.2330

mm
mm
mm

mm

= 0.855
Weld Strength Reduction Factor [fr3]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 94
Nozzle Calcs. : N8
Nozl:
12 11:15p Sep 5,2012
= min( fr2, fr4 )
= min( 0.9 , 1.0 )
= 0.855
Results of Nozzle Reinforcement Area Calculations:
AREA AVAILABLE, A1 to A5
Design External
Area Required
Ar
NA
21.378
Area in Shell
A1
NA
125.505
Area in Nozzle Wall
A2
NA
152.074
Area in Inward Nozzle
A3
NA
0.000
Area in Welds
A41+A42+A43
NA
53.865
Area in Element
A5
NA
0.000
TOTAL AREA AVAILABLE
Atot
NA
331.444

Mapnc
NA
NA
NA
NA
NA
NA
NA

mm
mm
mm
mm
mm
mm
mm

Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.


Area Required [A]:
= 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39
= 0.5(21.2146*1.8604*1+2*6.0932*1.8604*1*(1-0.86))
= 21.378 mm
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
= d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
= 26.186 ( 1.00 * 7.0000 - 1.0 * 1.860 ) - 2 * 6.093
( 1.00 * 7.0000 - 1.0 * 1.8604 ) * ( 1 - 0.855 )
= 125.505 mm
Area Available in Nozzle Projecting Outward [A2]:
= ( 2 * tlnp ) * ( tn - trn ) * fr2
= ( 2 * 15.23 ) * ( 6.09 - 0.26 ) * 0.8550
= 152.074 mm
Area Available in Inward Weld + Outward Weld [A41 + A43]:
= ( Wo - Area Lost )*fr2 + ( (Wi-can/0.707) - Area Lost)*fr2
= ( 8.0000 - 1.0000 ) * 0.8550 + ( 0.0000 -0.0000 ) * 0.8550
= 53.865 mm
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int.
Wall Thickness for Internal/External pressures
ta
Wall Thickness per UG16(b),
tr16b
Wall Thickness, shell/head, internal pressure
trb1
Wall Thickness
tb1 = max(trb1, tr16b)
Wall Thickness
tb2 = max(trb2, tr16b)
Wall Thickness per table UG-45
tb3
Determine Nozzle Thickness candidate [tb]:

Press.]
= 3.3015
= 4.5000
= 8.8476
= 8.8476
= 4.5000
= 5.9464

mm
mm
mm
mm
mm
mm

= min[ tb3, max( tb1,tb2) ]


= min[ 5.946 , max( 8.848 , 4.500 ) ]
= 5.9464 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 95
Nozzle Calcs. : N8
Nozl:
12 11:15p Sep 5,2012
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
= max( ta, tb )
= max( 3.3015 , 5.9464 )
= 5.9464 mm
Available Nozzle Neck Thickness = 0.875 * 9.093 = 7.957 mm --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
MDMT of the Nozzle Neck to Flange Weld,
Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 7.957 , tr = 0.302 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.061 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-104 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 7.957 , tr = 0.302 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.061 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Governing MDMT of all the sub-joints of this Junction

-29 C
-104 C
:

-104 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:


Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c)
Flange MDMT with Temp reduction per UCS-66(b)(1)(b)
Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C
-48 C
-104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :


Design Pressure/Ambient Rating = 33.05/51.10 = 0.647
Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above
as the calculated nozzle flange MDMT.
Nozzle Calculations per App. 1-10:
Thickness of Nozzle [tn]:
= thickness - corrosion allowance
= 9.093 - 3.000
= 6.093 mm

Internal Pressure Case:

Effective Pressure Radius [Reff]:


= Di/2 + corrosion allowance
= 475.000/2 + 3.000
= 240.500 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 96
Nozzle Calcs. : N8
Nozl:
12 11:15p Sep 5,2012
Effective Length of Vessel Wall [LR]:
= 8 * t
= 8 * 7.000
= 56.000 mm
Thickness Limit Candidate [LH1]:
= t + 0.78 * sqrt( Rn * tn )
= 7.000 + 0.78 * sqrt( 10.607 * 6.093 )
= 13.271 mm
Thickness Limit Candidate [LH2]:
= Lpr1 + T
= 250.000 + 7.000
= 257.000 mm
Thickness Limit Candidate [LH3]:
= 8( t + te )
= 8( 7.000 + 0.000 )
= 56.000 mm
Effective Nozzle Wall Length Outside the Vessel [LH]:
= min[ LH1, LH2, LH3 ]
= min[ 13.271 , 257.000 , 56.000 )
= 13.271 mm
Effective Vessel Thickness [teff]:
= t
= 7.000 mm
Determine Parameter [Lamda]:
= min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )
= min( 10, (21.21 + 6.093 )/( sqrt((481.00 + 7.000 ) * 7.000 )) )
= 0.467
Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :
Area Contributed by the Vessel Wall [A1]:
= t * LR * max( Lamda/4, 1 )
= 7.000 * 56.000 * max( 0.467/4, 1 )
= 392.000 mm
Area Contributed by the Nozzle Outside the Vessel Wall [A2]:
= tn * LH
= 6.093 * 13.271
= 80.861 mm
Area Contributed by the Outside Fillet Weld [A41]:
= 0.5 * Leg41^(2) - Area cut by thickness limit
= 0.5 * 8.000^(2) - 1.495
= 30.505 mm

The total area contributed by A1 through A43


= A1 + frn( A2 + A3 ) + A41 + A42 + A43

[AT]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 97
Nozzle Calcs. : N8
Nozl:
12 11:15p Sep 5,2012
= 392.000+1.000(80.861+0.000)+30.505+0.000+0.000
= 503.366 mm
Allowable Local Primary Membrane Stress [Sallow]:
= 1.5 * S * E
= 1.5 * 20000.000 * 1.000
= 30000.0 psi
Determine Force acting on the Nozzle [fN]:
= P * Rn( LH - t )
= 33.047 * 10.607 ( 13.271 - 7.000 )
= 22.4 kgf
Determine Force acting on the Shell [fS]:
= P * Reff * ( LR + tn )
= 33.047 * 240.500 * ( 56.000 + 6.093 )
= 5032.2 kgf
Discontinuity Force from Internal Pressure [fY]:
= P * Reff * Rnc
= 33.047 * 240.500 * 10.607
= 859.7 kgf
Area Resisting Internal Pressure [Ap]:
= Rn( LH - t ) + Reff( LR + tn + Rnc )
= 10.607 ( 13.271 - 7.000 ) + 240.500 ( 56.000 + 6.093 + 10.607 )
= 17551.0 mm
Maximum Allowable Working Pressure Candidate [Pmax1]:
= Sallow /( 2 * Ap/AT - Rxs/teff )
= 30000.000/( 2 * 17550.986/503.366 - 240.500/7.000 )
= 58.5 bar
Maximum Allowable Working Pressure Candidate [Pmax2]:
= S[t/Reff]
= 20000.000 [7.000/240.500 ]
= 40.1 bar
Maximum Allowable Working Pressure [Pmax]:
= min( Pmax1, Pmax2 )
= min( 58.468 , 40.136 )
= 40.136 bar
Average Primary Membrane Stress [SigmaAvg]:
= ( fN + fS + fY ) / AT
= ( 22.414 + 5032.244 + 859.652 )/503.366
= 16711.756 psi
General Primary Membrane Stress [SigmaCirc]:
= P * Reff / teff

= 33.047 * 240.500/7.000
= 16467.3 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 98
Nozzle Calcs. : N8
Nozl:
12 11:15p Sep 5,2012
Maximum Local Primary Membrane Stress [PL]:
= max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )
= max( 2 * 16711.756 - 16467.273 , 16467.273 )
= 16956.2 psi
Summary of Nozzle Pressure/Stress Results:
Allowed Local Primary Membrane Stress
Sallow
Local Primary Membrane Stress
PL
Maximum Allowable Working Pressure
Pmax

30000.00
16956.24
40.14

psi
psi
bar

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)


Discontinuity Force Factor [ky]:
= ( Rnc + tn ) / Rnc
= ( 10.607 + 6.093 )/10.607
= 1.574 For set-in Nozzles
Weld Length of Nozzle to Shell Weld [Ltau]:
= pi/2 * ( Rn + tn )
= pi/2 * ( 10.607 + 6.093 )
= 26.233 mm
Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]:
= 5.657,
0.000,
0.000, mm
Weld Load Value [fwelds]:
= min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )
= min(859*1.57,1.5*17100.0(80.861+0.000),pi/4*33.0*10.61^2*1.57^2)
= 73.816 kgf
Weld Stress Value [tau]:
= fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) )
= 73.816/(26.233 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) )
= 574.060 < or = to 20000.000 Weld Size is OK
Weld Size Calculations, Description: N8
Intermediate Calc. for nozzle/shell Welds

Tmin

6.0932

mm

Results Per UW-16.1:


Nozzle Weld

Required Thickness
4.2652 = 0.7 * tmin.

Actual Thickness
5.6560 = 0.7 * Wo mm

Maximum Allowable Pressure for this Nozzle at this Location:


Converged Max. Allow. Pressure in Operating case
39.447

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.
Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 0.5879 mm


The Cut Length for this Nozzle is, Drop + Ho + H + T : 260.5879 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 99
Nozzle Calcs. : N8
Nozl:
12 11:15p Sep 5,2012
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 100
Nozzle Calcs. : N3
Nozl:
13 11:15p Sep 5,2012
INPUT VALUES,

Nozzle Description: N3

Pressure for Reinforcement Calculations


Temperature for Internal Pressure
Design External Pressure
Temperature for External Pressure

From :
P
Temp
Pext
Tempex

Shell Material
Shell Allowable Stress at Temperature
Shell Allowable Stress At Ambient

S
Sa

Inside Diameter of Cylindrical Shell


Design Length of Section
Shell Finished (Minimum) Thickness
Shell Internal Corrosion Allowance
Shell External Corrosion Allowance

D
L
t
c
co

Distance from Bottom/Left Tangent


User Entered Minimum Design Metal Temperature

11.000
215
1.03
215

50
bar
C
bar
C

SA-516 70
20000.00 psi
20000.00 psi
475.00
3085.5833
10.0000
3.0000
0.0000

mm
mm
mm
mm
mm

1024.0000

mm

0.00

Type of Element Connected to the Shell : Nozzle


Material
Material UNS Number
Material Specification/Type
Allowable Stress at Temperature
Allowable Stress At Ambient

Sn
Sna

Diameter Basis (for tr calc only)


Layout Angle
Diameter
Size and Thickness Basis
Nominal Thickness

ID
0.00
65.0000
tn

Flange Material
Flange Type
Corrosion Allowance
Joint Efficiency of Shell Seam at Nozzle
Joint Efficiency of Nozzle Neck

SA-106 B
K03006
Smls. pipe
17100.00 psi
17100.00 psi
deg
mm.

Nominal
160
SA-105
Slip on

can
E1
En

3.0000
1.00
1.00

mm

Outside Projection
ho
Weld leg size between Nozzle and Pad/Shell
Wo
Groove weld depth between Nozzle and Vessel Wgnv
Inside Projection
h
Weld leg size, Inside Element to Shell
Wi
ASME Code Weld Type per UW-16

250.0000
8.0000
8.0000
0.0000
0.0000
C

mm
mm
mm
mm
mm

Class of attached Flange


Grade of attached Flange

300
GR 1.1

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 101
Nozzle Calcs. : N3
Nozl:
13 11:15p Sep 5,2012
The Pressure Design option was Design Pressure + static head.
Nozzle Sketch (may not represent actual weld type/configuration)
| |
| |
| |
| |
____________/| |
|
\ | |
|
\ | |
|____________\|__|
Insert Nozzle No Pad, no Inside projection
Reinforcement CALCULATION, Description: N3
ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45
Actual Inside Diameter Used in Calculation
Actual Thickness Used in Calculation

53.975
9.525

mm.
mm

Nozzle input data check completed without errors.


Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.00*240.5000)/(20000*1.00-0.6*11.00)
= 1.9277 mm
Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.00*29.99)/(17100*1.00-0.6*11.00)
= 0.2814 mm
Required Nozzle thickness under External Pressure per UG-28 : 0.3969
UG-40, Limits of Reinforcement : [External Pressure]
Parallel to Vessel Wall (Diameter Limit)
Dl
Parallel to Vessel Wall, opening length
d
Normal to Vessel Wall (Thickness Limit), no pad
Tlnp
Weld Strength Reduction Factor [fr1]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr2]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )

119.9500
59.9750
16.3125

mm
mm
mm

mm

= 0.855
Weld Strength Reduction Factor [fr3]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 102
Nozzle Calcs. : N3
Nozl:
13 11:15p Sep 5,2012
= min( fr2, fr4 )
= min( 0.9 , 1.0 )
= 0.855
Results of Nozzle Reinforcement Area Calculations:
AREA AVAILABLE, A1 to A5
Design External
Area Required
Ar
NA
108.565
Area in Shell
A1
NA
202.732
Area in Nozzle Wall
A2
NA
170.941
Area in Inward Nozzle
A3
NA
0.000
Area in Welds
A41+A42+A43
NA
54.720
Area in Element
A5
NA
0.000
TOTAL AREA AVAILABLE
Atot
NA
428.393

Mapnc
NA
NA
NA
NA
NA
NA
NA

mm
mm
mm
mm
mm
mm
mm

Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.


Area Required [A]:
= 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39
= 0.5(59.9750*3.5096*1+2*6.5250*3.5096*1*(1-0.86))
= 108.565 mm
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
= d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
= 59.975 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 6.525
( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 )
= 202.732 mm
Area Available in Nozzle Projecting Outward [A2]:
= ( 2 * tlnp ) * ( tn - trn ) * fr2
= ( 2 * 16.31 ) * ( 6.52 - 0.40 ) * 0.8550
= 170.941 mm
Area Available in Inward Weld + Outward Weld [A41 + A43]:
= Wo * fr2 + ( Wi-can/0.707 ) * fr2
= 8.0000 * 0.8550 + ( 0.0000 ) * 0.8550
= 54.720 mm
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int.
Wall Thickness for Internal/External pressures
ta
Wall Thickness per UG16(b),
tr16b
Wall Thickness, shell/head, internal pressure
trb1
Wall Thickness
tb1 = max(trb1, tr16b)
Wall Thickness
tb2 = max(trb2, tr16b)
Wall Thickness per table UG-45
tb3
Determine Nozzle Thickness candidate [tb]:

Press.]
= 3.3969
= 4.5000
= 4.9277
= 4.9277
= 4.5000
= 7.5200

mm
mm
mm
mm
mm
mm

= min[ tb3, max( tb1,tb2) ]


= min[ 7.520 , max( 4.928 , 4.500 ) ]
= 4.9277 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 103
Nozzle Calcs. : N3
Nozl:
13 11:15p Sep 5,2012
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
= max( ta, tb )
= max( 3.3969 , 4.9277 )
= 4.9277 mm
Available Nozzle Neck Thickness = 0.875 * 9.525 = 8.334 mm --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
MDMT of the Nozzle Neck to Flange Weld,
Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 8.334 , tr = 0.281 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.053 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-104 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 8.334 , tr = 0.281 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.053 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Governing MDMT of all the sub-joints of this Junction

-29 C
-104 C
:

-104 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:


Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c)
Flange MDMT with Temp reduction per UCS-66(b)(1)(b)
Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C
-104 C
-104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :


Design Pressure/Ambient Rating = 11.00/51.10 = 0.215
Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above
as the calculated nozzle flange MDMT.
Nozzle Calculations per App. 1-10:
Thickness of Nozzle [tn]:
= thickness - corrosion allowance
= 9.525 - 3.000
= 6.525 mm

Internal Pressure Case:

Effective Pressure Radius [Reff]:


= Di/2 + corrosion allowance
= 475.000/2 + 3.000
= 240.500 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 104
Nozzle Calcs. : N3
Nozl:
13 11:15p Sep 5,2012
Effective Length of Vessel Wall [LR]:
= 8 * t
= 8 * 7.000
= 56.000 mm
Thickness Limit Candidate [LH1]:
= t + 0.78 * sqrt( Rn * tn )
= 7.000 + 0.78 * sqrt( 29.988 * 6.525 )
= 17.911 mm
Thickness Limit Candidate [LH2]:
= Lpr1 + T
= 250.000 + 7.000
= 257.000 mm
Thickness Limit Candidate [LH3]:
= 8( t + te )
= 8( 7.000 + 0.000 )
= 56.000 mm
Effective Nozzle Wall Length Outside the Vessel [LH]:
= min[ LH1, LH2, LH3 ]
= min[ 17.911 , 257.000 , 56.000 )
= 17.911 mm
Effective Vessel Thickness [teff]:
= t
= 7.000 mm
Determine Parameter [Lamda]:
= min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )
= min( 10, (59.98 + 6.525 )/( sqrt((481.00 + 7.000 ) * 7.000 )) )
= 1.138
Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :
Area Contributed by the Vessel Wall [A1]:
= t * LR * max( Lamda/4, 1 )
= 7.000 * 56.000 * max( 1.138/4, 1 )
= 392.000 mm
Area Contributed by the Nozzle Outside the Vessel Wall [A2]:
= tn * LH
= 6.525 * 17.911
= 116.868 mm
Area Contributed by the Outside Fillet Weld [A41]:
= 0.5 * Leg41^(2)
= 0.5 * 8.000^(2)
= 32.000 mm

The total area contributed by A1 through A43


= A1 + frn( A2 + A3 ) + A41 + A42 + A43

[AT]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 105
Nozzle Calcs. : N3
Nozl:
13 11:15p Sep 5,2012
= 392.000+1.000(116.868+0.000)+32.000+0.000+0.000
= 540.868 mm
Allowable Local Primary Membrane Stress [Sallow]:
= 1.5 * S * E
= 1.5 * 20000.000 * 1.000
= 30000.0 psi
Determine Force acting on the Nozzle [fN]:
= P * Rn( LH - t )
= 11.000 * 29.988 ( 17.911 - 7.000 )
= 36.7 kgf
Determine Force acting on the Shell [fS]:
= P * Reff * ( LR + tn )
= 11.000 * 240.500 * ( 56.000 + 6.525 )
= 1686.7 kgf
Discontinuity Force from Internal Pressure [fY]:
= P * Reff * Rnc
= 11.000 * 240.500 * 29.988
= 809.0 kgf
Area Resisting Internal Pressure [Ap]:
= Rn( LH - t ) + Reff( LR + tn + Rnc )
= 29.988 ( 17.911 - 7.000 ) + 240.500 ( 56.000 + 6.525 + 29.988 )
= 22576.4 mm
Maximum Allowable Working Pressure Candidate [Pmax1]:
= Sallow /( 2 * Ap/AT - Rxs/teff )
= 30000.000/( 2 * 22576.445/540.868 - 240.500/7.000 )
= 42.1 bar
Maximum Allowable Working Pressure Candidate [Pmax2]:
= S[t/Reff]
= 20000.000 [7.000/240.500 ]
= 40.1 bar
Maximum Allowable Working Pressure [Pmax]:
= min( Pmax1, Pmax2 )
= min( 42.106 , 40.136 )
= 40.136 bar
Average Primary Membrane Stress [SigmaAvg]:
= ( fN + fS + fY ) / AT
= ( 36.700 + 1686.700 + 808.955 )/540.868
= 6659.407 psi
General Primary Membrane Stress [SigmaCirc]:
= P * Reff / teff

= 11.000 * 240.500/7.000
= 5481.4 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 106
Nozzle Calcs. : N3
Nozl:
13 11:15p Sep 5,2012
Maximum Local Primary Membrane Stress [PL]:
= max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )
= max( 2 * 6659.407 - 5481.357 , 5481.357 )
= 7837.5 psi
Summary of Nozzle Pressure/Stress Results:
Allowed Local Primary Membrane Stress
Sallow
Local Primary Membrane Stress
PL
Maximum Allowable Working Pressure
Pmax

30000.00
7837.46
40.14

psi
psi
bar

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)


Discontinuity Force Factor [ky]:
= ( Rnc + tn ) / Rnc
= ( 29.988 + 6.525 )/29.988
= 1.218 For set-in Nozzles
Weld Length of Nozzle to Shell Weld [Ltau]:
= pi/2 * ( Rn + tn )
= pi/2 * ( 29.988 + 6.525 )
= 57.354 mm
Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]:
= 5.657,
0.000,
0.000, mm
Weld Load Value [fwelds]:
= min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )
= min(808*1.22,1.5*17100.0(116.868+0.000),pi/4*11.0*29.99^2*1.22^2)
= 117.447 kgf
Weld Stress Value [tau]:
= fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) )
= 117.447/(57.354 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) )
= 417.768 < or = to 20000.000 Weld Size is OK
Weld Size Calculations, Description: N3
Intermediate Calc. for nozzle/shell Welds

Tmin

6.5250

mm

Results Per UW-16.1:


Nozzle Weld

Required Thickness
4.5675 = 0.7 * tmin.

Actual Thickness
5.6560 = 0.7 * Wo mm

Maximum Allowable Pressure for this Nozzle at this Location:


Converged Max. Allow. Pressure in Operating case
39.400

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.
Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 2.8234 mm


The Cut Length for this Nozzle is, Drop + Ho + H + T : 262.8234 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 107
Nozzle Calcs. : N3
Nozl:
13 11:15p Sep 5,2012
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 108
Nozzle Calcs. : N6
Nozl:
14 11:15p Sep 5,2012
INPUT VALUES,

Nozzle Description: N6

Pressure for Reinforcement Calculations


Temperature for Internal Pressure
Design External Pressure
Temperature for External Pressure

From :
P
Temp
Pext
Tempex

Shell Material
Shell Allowable Stress at Temperature
Shell Allowable Stress At Ambient

S
Sa

Inside Diameter of Cylindrical Shell


Design Length of Section
Shell Finished (Minimum) Thickness
Shell Internal Corrosion Allowance
Shell External Corrosion Allowance

D
L
t
c
co

Distance from Bottom/Left Tangent


User Entered Minimum Design Metal Temperature

11.000
215
1.03
215

50
bar
C
bar
C

SA-516 70
20000.00 psi
20000.00 psi
475.00
3085.5833
10.0000
3.0000
0.0000

mm
mm
mm
mm
mm

2224.0000

mm

0.00

Type of Element Connected to the Shell : Nozzle


Material
Material UNS Number
Material Specification/Type
Allowable Stress at Temperature
Allowable Stress At Ambient

Sn
Sna

Diameter Basis (for tr calc only)


Layout Angle
Diameter
Size and Thickness Basis
Nominal Thickness

ID
0.00
50.0000
tn

Flange Material
Flange Type
Corrosion Allowance
Joint Efficiency of Shell Seam at Nozzle
Joint Efficiency of Nozzle Neck

SA-106 B
K03006
Smls. pipe
17100.00 psi
17100.00 psi
deg
mm.

Nominal
160
SA-105
Slip on

can
E1
En

3.0000
1.00
1.00

mm

Outside Projection
ho
Weld leg size between Nozzle and Pad/Shell
Wo
Groove weld depth between Nozzle and Vessel Wgnv
Inside Projection
h
Weld leg size, Inside Element to Shell
Wi
ASME Code Weld Type per UW-16

250.0000
8.0000
8.0000
0.0000
0.0000
C

mm
mm
mm
mm
mm

Class of attached Flange


Grade of attached Flange

300
GR 1.1

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 109
Nozzle Calcs. : N6
Nozl:
14 11:15p Sep 5,2012
The Pressure Design option was Design Pressure + static head.
Nozzle Sketch (may not represent actual weld type/configuration)
| |
| |
| |
| |
____________/| |
|
\ | |
|
\ | |
|____________\|__|
Insert Nozzle No Pad, no Inside projection
Reinforcement CALCULATION, Description: N6
ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45
Actual Inside Diameter Used in Calculation
Actual Thickness Used in Calculation

42.850
8.738

mm.
mm

Nozzle input data check completed without errors.


Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.00*240.5000)/(20000*1.00-0.6*11.00)
= 1.9277 mm
Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.00*24.42)/(17100*1.00-0.6*11.00)
= 0.2292 mm
Required Nozzle thickness under External Pressure per UG-28 : 0.3555
UG-40, Limits of Reinforcement : [External Pressure]
Parallel to Vessel Wall (Diameter Limit)
Dl
Parallel to Vessel Wall, opening length
d
Normal to Vessel Wall (Thickness Limit), no pad
Tlnp
Weld Strength Reduction Factor [fr1]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr2]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )

97.6996
48.8498
14.3440

mm
mm
mm

mm

= 0.855
Weld Strength Reduction Factor [fr3]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 110
Nozzle Calcs. : N6
Nozl:
14 11:15p Sep 5,2012
= min( fr2, fr4 )
= min( 0.9 , 1.0 )
= 0.855
Results of Nozzle Reinforcement Area Calculations:
AREA AVAILABLE, A1 to A5
Design External
Area Required
Ar
NA
88.641
Area in Shell
A1
NA
164.698
Area in Nozzle Wall
A2
NA
132.012
Area in Inward Nozzle
A3
NA
0.000
Area in Welds
A41+A42+A43
NA
54.720
Area in Element
A5
NA
0.000
TOTAL AREA AVAILABLE
Atot
NA
351.430

Mapnc
NA
NA
NA
NA
NA
NA
NA

mm
mm
mm
mm
mm
mm
mm

Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.


Area Required [A]:
= 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39
= 0.5(48.8498*3.5096*1+2*5.7376*3.5096*1*(1-0.86))
= 88.641 mm
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
= d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
= 48.850 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 5.738
( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 )
= 164.698 mm
Area Available in Nozzle Projecting Outward [A2]:
= ( 2 * tlnp ) * ( tn - trn ) * fr2
= ( 2 * 14.34 ) * ( 5.74 - 0.36 ) * 0.8550
= 132.012 mm
Area Available in Inward Weld + Outward Weld [A41 + A43]:
= Wo * fr2 + ( Wi-can/0.707 ) * fr2
= 8.0000 * 0.8550 + ( 0.0000 ) * 0.8550
= 54.720 mm
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int.
Wall Thickness for Internal/External pressures
ta
Wall Thickness per UG16(b),
tr16b
Wall Thickness, shell/head, internal pressure
trb1
Wall Thickness
tb1 = max(trb1, tr16b)
Wall Thickness
tb2 = max(trb2, tr16b)
Wall Thickness per table UG-45
tb3
Determine Nozzle Thickness candidate [tb]:

Press.]
= 3.3555
= 4.5000
= 4.9277
= 4.9277
= 4.5000
= 6.4200

mm
mm
mm
mm
mm
mm

= min[ tb3, max( tb1,tb2) ]


= min[ 6.420 , max( 4.928 , 4.500 ) ]
= 4.9277 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 111
Nozzle Calcs. : N6
Nozl:
14 11:15p Sep 5,2012
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
= max( ta, tb )
= max( 3.3555 , 4.9277 )
= 4.9277 mm
Available Nozzle Neck Thickness = 0.875 * 8.738 = 7.645 mm --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
MDMT of the Nozzle Neck to Flange Weld,
Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 7.645 , tr = 0.229 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.049 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-104 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 7.645 , tr = 0.229 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.049 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Governing MDMT of all the sub-joints of this Junction

-29 C
-104 C
:

-104 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:


Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c)
Flange MDMT with Temp reduction per UCS-66(b)(1)(b)
Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C
-104 C
-104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :


Design Pressure/Ambient Rating = 11.00/51.10 = 0.215
Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above
as the calculated nozzle flange MDMT.
Nozzle Calculations per App. 1-10:
Thickness of Nozzle [tn]:
= thickness - corrosion allowance
= 8.738 - 3.000
= 5.738 mm

Internal Pressure Case:

Effective Pressure Radius [Reff]:


= Di/2 + corrosion allowance
= 475.000/2 + 3.000
= 240.500 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 112
Nozzle Calcs. : N6
Nozl:
14 11:15p Sep 5,2012
Effective Length of Vessel Wall [LR]:
= 8 * t
= 8 * 7.000
= 56.000 mm
Thickness Limit Candidate [LH1]:
= t + 0.78 * sqrt( Rn * tn )
= 7.000 + 0.78 * sqrt( 24.425 * 5.738 )
= 16.234 mm
Thickness Limit Candidate [LH2]:
= Lpr1 + T
= 250.000 + 7.000
= 257.000 mm
Thickness Limit Candidate [LH3]:
= 8( t + te )
= 8( 7.000 + 0.000 )
= 56.000 mm
Effective Nozzle Wall Length Outside the Vessel [LH]:
= min[ LH1, LH2, LH3 ]
= min[ 16.234 , 257.000 , 56.000 )
= 16.234 mm
Effective Vessel Thickness [teff]:
= t
= 7.000 mm
Determine Parameter [Lamda]:
= min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )
= min( 10, (48.85 + 5.738 )/( sqrt((481.00 + 7.000 ) * 7.000 )) )
= 0.934
Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :
Area Contributed by the Vessel Wall [A1]:
= t * LR * max( Lamda/4, 1 )
= 7.000 * 56.000 * max( 0.934/4, 1 )
= 392.000 mm
Area Contributed by the Nozzle Outside the Vessel Wall [A2]:
= tn * LH
= 5.738 * 16.234
= 93.143 mm
Area Contributed by the Outside Fillet Weld [A41]:
= 0.5 * Leg41^(2)
= 0.5 * 8.000^(2)
= 32.000 mm

The total area contributed by A1 through A43


= A1 + frn( A2 + A3 ) + A41 + A42 + A43

[AT]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 113
Nozzle Calcs. : N6
Nozl:
14 11:15p Sep 5,2012
= 392.000+1.000(93.143+0.000)+32.000+0.000+0.000
= 517.143 mm
Allowable Local Primary Membrane Stress [Sallow]:
= 1.5 * S * E
= 1.5 * 20000.000 * 1.000
= 30000.0 psi
Determine Force acting on the Nozzle [fN]:
= P * Rn( LH - t )
= 11.000 * 24.425 ( 16.234 - 7.000 )
= 25.3 kgf
Determine Force acting on the Shell [fS]:
= P * Reff * ( LR + tn )
= 11.000 * 240.500 * ( 56.000 + 5.738 )
= 1665.5 kgf
Discontinuity Force from Internal Pressure [fY]:
= P * Reff * Rnc
= 11.000 * 240.500 * 24.425
= 658.9 kgf
Area Resisting Internal Pressure [Ap]:
= Rn( LH - t ) + Reff( LR + tn + Rnc )
= 24.425 ( 16.234 - 7.000 ) + 240.500 ( 56.000 + 5.738 + 24.425 )
= 20947.6 mm
Maximum Allowable Working Pressure Candidate [Pmax1]:
= Sallow /( 2 * Ap/AT - Rxs/teff )
= 30000.000/( 2 * 20947.613/517.143 - 240.500/7.000 )
= 44.3 bar
Maximum Allowable Working Pressure Candidate [Pmax2]:
= S[t/Reff]
= 20000.000 [7.000/240.500 ]
= 40.1 bar
Maximum Allowable Working Pressure [Pmax]:
= min( Pmax1, Pmax2 )
= min( 44.334 , 40.136 )
= 40.136 bar
Average Primary Membrane Stress [SigmaAvg]:
= ( fN + fS + fY ) / AT
= ( 25.298 + 1665.459 + 658.896 )/517.143
= 6462.423 psi
General Primary Membrane Stress [SigmaCirc]:
= P * Reff / teff

= 11.000 * 240.500/7.000
= 5481.4 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 114
Nozzle Calcs. : N6
Nozl:
14 11:15p Sep 5,2012
Maximum Local Primary Membrane Stress [PL]:
= max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )
= max( 2 * 6462.423 - 5481.357 , 5481.357 )
= 7443.5 psi
Summary of Nozzle Pressure/Stress Results:
Allowed Local Primary Membrane Stress
Sallow
Local Primary Membrane Stress
PL
Maximum Allowable Working Pressure
Pmax

30000.00
7443.49
40.14

psi
psi
bar

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)


Discontinuity Force Factor [ky]:
= ( Rnc + tn ) / Rnc
= ( 24.425 + 5.738 )/24.425
= 1.235 For set-in Nozzles
Weld Length of Nozzle to Shell Weld [Ltau]:
= pi/2 * ( Rn + tn )
= pi/2 * ( 24.425 + 5.738 )
= 47.379 mm
Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]:
= 5.657,
0.000,
0.000, mm
Weld Load Value [fwelds]:
= min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )
= min(658*1.23,1.5*17100.0(93.143+0.000),pi/4*11.0*24.42^2*1.23^2)
= 80.148 kgf
Weld Stress Value [tau]:
= fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) )
= 80.148/(47.379 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) )
= 345.113 < or = to 20000.000 Weld Size is OK
Weld Size Calculations, Description: N6
Intermediate Calc. for nozzle/shell Welds

Tmin

5.7376

mm

Results Per UW-16.1:


Nozzle Weld

Required Thickness
4.0163 = 0.7 * tmin.

Actual Thickness
5.6560 = 0.7 * Wo mm

Maximum Allowable Pressure for this Nozzle at this Location:


Converged Max. Allow. Pressure in Operating case
39.400

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.
Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 1.9231 mm


The Cut Length for this Nozzle is, Drop + Ho + H + T : 261.9231 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 115
Nozzle Calcs. : N6
Nozl:
14 11:15p Sep 5,2012
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 116
Nozzle Calcs. : N9
Nozl:
15 11:15p Sep 5,2012
INPUT VALUES,

Nozzle Description: N9

Pressure for Reinforcement Calculations


Temperature for Internal Pressure
Design External Pressure
Temperature for External Pressure

From :
P
Temp
Pext
Tempex

Shell Material
Shell Allowable Stress at Temperature
Shell Allowable Stress At Ambient

S
Sa

Inside Diameter of Cylindrical Shell


Design Length of Section
Shell Finished (Minimum) Thickness
Shell Internal Corrosion Allowance
Shell External Corrosion Allowance

D
L
t
c
co

Distance from Bottom/Left Tangent


User Entered Minimum Design Metal Temperature

11.000
215
1.03
215

50
bar
C
bar
C

SA-516 70
20000.00 psi
20000.00 psi
475.00
3085.5833
10.0000
3.0000
0.0000

mm
mm
mm
mm
mm

2974.0000

mm

0.00

Type of Element Connected to the Shell : Nozzle


Material
Material UNS Number
Material Specification/Type
Allowable Stress at Temperature
Allowable Stress At Ambient

Sn
Sna

Diameter Basis (for tr calc only)


Layout Angle
Diameter
Size and Thickness Basis
Nominal Thickness

ID
0.00
50.0000
tn

Flange Material
Flange Type
Corrosion Allowance
Joint Efficiency of Shell Seam at Nozzle
Joint Efficiency of Nozzle Neck

SA-106 B
K03006
Smls. pipe
17100.00 psi
17100.00 psi
deg
mm.

Nominal
160
SA-105
Slip on

can
E1
En

3.0000
1.00
1.00

mm

Outside Projection
ho
Weld leg size between Nozzle and Pad/Shell
Wo
Groove weld depth between Nozzle and Vessel Wgnv
Inside Projection
h
Weld leg size, Inside Element to Shell
Wi
ASME Code Weld Type per UW-16

250.0000
8.0000
8.0000
0.0000
0.0000
C

mm
mm
mm
mm
mm

Class of attached Flange


Grade of attached Flange

300
GR 1.1

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 117
Nozzle Calcs. : N9
Nozl:
15 11:15p Sep 5,2012
The Pressure Design option was Design Pressure + static head.
Nozzle Sketch (may not represent actual weld type/configuration)
| |
| |
| |
| |
____________/| |
|
\ | |
|
\ | |
|____________\|__|
Insert Nozzle No Pad, no Inside projection
Reinforcement CALCULATION, Description: N9
ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45
Actual Inside Diameter Used in Calculation
Actual Thickness Used in Calculation

42.850
8.738

mm.
mm

Nozzle input data check completed without errors.


Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.00*240.5000)/(20000*1.00-0.6*11.00)
= 1.9277 mm
Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.00*24.42)/(17100*1.00-0.6*11.00)
= 0.2292 mm
Required Nozzle thickness under External Pressure per UG-28 : 0.3555
UG-40, Limits of Reinforcement : [External Pressure]
Parallel to Vessel Wall (Diameter Limit)
Dl
Parallel to Vessel Wall, opening length
d
Normal to Vessel Wall (Thickness Limit), no pad
Tlnp
Weld Strength Reduction Factor [fr1]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr2]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )

97.6996
48.8498
14.3440

mm
mm
mm

mm

= 0.855
Weld Strength Reduction Factor [fr3]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 118
Nozzle Calcs. : N9
Nozl:
15 11:15p Sep 5,2012
= min( fr2, fr4 )
= min( 0.9 , 1.0 )
= 0.855
Results of Nozzle Reinforcement Area Calculations:
AREA AVAILABLE, A1 to A5
Design External
Area Required
Ar
NA
88.641
Area in Shell
A1
NA
164.698
Area in Nozzle Wall
A2
NA
132.012
Area in Inward Nozzle
A3
NA
0.000
Area in Welds
A41+A42+A43
NA
54.720
Area in Element
A5
NA
0.000
TOTAL AREA AVAILABLE
Atot
NA
351.430

Mapnc
NA
NA
NA
NA
NA
NA
NA

mm
mm
mm
mm
mm
mm
mm

Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.


Area Required [A]:
= 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39
= 0.5(48.8498*3.5096*1+2*5.7376*3.5096*1*(1-0.86))
= 88.641 mm
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
= d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
= 48.850 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 5.738
( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 )
= 164.698 mm
Area Available in Nozzle Projecting Outward [A2]:
= ( 2 * tlnp ) * ( tn - trn ) * fr2
= ( 2 * 14.34 ) * ( 5.74 - 0.36 ) * 0.8550
= 132.012 mm
Area Available in Inward Weld + Outward Weld [A41 + A43]:
= Wo * fr2 + ( Wi-can/0.707 ) * fr2
= 8.0000 * 0.8550 + ( 0.0000 ) * 0.8550
= 54.720 mm
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int.
Wall Thickness for Internal/External pressures
ta
Wall Thickness per UG16(b),
tr16b
Wall Thickness, shell/head, internal pressure
trb1
Wall Thickness
tb1 = max(trb1, tr16b)
Wall Thickness
tb2 = max(trb2, tr16b)
Wall Thickness per table UG-45
tb3
Determine Nozzle Thickness candidate [tb]:

Press.]
= 3.3555
= 4.5000
= 4.9277
= 4.9277
= 4.5000
= 6.4200

mm
mm
mm
mm
mm
mm

= min[ tb3, max( tb1,tb2) ]


= min[ 6.420 , max( 4.928 , 4.500 ) ]
= 4.9277 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 119
Nozzle Calcs. : N9
Nozl:
15 11:15p Sep 5,2012
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
= max( ta, tb )
= max( 3.3555 , 4.9277 )
= 4.9277 mm
Available Nozzle Neck Thickness = 0.875 * 8.738 = 7.645 mm --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
MDMT of the Nozzle Neck to Flange Weld,
Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 7.645 , tr = 0.229 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.049 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-104 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 7.645 , tr = 0.229 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.049 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Governing MDMT of all the sub-joints of this Junction

-29 C
-104 C
:

-104 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:


Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c)
Flange MDMT with Temp reduction per UCS-66(b)(1)(b)
Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C
-104 C
-104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :


Design Pressure/Ambient Rating = 11.00/51.10 = 0.215
Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above
as the calculated nozzle flange MDMT.
Nozzle Calculations per App. 1-10:
Thickness of Nozzle [tn]:
= thickness - corrosion allowance
= 8.738 - 3.000
= 5.738 mm

Internal Pressure Case:

Effective Pressure Radius [Reff]:


= Di/2 + corrosion allowance
= 475.000/2 + 3.000
= 240.500 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 120
Nozzle Calcs. : N9
Nozl:
15 11:15p Sep 5,2012
Effective Length of Vessel Wall [LR]:
= 8 * t
= 8 * 7.000
= 56.000 mm
Thickness Limit Candidate [LH1]:
= t + 0.78 * sqrt( Rn * tn )
= 7.000 + 0.78 * sqrt( 24.425 * 5.738 )
= 16.234 mm
Thickness Limit Candidate [LH2]:
= Lpr1 + T
= 250.000 + 7.000
= 257.000 mm
Thickness Limit Candidate [LH3]:
= 8( t + te )
= 8( 7.000 + 0.000 )
= 56.000 mm
Effective Nozzle Wall Length Outside the Vessel [LH]:
= min[ LH1, LH2, LH3 ]
= min[ 16.234 , 257.000 , 56.000 )
= 16.234 mm
Effective Vessel Thickness [teff]:
= t
= 7.000 mm
Determine Parameter [Lamda]:
= min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )
= min( 10, (48.85 + 5.738 )/( sqrt((481.00 + 7.000 ) * 7.000 )) )
= 0.934
Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :
Area Contributed by the Vessel Wall [A1]:
= t * LR * max( Lamda/4, 1 )
= 7.000 * 56.000 * max( 0.934/4, 1 )
= 392.000 mm
Area Contributed by the Nozzle Outside the Vessel Wall [A2]:
= tn * LH
= 5.738 * 16.234
= 93.143 mm
Area Contributed by the Outside Fillet Weld [A41]:
= 0.5 * Leg41^(2)
= 0.5 * 8.000^(2)
= 32.000 mm

The total area contributed by A1 through A43


= A1 + frn( A2 + A3 ) + A41 + A42 + A43

[AT]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 121
Nozzle Calcs. : N9
Nozl:
15 11:15p Sep 5,2012
= 392.000+1.000(93.143+0.000)+32.000+0.000+0.000
= 517.143 mm
Allowable Local Primary Membrane Stress [Sallow]:
= 1.5 * S * E
= 1.5 * 20000.000 * 1.000
= 30000.0 psi
Determine Force acting on the Nozzle [fN]:
= P * Rn( LH - t )
= 11.000 * 24.425 ( 16.234 - 7.000 )
= 25.3 kgf
Determine Force acting on the Shell [fS]:
= P * Reff * ( LR + tn )
= 11.000 * 240.500 * ( 56.000 + 5.738 )
= 1665.5 kgf
Discontinuity Force from Internal Pressure [fY]:
= P * Reff * Rnc
= 11.000 * 240.500 * 24.425
= 658.9 kgf
Area Resisting Internal Pressure [Ap]:
= Rn( LH - t ) + Reff( LR + tn + Rnc )
= 24.425 ( 16.234 - 7.000 ) + 240.500 ( 56.000 + 5.738 + 24.425 )
= 20947.6 mm
Maximum Allowable Working Pressure Candidate [Pmax1]:
= Sallow /( 2 * Ap/AT - Rxs/teff )
= 30000.000/( 2 * 20947.613/517.143 - 240.500/7.000 )
= 44.3 bar
Maximum Allowable Working Pressure Candidate [Pmax2]:
= S[t/Reff]
= 20000.000 [7.000/240.500 ]
= 40.1 bar
Maximum Allowable Working Pressure [Pmax]:
= min( Pmax1, Pmax2 )
= min( 44.334 , 40.136 )
= 40.136 bar
Average Primary Membrane Stress [SigmaAvg]:
= ( fN + fS + fY ) / AT
= ( 25.298 + 1665.459 + 658.896 )/517.143
= 6462.423 psi
General Primary Membrane Stress [SigmaCirc]:
= P * Reff / teff

= 11.000 * 240.500/7.000
= 5481.4 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 122
Nozzle Calcs. : N9
Nozl:
15 11:15p Sep 5,2012
Maximum Local Primary Membrane Stress [PL]:
= max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )
= max( 2 * 6462.423 - 5481.357 , 5481.357 )
= 7443.5 psi
Summary of Nozzle Pressure/Stress Results:
Allowed Local Primary Membrane Stress
Sallow
Local Primary Membrane Stress
PL
Maximum Allowable Working Pressure
Pmax

30000.00
7443.49
40.14

psi
psi
bar

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)


Discontinuity Force Factor [ky]:
= ( Rnc + tn ) / Rnc
= ( 24.425 + 5.738 )/24.425
= 1.235 For set-in Nozzles
Weld Length of Nozzle to Shell Weld [Ltau]:
= pi/2 * ( Rn + tn )
= pi/2 * ( 24.425 + 5.738 )
= 47.379 mm
Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]:
= 5.657,
0.000,
0.000, mm
Weld Load Value [fwelds]:
= min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )
= min(658*1.23,1.5*17100.0(93.143+0.000),pi/4*11.0*24.42^2*1.23^2)
= 80.148 kgf
Weld Stress Value [tau]:
= fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) )
= 80.148/(47.379 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) )
= 345.113 < or = to 20000.000 Weld Size is OK
Weld Size Calculations, Description: N9
Intermediate Calc. for nozzle/shell Welds

Tmin

5.7376

mm

Results Per UW-16.1:


Nozzle Weld

Required Thickness
4.0163 = 0.7 * tmin.

Actual Thickness
5.6560 = 0.7 * Wo mm

Maximum Allowable Pressure for this Nozzle at this Location:


Converged Max. Allow. Pressure in Operating case
39.400

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.
Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 1.9231 mm


The Cut Length for this Nozzle is, Drop + Ho + H + T : 261.9231 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 123
Nozzle Calcs. : N9
Nozl:
15 11:15p Sep 5,2012
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 124
Nozzle Calcs. : N7
Nozl:
16 11:15p Sep 5,2012
INPUT VALUES,

Nozzle Description: N7

Pressure for Reinforcement Calculations


Temperature for Internal Pressure
Design External Pressure
Temperature for External Pressure

From :
P
Temp
Pext
Tempex

Shell Material
Shell Allowable Stress at Temperature
Shell Allowable Stress At Ambient

S
Sa

Inside Diameter of Cylindrical Shell


Design Length of Section
Shell Finished (Minimum) Thickness
Shell Internal Corrosion Allowance
Shell External Corrosion Allowance

D
L
t
c
co

Distance from Bottom/Left Tangent


User Entered Minimum Design Metal Temperature

11.047
215
1.03
215

50
bar
C
bar
C

SA-516 70
20000.00 psi
20000.00 psi
475.00
3085.5833
10.0000
3.0000
0.0000

mm
mm
mm
mm
mm

1024.0000

mm

0.00

Type of Element Connected to the Shell : Nozzle


Material
Material UNS Number
Material Specification/Type
Allowable Stress at Temperature
Allowable Stress At Ambient

Sn
Sna

Diameter Basis (for tr calc only)


Layout Angle
Diameter
Size and Thickness Basis
Nominal Thickness

ID
180.00
25.0000
tn

Flange Material
Flange Type
Corrosion Allowance
Joint Efficiency of Shell Seam at Nozzle
Joint Efficiency of Nozzle Neck

SA-106 B
K03006
Smls. pipe
17100.00 psi
17100.00 psi
deg
mm.

Nominal
XXS
SA-105
Slip on

can
E1
En

3.0000
1.00
1.00

mm

Outside Projection
ho
Weld leg size between Nozzle and Pad/Shell
Wo
Groove weld depth between Nozzle and Vessel Wgnv
Inside Projection
h
Weld leg size, Inside Element to Shell
Wi
ASME Code Weld Type per UW-16

250.0000
8.0000
8.0000
0.0000
0.0000
C

mm
mm
mm
mm
mm

Class of attached Flange


Grade of attached Flange

300
GR 1.1

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 125
Nozzle Calcs. : N7
Nozl:
16 11:15p Sep 5,2012
The Pressure Design option was Design Pressure + static head.
Nozzle Sketch (may not represent actual weld type/configuration)
| |
| |
| |
| |
____________/| |
|
\ | |
|
\ | |
|____________\|__|
Insert Nozzle No Pad, no Inside projection
Reinforcement CALCULATION, Description: N7
ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45
Actual Inside Diameter Used in Calculation
Actual Thickness Used in Calculation

15.215
9.093

mm.
mm

Nozzle input data check completed without errors.


Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.05*240.5000)/(20000*1.00-0.6*11.05)
= 1.9359 mm
Reqd thk per App. 1 of Nozzle Wall, Trn
= R( exp([P/(SE)] - 1 ) per Appendix 1-2 (a)(1)
= 10.607(exp([11.05/(17100.00*1.00]-1)
= 0.0999 mm

[Int. Press]

Required Nozzle thickness under External Pressure per UG-28 : 0.2572


UG-40, Limits of Reinforcement : [External Pressure]
Parallel to Vessel Wall (Diameter Limit)
Dl
Parallel to Vessel Wall
Rn+tn+t
Normal to Vessel Wall (Thickness Limit), no pad
Tlnp
Weld Strength Reduction Factor [fr1]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr2]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )

47.4010
23.7005
15.2330

mm
mm
mm

mm

= 0.855
Weld Strength Reduction Factor [fr3]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 126
Nozzle Calcs. : N7
Nozl:
16 11:15p Sep 5,2012
= min( fr2, fr4 )
= min( 0.9 , 1.0 )
= 0.855
Results of Nozzle Reinforcement Area Calculations:
AREA AVAILABLE, A1 to A5
Design External
Area Required
Ar
NA
40.328
Area in Shell
A1
NA
85.233
Area in Nozzle Wall
A2
NA
152.020
Area in Inward Nozzle
A3
NA
0.000
Area in Welds
A41+A42+A43
NA
53.865
Area in Element
A5
NA
0.000
TOTAL AREA AVAILABLE
Atot
NA
291.118

Mapnc
NA
NA
NA
NA
NA
NA
NA

mm
mm
mm
mm
mm
mm
mm

Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.


Area Required [A]:
= 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39
= 0.5(21.2146*3.5096*1+2*6.0932*3.5096*1*(1-0.86))
= 40.328 mm
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
= d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
= 26.186 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 6.093
( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 )
= 85.233 mm
Area Available in Nozzle Projecting Outward [A2]:
= ( 2 * tlnp ) * ( tn - trn ) * fr2
= ( 2 * 15.23 ) * ( 6.09 - 0.26 ) * 0.8550
= 152.020 mm
Area Available in Inward Weld + Outward Weld [A41 + A43]:
= ( Wo - Area Lost )*fr2 + ( (Wi-can/0.707) - Area Lost)*fr2
= ( 8.0000 - 1.0000 ) * 0.8550 + ( 0.0000 -0.0000 ) * 0.8550
= 53.865 mm
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int.
Wall Thickness for Internal/External pressures
ta
Wall Thickness per UG16(b),
tr16b
Wall Thickness, shell/head, internal pressure
trb1
Wall Thickness
tb1 = max(trb1, tr16b)
Wall Thickness
tb2 = max(trb2, tr16b)
Wall Thickness per table UG-45
tb3
Determine Nozzle Thickness candidate [tb]:

Press.]
= 3.2572
= 4.5000
= 4.9359
= 4.9359
= 4.5000
= 5.9464

mm
mm
mm
mm
mm
mm

= min[ tb3, max( tb1,tb2) ]


= min[ 5.946 , max( 4.936 , 4.500 ) ]
= 4.9359 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 127
Nozzle Calcs. : N7
Nozl:
16 11:15p Sep 5,2012
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
= max( ta, tb )
= max( 3.2572 , 4.9359 )
= 4.9359 mm
Available Nozzle Neck Thickness = 0.875 * 9.093 = 7.957 mm --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
MDMT of the Nozzle Neck to Flange Weld,
Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 7.957 , tr = 0.100 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.020 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-104 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 7.957 , tr = 0.100 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.020 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Governing MDMT of all the sub-joints of this Junction

-29 C
-104 C
:

-104 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:


Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c)
Flange MDMT with Temp reduction per UCS-66(b)(1)(b)
Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C
-104 C
-104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :


Design Pressure/Ambient Rating = 11.05/51.10 = 0.216
Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above
as the calculated nozzle flange MDMT.
Nozzle Calculations per App. 1-10:
Thickness of Nozzle [tn]:
= thickness - corrosion allowance
= 9.093 - 3.000
= 6.093 mm

Internal Pressure Case:

Effective Pressure Radius [Reff]:


= Di/2 + corrosion allowance
= 475.000/2 + 3.000
= 240.500 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 128
Nozzle Calcs. : N7
Nozl:
16 11:15p Sep 5,2012
Effective Length of Vessel Wall [LR]:
= 8 * t
= 8 * 7.000
= 56.000 mm
Thickness Limit Candidate [LH1]:
= t + 0.78 * sqrt( Rn * tn )
= 7.000 + 0.78 * sqrt( 10.607 * 6.093 )
= 13.271 mm
Thickness Limit Candidate [LH2]:
= Lpr1 + T
= 250.000 + 7.000
= 257.000 mm
Thickness Limit Candidate [LH3]:
= 8( t + te )
= 8( 7.000 + 0.000 )
= 56.000 mm
Effective Nozzle Wall Length Outside the Vessel [LH]:
= min[ LH1, LH2, LH3 ]
= min[ 13.271 , 257.000 , 56.000 )
= 13.271 mm
Effective Vessel Thickness [teff]:
= t
= 7.000 mm
Determine Parameter [Lamda]:
= min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )
= min( 10, (21.21 + 6.093 )/( sqrt((481.00 + 7.000 ) * 7.000 )) )
= 0.467
Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :
Area Contributed by the Vessel Wall [A1]:
= t * LR * max( Lamda/4, 1 )
= 7.000 * 56.000 * max( 0.467/4, 1 )
= 392.000 mm
Area Contributed by the Nozzle Outside the Vessel Wall [A2]:
= tn * LH
= 6.093 * 13.271
= 80.861 mm
Area Contributed by the Outside Fillet Weld [A41]:
= 0.5 * Leg41^(2) - Area cut by thickness limit
= 0.5 * 8.000^(2) - 1.495
= 30.505 mm

The total area contributed by A1 through A43


= A1 + frn( A2 + A3 ) + A41 + A42 + A43

[AT]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 129
Nozzle Calcs. : N7
Nozl:
16 11:15p Sep 5,2012
= 392.000+1.000(80.861+0.000)+30.505+0.000+0.000
= 503.366 mm
Allowable Local Primary Membrane Stress [Sallow]:
= 1.5 * S * E
= 1.5 * 20000.000 * 1.000
= 30000.0 psi
Determine Force acting on the Nozzle [fN]:
= P * Rn( LH - t )
= 11.047 * 10.607 ( 13.271 - 7.000 )
= 7.5 kgf
Determine Force acting on the Shell [fS]:
= P * Reff * ( LR + tn )
= 11.047 * 240.500 * ( 56.000 + 6.093 )
= 1682.1 kgf
Discontinuity Force from Internal Pressure [fY]:
= P * Reff * Rnc
= 11.047 * 240.500 * 10.607
= 287.4 kgf
Area Resisting Internal Pressure [Ap]:
= Rn( LH - t ) + Reff( LR + tn + Rnc )
= 10.607 ( 13.271 - 7.000 ) + 240.500 ( 56.000 + 6.093 + 10.607 )
= 17551.0 mm
Maximum Allowable Working Pressure Candidate [Pmax1]:
= Sallow /( 2 * Ap/AT - Rxs/teff )
= 30000.000/( 2 * 17550.986/503.366 - 240.500/7.000 )
= 58.5 bar
Maximum Allowable Working Pressure Candidate [Pmax2]:
= S[t/Reff]
= 20000.000 [7.000/240.500 ]
= 40.1 bar
Maximum Allowable Working Pressure [Pmax]:
= min( Pmax1, Pmax2 )
= min( 58.468 , 40.136 )
= 40.136 bar
Average Primary Membrane Stress [SigmaAvg]:
= ( fN + fS + fY ) / AT
= ( 7.493 + 1682.141 + 287.358 )/503.366
= 5586.283 psi
General Primary Membrane Stress [SigmaCirc]:
= P * Reff / teff

= 11.047 * 240.500/7.000
= 5504.6 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 130
Nozzle Calcs. : N7
Nozl:
16 11:15p Sep 5,2012
Maximum Local Primary Membrane Stress [PL]:
= max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )
= max( 2 * 5586.283 - 5504.559 , 5504.559 )
= 5668.0 psi
Summary of Nozzle Pressure/Stress Results:
Allowed Local Primary Membrane Stress
Sallow
Local Primary Membrane Stress
PL
Maximum Allowable Working Pressure
Pmax

30000.00
5668.01
40.14

psi
psi
bar

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)


Discontinuity Force Factor [ky]:
= ( Rnc + tn ) / Rnc
= ( 10.607 + 6.093 )/10.607
= 1.574 For set-in Nozzles
Weld Length of Nozzle to Shell Weld [Ltau]:
= pi/2 * ( Rn + tn )
= pi/2 * ( 10.607 + 6.093 )
= 26.233 mm
Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]:
= 5.657,
0.000,
0.000, mm
Weld Load Value [fwelds]:
= min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )
= min(287*1.57,1.5*17100.0(80.861+0.000),pi/4*11.0*10.61^2*1.57^2)
= 24.675 kgf
Weld Stress Value [tau]:
= fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) )
= 24.675/(26.233 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) )
= 191.893 < or = to 20000.000 Weld Size is OK
Weld Size Calculations, Description: N7
Intermediate Calc. for nozzle/shell Welds

Tmin

6.0932

mm

Results Per UW-16.1:


Nozzle Weld

Required Thickness
4.2652 = 0.7 * tmin.

Actual Thickness
5.6560 = 0.7 * Wo mm

Maximum Allowable Pressure for this Nozzle at this Location:


Converged Max. Allow. Pressure in Operating case
39.447

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.
Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 0.5879 mm


The Cut Length for this Nozzle is, Drop + Ho + H + T : 260.5879 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 131
Nozzle Calcs. : N7
Nozl:
16 11:15p Sep 5,2012
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 132
Nozzle Calcs. : N5
Nozl:
17 11:15p Sep 5,2012
INPUT VALUES,

Nozzle Description: N5

Pressure for Reinforcement Calculations


Temperature for Internal Pressure
Design External Pressure
Temperature for External Pressure

From :
P
Temp
Pext
Tempex

Shell Material
Shell Allowable Stress at Temperature
Shell Allowable Stress At Ambient

S
Sa

Inside Diameter of Cylindrical Shell


Design Length of Section
Shell Finished (Minimum) Thickness
Shell Internal Corrosion Allowance
Shell External Corrosion Allowance

D
L
t
c
co

Distance from Bottom/Left Tangent


User Entered Minimum Design Metal Temperature

11.000
215
1.03
215

50
bar
C
bar
C

SA-516 70
20000.00 psi
20000.00 psi
475.00
3085.5833
10.0000
3.0000
0.0000

mm
mm
mm
mm
mm

3709.0000

mm

0.00

Type of Element Connected to the Shell : Nozzle


Material
Material UNS Number
Material Specification/Type
Allowable Stress at Temperature
Allowable Stress At Ambient

Sn
Sna

Diameter Basis (for tr calc only)


Layout Angle
Diameter
Size and Thickness Basis
Nominal Thickness

ID
0.00
40.0000
tn

Flange Material
Flange Type
Corrosion Allowance
Joint Efficiency of Shell Seam at Nozzle
Joint Efficiency of Nozzle Neck

SA-106 B
K03006
Smls. pipe
17100.00 psi
17100.00 psi
deg
mm.

Nominal
160
SA-105
Slip on

can
E1
En

3.0000
1.00
1.00

mm

Outside Projection
ho
Weld leg size between Nozzle and Pad/Shell
Wo
Groove weld depth between Nozzle and Vessel Wgnv
Inside Projection
h
Weld leg size, Inside Element to Shell
Wi
ASME Code Weld Type per UW-16

250.0000
8.0000
8.0000
0.0000
0.0000
C

mm
mm
mm
mm
mm

Class of attached Flange


Grade of attached Flange

300
GR 1.1

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 133
Nozzle Calcs. : N5
Nozl:
17 11:15p Sep 5,2012
The Pressure Design option was Design Pressure + static head.
Nozzle Sketch (may not represent actual weld type/configuration)
| |
| |
| |
| |
____________/| |
|
\ | |
|
\ | |
|____________\|__|
Insert Nozzle No Pad, no Inside projection
Reinforcement CALCULATION, Description: N5
ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45
Actual Inside Diameter Used in Calculation
Actual Thickness Used in Calculation

33.985
7.137

mm.
mm

Nozzle input data check completed without errors.


Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.00*240.5000)/(20000*1.00-0.6*11.00)
= 1.9277 mm
Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.00*19.99)/(17100*1.00-0.6*11.00)
= 0.1876 mm
Required Nozzle thickness under External Pressure per UG-28 : 0.3156
UG-40, Limits of Reinforcement : [External Pressure]
Parallel to Vessel Wall (Diameter Limit)
Dl
Parallel to Vessel Wall, opening length
d
Normal to Vessel Wall (Thickness Limit), no pad
Tlnp
Weld Strength Reduction Factor [fr1]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr2]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )

79.9704
39.9852
10.3435

mm
mm
mm

mm

= 0.855
Weld Strength Reduction Factor [fr3]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 134
Nozzle Calcs. : N5
Nozl:
17 11:15p Sep 5,2012
= min( fr2, fr4 )
= min( 0.9 , 1.0 )
= 0.855
Results of Nozzle Reinforcement Area Calculations:
AREA AVAILABLE, A1 to A5
Design External
Area Required
Ar
NA
72.272
Area in Shell
A1
NA
135.376
Area in Nozzle Wall
A2
NA
67.598
Area in Inward Nozzle
A3
NA
0.000
Area in Welds
A41+A42+A43
NA
54.720
Area in Element
A5
NA
0.000
TOTAL AREA AVAILABLE
Atot
NA
257.694

Mapnc
NA
NA
NA
NA
NA
NA
NA

mm
mm
mm
mm
mm
mm
mm

Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.


Area Required [A]:
= 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39
= 0.5(39.9852*3.5096*1+2*4.1374*3.5096*1*(1-0.86))
= 72.272 mm
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
= d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
= 39.985 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 4.137
( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 )
= 135.376 mm
Area Available in Nozzle Projecting Outward [A2]:
= ( 2 * tlnp ) * ( tn - trn ) * fr2
= ( 2 * 10.34 ) * ( 4.14 - 0.32 ) * 0.8550
= 67.598 mm
Area Available in Inward Weld + Outward Weld [A41 + A43]:
= Wo * fr2 + ( Wi-can/0.707 ) * fr2
= 8.0000 * 0.8550 + ( 0.0000 ) * 0.8550
= 54.720 mm
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int.
Wall Thickness for Internal/External pressures
ta
Wall Thickness per UG16(b),
tr16b
Wall Thickness, shell/head, internal pressure
trb1
Wall Thickness
tb1 = max(trb1, tr16b)
Wall Thickness
tb2 = max(trb2, tr16b)
Wall Thickness per table UG-45
tb3
Determine Nozzle Thickness candidate [tb]:

Press.]
= 3.3156
= 4.5000
= 4.9277
= 4.9277
= 4.5000
= 6.2200

mm
mm
mm
mm
mm
mm

= min[ tb3, max( tb1,tb2) ]


= min[ 6.220 , max( 4.928 , 4.500 ) ]
= 4.9277 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 135
Nozzle Calcs. : N5
Nozl:
17 11:15p Sep 5,2012
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
= max( ta, tb )
= max( 3.3156 , 4.9277 )
= 4.9277 mm
Available Nozzle Neck Thickness = 0.875 * 7.137 = 6.245 mm --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
MDMT of the Nozzle Neck to Flange Weld,
Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 6.245 , tr = 0.188 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.058 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-104 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 6.245 , tr = 0.188 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.058 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Governing MDMT of all the sub-joints of this Junction

-29 C
-104 C
:

-104 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:


Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c)
Flange MDMT with Temp reduction per UCS-66(b)(1)(b)
Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C
-104 C
-104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :


Design Pressure/Ambient Rating = 11.00/51.10 = 0.215
Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above
as the calculated nozzle flange MDMT.
Nozzle Calculations per App. 1-10:
Thickness of Nozzle [tn]:
= thickness - corrosion allowance
= 7.137 - 3.000
= 4.137 mm

Internal Pressure Case:

Effective Pressure Radius [Reff]:


= Di/2 + corrosion allowance
= 475.000/2 + 3.000
= 240.500 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 136
Nozzle Calcs. : N5
Nozl:
17 11:15p Sep 5,2012
Effective Length of Vessel Wall [LR]:
= 8 * t
= 8 * 7.000
= 56.000 mm
Thickness Limit Candidate [LH1]:
= t + 0.78 * sqrt( Rn * tn )
= 7.000 + 0.78 * sqrt( 19.993 * 4.137 )
= 14.094 mm
Thickness Limit Candidate [LH2]:
= Lpr1 + T
= 250.000 + 7.000
= 257.000 mm
Thickness Limit Candidate [LH3]:
= 8( t + te )
= 8( 7.000 + 0.000 )
= 56.000 mm
Effective Nozzle Wall Length Outside the Vessel [LH]:
= min[ LH1, LH2, LH3 ]
= min[ 14.094 , 257.000 , 56.000 )
= 14.094 mm
Effective Vessel Thickness [teff]:
= t
= 7.000 mm
Determine Parameter [Lamda]:
= min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )
= min( 10, (39.99 + 4.137 )/( sqrt((481.00 + 7.000 ) * 7.000 )) )
= 0.755
Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :
Area Contributed by the Vessel Wall [A1]:
= t * LR * max( Lamda/4, 1 )
= 7.000 * 56.000 * max( 0.755/4, 1 )
= 392.000 mm
Area Contributed by the Nozzle Outside the Vessel Wall [A2]:
= tn * LH
= 4.137 * 14.094
= 58.313 mm
Area Contributed by the Outside Fillet Weld [A41]:
= 0.5 * Leg41^(2) - Area cut by thickness limit
= 0.5 * 8.000^(2) - 0.410
= 31.590 mm

The total area contributed by A1 through A43


= A1 + frn( A2 + A3 ) + A41 + A42 + A43

[AT]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 137
Nozzle Calcs. : N5
Nozl:
17 11:15p Sep 5,2012
= 392.000+1.000(58.313+0.000)+31.590+0.000+0.000
= 481.902 mm
Allowable Local Primary Membrane Stress [Sallow]:
= 1.5 * S * E
= 1.5 * 20000.000 * 1.000
= 30000.0 psi
Determine Force acting on the Nozzle [fN]:
= P * Rn( LH - t )
= 11.000 * 19.993 ( 14.094 - 7.000 )
= 15.9 kgf
Determine Force acting on the Shell [fS]:
= P * Reff * ( LR + tn )
= 11.000 * 240.500 * ( 56.000 + 4.137 )
= 1622.3 kgf
Discontinuity Force from Internal Pressure [fY]:
= P * Reff * Rnc
= 11.000 * 240.500 * 19.993
= 539.3 kgf
Area Resisting Internal Pressure [Ap]:
= Rn( LH - t ) + Reff( LR + tn + Rnc )
= 19.993 ( 14.094 - 7.000 ) + 240.500 ( 56.000 + 4.137 + 19.993 )
= 19413.1 mm
Maximum Allowable Working Pressure Candidate [Pmax1]:
= Sallow /( 2 * Ap/AT - Rxs/teff )
= 30000.000/( 2 * 19413.094/481.902 - 240.500/7.000 )
= 44.8 bar
Maximum Allowable Working Pressure Candidate [Pmax2]:
= S[t/Reff]
= 20000.000 [7.000/240.500 ]
= 40.1 bar
Maximum Allowable Working Pressure [Pmax]:
= min( Pmax1, Pmax2 )
= min( 44.760 , 40.136 )
= 40.136 bar
Average Primary Membrane Stress [SigmaAvg]:
= ( fN + fS + fY ) / AT
= ( 15.909 + 1622.291 + 539.328 )/481.902
= 6426.979 psi
General Primary Membrane Stress [SigmaCirc]:
= P * Reff / teff

= 11.000 * 240.500/7.000
= 5481.4 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 138
Nozzle Calcs. : N5
Nozl:
17 11:15p Sep 5,2012
Maximum Local Primary Membrane Stress [PL]:
= max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )
= max( 2 * 6426.979 - 5481.357 , 5481.357 )
= 7372.6 psi
Summary of Nozzle Pressure/Stress Results:
Allowed Local Primary Membrane Stress
Sallow
Local Primary Membrane Stress
PL
Maximum Allowable Working Pressure
Pmax

30000.00
7372.60
40.14

psi
psi
bar

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)


Discontinuity Force Factor [ky]:
= ( Rnc + tn ) / Rnc
= ( 19.993 + 4.137 )/19.993
= 1.207 For set-in Nozzles
Weld Length of Nozzle to Shell Weld [Ltau]:
= pi/2 * ( Rn + tn )
= pi/2 * ( 19.993 + 4.137 )
= 37.903 mm
Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]:
= 5.657,
0.000,
0.000, mm
Weld Load Value [fwelds]:
= min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )
= min(539*1.21,1.5*17100.0(58.313+0.000),pi/4*11.0*19.99^2*1.21^2)
= 51.295 kgf
Weld Stress Value [tau]:
= fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) )
= 51.295/(37.903 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) )
= 276.090 < or = to 20000.000 Weld Size is OK
Weld Size Calculations, Description: N5
Intermediate Calc. for nozzle/shell Welds

Tmin

4.1374

mm

Results Per UW-16.1:


Nozzle Weld

Required Thickness
2.8962 = 0.7 * tmin.

Actual Thickness
5.6560 = 0.7 * Wo mm

Maximum Allowable Pressure for this Nozzle at this Location:


Converged Max. Allow. Pressure in Operating case
39.400

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.
Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 1.2290 mm


The Cut Length for this Nozzle is, Drop + Ho + H + T : 261.2290 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 139
Nozzle Calcs. : N5
Nozl:
17 11:15p Sep 5,2012
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 140
Nozzle Calcs. : N4
Nozl:
18 11:15p Sep 5,2012
INPUT VALUES,

Nozzle Description: N4

Pressure for Reinforcement Calculations


Temperature for Internal Pressure
Design External Pressure
Temperature for External Pressure

From :
P
Temp
Pext
Tempex

Shell Material
Shell Allowable Stress at Temperature
Shell Allowable Stress At Ambient

S
Sa

Inside Diameter of Cylindrical Shell


Design Length of Section
Shell Finished (Minimum) Thickness
Shell Internal Corrosion Allowance
Shell External Corrosion Allowance

D
L
t
c
co

Distance from Bottom/Left Tangent


User Entered Minimum Design Metal Temperature

11.047
215
1.03
215

50
bar
C
bar
C

SA-516 70
20000.00 psi
20000.00 psi
475.00
3085.5833
10.0000
3.0000
0.0000

mm
mm
mm
mm
mm

3452.0000

mm

0.00

Type of Element Connected to the Shell : Nozzle


Material
Material UNS Number
Material Specification/Type
Allowable Stress at Temperature
Allowable Stress At Ambient

Sn
Sna

Diameter Basis (for tr calc only)


Layout Angle
Diameter
Size and Thickness Basis
Nominal Thickness

ID
180.00
40.0000
tn

Flange Material
Flange Type
Corrosion Allowance
Joint Efficiency of Shell Seam at Nozzle
Joint Efficiency of Nozzle Neck

SA-106 B
K03006
Smls. pipe
17100.00 psi
17100.00 psi
deg
mm.

Nominal
160
SA-105
Slip on

can
E1
En

3.0000
1.00
1.00

mm

Outside Projection
ho
Weld leg size between Nozzle and Pad/Shell
Wo
Groove weld depth between Nozzle and Vessel Wgnv
Inside Projection
h
Weld leg size, Inside Element to Shell
Wi
ASME Code Weld Type per UW-16

250.0000
8.0000
8.0000
0.0000
0.0000
C

mm
mm
mm
mm
mm

Class of attached Flange


Grade of attached Flange

300
GR 1.1

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 141
Nozzle Calcs. : N4
Nozl:
18 11:15p Sep 5,2012
The Pressure Design option was Design Pressure + static head.
Nozzle Sketch (may not represent actual weld type/configuration)
| |
| |
| |
| |
____________/| |
|
\ | |
|
\ | |
|____________\|__|
Insert Nozzle No Pad, no Inside projection
Reinforcement CALCULATION, Description: N4
ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45
Actual Inside Diameter Used in Calculation
Actual Thickness Used in Calculation

33.985
7.137

mm.
mm

Nozzle input data check completed without errors.


Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.05*240.5000)/(20000*1.00-0.6*11.05)
= 1.9359 mm
Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press]
= (P*R)/(S*E-0.6*P) per UG-27 (c)(1)
= (11.05*19.99)/(17100*1.00-0.6*11.05)
= 0.1884 mm
Required Nozzle thickness under External Pressure per UG-28 : 0.3156
UG-40, Limits of Reinforcement : [External Pressure]
Parallel to Vessel Wall (Diameter Limit)
Dl
Parallel to Vessel Wall, opening length
d
Normal to Vessel Wall (Thickness Limit), no pad
Tlnp
Weld Strength Reduction Factor [fr1]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )
= 0.855
Weld Strength Reduction Factor [fr2]:
= min( 1, Sn/S )
= min( 1, 17100.0/20000.0 )

79.9704
39.9852
10.3435

mm
mm
mm

mm

= 0.855
Weld Strength Reduction Factor [fr3]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 142
Nozzle Calcs. : N4
Nozl:
18 11:15p Sep 5,2012
= min( fr2, fr4 )
= min( 0.9 , 1.0 )
= 0.855
Results of Nozzle Reinforcement Area Calculations:
AREA AVAILABLE, A1 to A5
Design External
Area Required
Ar
NA
72.272
Area in Shell
A1
NA
135.376
Area in Nozzle Wall
A2
NA
67.598
Area in Inward Nozzle
A3
NA
0.000
Area in Welds
A41+A42+A43
NA
54.720
Area in Element
A5
NA
0.000
TOTAL AREA AVAILABLE
Atot
NA
257.694

Mapnc
NA
NA
NA
NA
NA
NA
NA

mm
mm
mm
mm
mm
mm
mm

Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.


Area Required [A]:
= 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39
= 0.5(39.9852*3.5096*1+2*4.1374*3.5096*1*(1-0.86))
= 72.272 mm
Reinforcement Areas per Figure UG-37.1
Area Available in Shell [A1]:
= d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 )
= 39.985 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 4.137
( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 )
= 135.376 mm
Area Available in Nozzle Projecting Outward [A2]:
= ( 2 * tlnp ) * ( tn - trn ) * fr2
= ( 2 * 10.34 ) * ( 4.14 - 0.32 ) * 0.8550
= 67.598 mm
Area Available in Inward Weld + Outward Weld [A41 + A43]:
= Wo * fr2 + ( Wi-can/0.707 ) * fr2
= 8.0000 * 0.8550 + ( 0.0000 ) * 0.8550
= 54.720 mm
UG-45 Minimum Nozzle Neck Thickness Requirement: [Int.
Wall Thickness for Internal/External pressures
ta
Wall Thickness per UG16(b),
tr16b
Wall Thickness, shell/head, internal pressure
trb1
Wall Thickness
tb1 = max(trb1, tr16b)
Wall Thickness
tb2 = max(trb2, tr16b)
Wall Thickness per table UG-45
tb3
Determine Nozzle Thickness candidate [tb]:

Press.]
= 3.3156
= 4.5000
= 4.9359
= 4.9359
= 4.5000
= 6.2200

mm
mm
mm
mm
mm
mm

= min[ tb3, max( tb1,tb2) ]


= min[ 6.220 , max( 4.936 , 4.500 ) ]
= 4.9359 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 143
Nozzle Calcs. : N4
Nozl:
18 11:15p Sep 5,2012
Minimum Wall Thickness of Nozzle Necks [tUG-45]:
= max( ta, tb )
= max( 3.3156 , 4.9359 )
= 4.9359 mm
Available Nozzle Neck Thickness = 0.875 * 7.137 = 6.245 mm --> OK
Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations:
MDMT of the Nozzle Neck to Flange Weld,
Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 6.245 , tr = 0.188 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.058 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)

-29 C
-104 C

MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),


Curve: B
---------------------------------------------------------------------Govrn. thk, tg = 6.245 , tr = 0.188 , c = 3.0000 mm , E* = 1.00
Stress Ratio = tr * (E*)/(tg - c) = 0.058 , Temp. Reduction = 78 C
Min Metal Temp. w/o impact per UCS-66
Min Metal Temp. at Required thickness (UCS 66.1)
Governing MDMT of all the sub-joints of this Junction

-29 C
-104 C
:

-104 C

ANSI Flange MDMT including Temperature reduction per UCS-66.1:


Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c)
Flange MDMT with Temp reduction per UCS-66(b)(1)(b)
Flange MDMT with Temp reduction per UCS-66(b)(1)(c)

-29 C
-104 C
-104 C

Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is :


Design Pressure/Ambient Rating = 11.05/51.10 = 0.216
Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above
as the calculated nozzle flange MDMT.
Nozzle Calculations per App. 1-10:
Thickness of Nozzle [tn]:
= thickness - corrosion allowance
= 7.137 - 3.000
= 4.137 mm

Internal Pressure Case:

Effective Pressure Radius [Reff]:


= Di/2 + corrosion allowance
= 475.000/2 + 3.000
= 240.500 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 144
Nozzle Calcs. : N4
Nozl:
18 11:15p Sep 5,2012
Effective Length of Vessel Wall [LR]:
= 8 * t
= 8 * 7.000
= 56.000 mm
Thickness Limit Candidate [LH1]:
= t + 0.78 * sqrt( Rn * tn )
= 7.000 + 0.78 * sqrt( 19.993 * 4.137 )
= 14.094 mm
Thickness Limit Candidate [LH2]:
= Lpr1 + T
= 250.000 + 7.000
= 257.000 mm
Thickness Limit Candidate [LH3]:
= 8( t + te )
= 8( 7.000 + 0.000 )
= 56.000 mm
Effective Nozzle Wall Length Outside the Vessel [LH]:
= min[ LH1, LH2, LH3 ]
= min[ 14.094 , 257.000 , 56.000 )
= 14.094 mm
Effective Vessel Thickness [teff]:
= t
= 7.000 mm
Determine Parameter [Lamda]:
= min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) )
= min( 10, (39.99 + 4.137 )/( sqrt((481.00 + 7.000 ) * 7.000 )) )
= 0.755
Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) :
Area Contributed by the Vessel Wall [A1]:
= t * LR * max( Lamda/4, 1 )
= 7.000 * 56.000 * max( 0.755/4, 1 )
= 392.000 mm
Area Contributed by the Nozzle Outside the Vessel Wall [A2]:
= tn * LH
= 4.137 * 14.094
= 58.313 mm
Area Contributed by the Outside Fillet Weld [A41]:
= 0.5 * Leg41^(2) - Area cut by thickness limit
= 0.5 * 8.000^(2) - 0.410
= 31.590 mm

The total area contributed by A1 through A43


= A1 + frn( A2 + A3 ) + A41 + A42 + A43

[AT]:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 145
Nozzle Calcs. : N4
Nozl:
18 11:15p Sep 5,2012
= 392.000+1.000(58.313+0.000)+31.590+0.000+0.000
= 481.902 mm
Allowable Local Primary Membrane Stress [Sallow]:
= 1.5 * S * E
= 1.5 * 20000.000 * 1.000
= 30000.0 psi
Determine Force acting on the Nozzle [fN]:
= P * Rn( LH - t )
= 11.047 * 19.993 ( 14.094 - 7.000 )
= 16.0 kgf
Determine Force acting on the Shell [fS]:
= P * Reff * ( LR + tn )
= 11.047 * 240.500 * ( 56.000 + 4.137 )
= 1629.2 kgf
Discontinuity Force from Internal Pressure [fY]:
= P * Reff * Rnc
= 11.047 * 240.500 * 19.993
= 541.6 kgf
Area Resisting Internal Pressure [Ap]:
= Rn( LH - t ) + Reff( LR + tn + Rnc )
= 19.993 ( 14.094 - 7.000 ) + 240.500 ( 56.000 + 4.137 + 19.993 )
= 19413.1 mm
Maximum Allowable Working Pressure Candidate [Pmax1]:
= Sallow /( 2 * Ap/AT - Rxs/teff )
= 30000.000/( 2 * 19413.094/481.902 - 240.500/7.000 )
= 44.8 bar
Maximum Allowable Working Pressure Candidate [Pmax2]:
= S[t/Reff]
= 20000.000 [7.000/240.500 ]
= 40.1 bar
Maximum Allowable Working Pressure [Pmax]:
= min( Pmax1, Pmax2 )
= min( 44.760 , 40.136 )
= 40.136 bar
Average Primary Membrane Stress [SigmaAvg]:
= ( fN + fS + fY ) / AT
= ( 15.976 + 1629.158 + 541.611 )/481.902
= 6454.183 psi
General Primary Membrane Stress [SigmaCirc]:
= P * Reff / teff

= 11.047 * 240.500/7.000
= 5504.6 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 146
Nozzle Calcs. : N4
Nozl:
18 11:15p Sep 5,2012
Maximum Local Primary Membrane Stress [PL]:
= max( 2 * SigmaAvg - SigmaCirc, SigmaCirc )
= max( 2 * 6454.183 - 5504.559 , 5504.559 )
= 7403.8 psi
Summary of Nozzle Pressure/Stress Results:
Allowed Local Primary Membrane Stress
Sallow
Local Primary Membrane Stress
PL
Maximum Allowable Working Pressure
Pmax

30000.00
7403.81
40.14

psi
psi
bar

Strength of Nozzle Attachment Welds per 1-10 and U-2(g)


Discontinuity Force Factor [ky]:
= ( Rnc + tn ) / Rnc
= ( 19.993 + 4.137 )/19.993
= 1.207 For set-in Nozzles
Weld Length of Nozzle to Shell Weld [Ltau]:
= pi/2 * ( Rn + tn )
= pi/2 * ( 19.993 + 4.137 )
= 37.903 mm
Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]:
= 5.657,
0.000,
0.000, mm
Weld Load Value [fwelds]:
= min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 )
= min(541*1.21,1.5*17100.0(58.313+0.000),pi/4*11.0*19.99^2*1.21^2)
= 51.512 kgf
Weld Stress Value [tau]:
= fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) )
= 51.512/(37.903 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) )
= 277.259 < or = to 20000.000 Weld Size is OK
Weld Size Calculations, Description: N4
Intermediate Calc. for nozzle/shell Welds

Tmin

4.1374

mm

Results Per UW-16.1:


Nozzle Weld

Required Thickness
2.8962 = 0.7 * tmin.

Actual Thickness
5.6560 = 0.7 * Wo mm

Maximum Allowable Pressure for this Nozzle at this Location:


Converged Max. Allow. Pressure in Operating case
39.447

bar

Note: The MAWP of this junction was limited by the parent Shell/Head.
Nozzle is O.K. for the External Pressure

1.034

bar

The Drop for this Nozzle is : 1.2290 mm


The Cut Length for this Nozzle is, Drop + Ho + H + T : 261.2290 mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 147
Nozzle Calcs. : N4
Nozl:
18 11:15p Sep 5,2012
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 148
Nozzle Schedule :
Step:
25 11:15p Sep 5,2012
Nozzle Schedule:
Nominal Flange
Cut
Description
Length

Size

Sch/Type

Noz.

Wall

O/Dia

Thk

Re-Pad
ODia

Thick

mm
Cls
mm
mm
mm
mm
mm
----------------------------------------------------------------------------N8
25
XXS SlipOn 33.401 9.093
260
N7
25
XXS SlipOn 33.401 9.093
260
N5
40
160 SlipOn 48.260 7.137
261
N4
40
160 SlipOn 48.260 7.137
261
N6
50
160 SlipOn 60.325 8.738
261
N9
50
160 SlipOn 60.325 8.738
261
N3
65
160 SlipOn 73.025 9.525
262
N1
200
80
SlipOn219.075 12.700
320.00 10.00
286
N2
200
80
SlipOn219.075 12.700
320.00 10.00
286
General Notes for the above table:
The Cut Length is the Outside Projection + Inside Projection + Drop +
In Plane Shell Thickness. This value does not include weld gaps,
nor does it account for shrinkage.
In the case of Oblique Nozzles, the Outside Diameter must
be increased. The Re-Pad WIDTH around the nozzle is calculated as
follows:
Width of Pad = (Pad Outside Dia. (per above) - Nozzle Outside Dia.)/2
For hub nozzles, the thickness and diameter shown are those of the
smaller
and thinner section.
Nozzle Material and Weld Fillet Leg Size Details:
Shl Grve Noz Shl/Pad Pad OD
Inside
Nozzle
Material
Weld
Weld
Weld
Weld

Pad Grve
Weld

mm
mm
mm
mm
mm
----------------------------------------------------------------------------N8
SA-106 B
8.000
8.000
N7
SA-106 B
8.000
8.000
N5
SA-106 B
8.000
8.000
N4
SA-106 B
8.000
8.000
N6
SA-106 B
8.000
8.000
N9
SA-106 B
8.000
8.000
N3
SA-106 B
8.000
8.000
N1
SA-106 B
8.000
10.000
8.000
8.000
N2
SA-106 B
8.000
10.000
8.000
8.000
Note: The Outside projections below do not include the flange thickness.
Nozzle Miscellaneous Data:
Elevation/Distance
Installed In
Nozzle
Component

From Datum

Layout
Angle

Projection
Outside

Inside

mm
deg.
mm
mm
---------------------------------------------------------------------------

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 149
Nozzle Schedule :
Step:
25 11:15p Sep 5,2012
N8
SHELL
N7
N5
N4
N6
N9
N3
N1
SHELL
N2
SHELL

105.000

180.00

250.00

0.00

BONNET

934.000
3619.000
3362.000
2134.000
2884.000
934.000
404.000

180.00
0.00
180.00
0.00
0.00
0.00
180.00

250.00
250.00
250.00
250.00
250.00
250.00
250.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00

SHELL
SHELL
SHELL
SHELL
SHELL
SHELL
BONNET

365.000

0.00

250.00

0.00

BONNET

Weld Sizes for Slip On Nozzle Flanges per UW-21:


Nozzle to Flange Fillet Weld Leg dimension [xmin]:
= min( 0.7 * Hub Thickness, Nozzle Thickness-Corrosion )/0.7 for Socket
Welds
= min( 1.4 * tmin, Hub Thickness ) / 0.7 for Slip on Flanges.
The Nozzle Wall thicknesses shown below are in the corroded condition.
Hubs
are considered to be straight.
Nominal Flange
xmin
Description
Thickness

Size

Sch/Type

Noz.

Wall

O/Dia

Thk

Hub

Throat

--------

mm
Cls
mm
mm
mm
mm
mm
----------------------------------------------------------------------------N8
25
XXS SlipOn
33.4
6.09
9.7
6.0
8.5
N7
25
XXS SlipOn
33.4
6.09
9.7
6.0
8.5
N5
40
160 SlipOn
48.3
4.14
10.2
4.1
5.8
N4
40
160 SlipOn
48.3
4.14
10.2
4.1
5.8
N6
50
160 SlipOn
60.3
5.74
11.0
5.6
8.0
N9
50
160 SlipOn
60.3
5.74
11.0
5.6
8.0
Warning - Could not determine small end hub thickness ...
N1
200
80
SlipOn 219.1
9.70
19.4
9.5
13.6
N2
200
80
SlipOn 219.1
9.70
19.4
9.5
13.6

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.


2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 150
Nozzle Summary :
Step:
26 11:15p Sep 5,2012
Nozzle Calculation Summary:
Description
or

MAWP

Ext

MAPNC

UG45 [tr]

Weld

Areas

bar
bar
Path
Stresses
-------------------------------------------------------------------------N1
39.40
OK
0.00
OK 8.85
OK
Passed
N2
39.40
OK
0.00
OK 8.84
OK
Passed
N8
39.40
OK
0.00
OK 5.95
OK
Passed
N3
39.40
OK
0.00
OK 4.93
OK
Passed
N6
39.40
OK
0.00
OK 4.93
OK
Passed
N9
39.40
OK
0.00
OK 4.93
OK
Passed
N7
39.40
OK
0.00
OK 4.94
OK
Passed
N5
39.40
OK
0.00
OK 4.93
OK
Passed
N4
39.40
OK
0.00
OK 4.94
OK
Passed
-------------------------------------------------------------------------Min. - Nozzles
39.40 N4
0.00 N4
Note: MAWPs (Internal Case) shown above are at the High Point.
Check the Spatial Relationship between the Nozzles
From Node
20
20
20
50
50
50
50
50
50

Nozzle Description
N1
N2
N8
N3
N6
N9
N7
N5
N4

X Coordinate,
404.000
365.000
105.000
1024.000
2224.000
2974.000
1024.000
3709.000
3452.000

Layout Angle,
180.000
0.000
180.000
0.000
0.000
0.000
180.000
0.000
180.000

Dia. Limit
399.350
399.350
145.401
185.025
172.325
172.325
145.401
160.260
160.260

The nozzle spacing is computed by the following:


= Sqrt( ll + lc ) where
ll - Arc length along the inside vessel surface in the long. direction.
lc - Arc length along the inside vessel surface in the circ. direction
If any interferences/violations are found, they will be noted below.
No interference violations have been detected !
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 151
MDMT Summary :
Step:
27 11:15p Sep 5,2012
Minimum Design Metal Temperature Results Summary :
Curve
E*
Description

Basic

Reduced

UG-20(f)

Thickness

Gov

MDMT
MDMT
MDMT
ratio
Thk
Notes
C
C
C
mm
--------------------------------------------------------------------------BONNET DISH [10]
B
-29
-33
-29
0.920 10.000
1.000
BONNET DISH
[7]
B
-23
-38
-29
0.738 12.000
1.000
BONNET SHELL [8]
B
-29
-32
-29
0.949 10.000
1.000
SHELL
[8]
B
-29
-29
-29
0.999 10.000
1.000
DISHED END
[10]
B
-29
-31
-29
0.968 10.000
1.000
DISHED END
[7]
B
-23
-35
-29
0.777 12.000
1.000
N1
[1]
B
-29
-38
-29
0.835 10.000
1.000
Nozzle Flg
[4]
-29
-48
0.351
N2
[1]
B
-29
-38
-29
0.834 10.000
1.000
Nozzle Flg
[4]
-29
-48
0.350
N8
[1]
B
-29
-104
0.061
7.957
1.000
Nozzle Flg
[4]
-29
-104
0.061
N3
[1]
B
-29
-104
0.053
8.334
1.000
Nozzle Flg
[4]
-29
-104
0.053
N6
[1]
B
-29
-104
0.049
7.645
1.000
Nozzle Flg
[4]
-29
-104
0.049
N9
[1]
B
-29
-104
0.049
7.645
1.000
Nozzle Flg
[4]
-29
-104
0.049
N7
[1]
B
-29
-104
0.020
7.957
1.000
Nozzle Flg
[4]
-29
-104
0.020
N5
[1]
B
-29
-104
0.058
6.245
1.000
Nozzle Flg
[4]
-29
-104
0.058
N4
[1]
B
-29
-104
0.058
6.245
1.000
Nozzle Flg
[4]
-29
-104
0.058
---------------------------------------------------------------------------

Required Minimum Design Metal Temperature


Warmest Computed Minimum Design Metal Temperature

0
-29

Notes:
[ ! ] - This was an impact tested material.
[ 1] - Governing Nozzle Weld.
[ 4] - ANSI Flange MDMT Calcs; Thickness ratio per UCS-66(b)(1)(c).
[ 5] - ANSI Flange MDMT Calcs; Thickness ratio per UCS-66(b)(1)(b).
[ 6] - MDMT Calculations at the Shell/Head Joint.
[ 7] - MDMT Calculations for the Straight Flange.
[ 8] - Cylinder/Cone/Flange Junction MDMT.
[ 9] - Calculations in the Spherical Portion of the Head.
[10] - Calculations in the Knuckle Portion of the Head.
[11] - Calculated (Body Flange) Flange MDMT.
[12] - Calculated Flat Head MDMT per UCS-66(3)
UG-84(b)(2) was not considered.
UCS-66(g) was not considered.
UCS-66(i) was not considered.
Notes:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 152
MDMT Summary :
Step:
27 11:15p Sep 5,2012
Impact test temps were not entered in and not considered in the analysis.
UCS-66(i) applies to impact tested materials not by specification and
UCS-66(g) applies to materials impact tested per UG-84.1 General Note
(c).
The Basic MDMT includes the (30F) PWHT credit if applicable.
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 153
ASME TS Calc :
Case:
1 11:15p Sep 5,2012
Input Echo, Tubesheet Number

1,

Shell Data:
Main Shell Description: SHELL
Shell Design Pressure
Shell Thickness
Shell Corrosion Allowance
Inside Diameter of Shell
Shell Temperature for Internal Pressure
Shell Material

Description: TUBE SHEET

Ps
ts
cas
Ds
Ts

11.00
10.0000
3.0000
475.000
215.00
SA-516 70

bar
mm
mm
mm
C

Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps.


Make sure that material properties at this temperature are not
time-dependent for Material:
SA-516 70
Shell Material UNS Number
Shell Allowable Stress at Temperature
Shell Allowable Stress at Ambient
Channel Description: BONNET SHELL
Channel Type:
Channel Design Pressure
Channel Thickness
Channel Corrosion Allowance
Inside Diameter of Channel
Channel Design Temperature
Channel Material

Ss

K02700
20000.00
20000.00

Pt
tc
cac
Dc
TEMPC

Cylinder
33.00
10.0000
3.0000
475.000
185.00
SA-516 70

psi
psi

bar
mm
mm
mm
C

Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps.


Make sure that material properties at this temperature are not
time-dependent for Material:
SA-516 70
Channel Material UNS Number
Channel Allowable Stress at Temperature
Channel Allowable Stress at Ambient

Sc

Tube Data:
Number of Tube Holes
Nt
Tube Wall Thickness
et
Tube Outside Diameter
D
Total Straight Tube Length
Lt
Straight Tube Length (bet. inner tubsht faces) L
Design Temperature of the Tubes
Tube Material
Tube Material UNS Number
Is this a Welded Tube
Tube Material Specification used
Tube Allowable Stress at Temperature
Tube Allowable Stress At Ambient

K02700
20000.00
20000.00
70
2.1100
25.4000
2785.00
2711.00
215.00
SA-179
K01200
No
Smls. tube
13400.00
13400.00

psi
psi

mm
mm
mm
mm
C

psi
psi

Tube Yield Stress At design Temperature


Tube Pitch (Center to Center Spacing)
Tube Layout Pattern

Syt
P

22010.34
31.7500
Triangular

psi
mm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 154
ASME TS Calc :
Case:
1 11:15p Sep 5,2012
Fillet Weld Leg
Groove Weld Leg
Tube-Tubesheet Joint Weld Type
Method for Tube-Tubesheet Jt. Allow.
Tube-Tubesheet Joint Classification
Is Tube-Tubesheet Joint Tested
ASME Tube Joint Reliability Factor
Radius to Outermost Tube Hole Center
Largest Center-to-Center Tube Distance
Length of Expanded Portion of Tube
Tube-side pass partition groove depth

af
ag

fr
ro
Ul
ltx
hg

2.0000 mm
2.0000 mm
Seal/No Weld
App. A
f
No
0.75
222.500
80.0000
71.0000
5.0000

mm
mm
mm
mm

Tubesheet Data:
Tubesheet TYPE:

U-tube, Gasketed both Sides, Conf. d

Tubesheet Design Metal Temperature


Tubesheet Material Specification

215.00
SA-516 70

Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps.


Make sure that material properties at this temperature are not
time-dependent for Material:
SA-516 70
Tubesheet Material UNS Number
Tubesheet Allowable Stress at Temperature
Tubesheet Allowable Stress at Ambient
Thickness of Tubesheet
Tubesheet Corr. Allowance (Shell side)
Tubesheet Corr. Allowance (Channel side)
Tubesheet Outside Diameter
Dimension G for the Channel Side
Area of the Untubed Lanes
Junction Stress Reduction option
thickness
Perform Differential Pressure Design
Run Multiple Load Cases
Shell Side Vacuum Pressure
Channel Side Vacuum Pressure
Additional Data for Gasketed Tubesheets:
Tubesheet Gasket on which Side
Flange Outside Diameter
Flange Inside Diameter
Flange Face Outside Diameter
Flange Face Inside Diameter
Gasket Outside Diameter
Gasket Inside Diameter

S
Tt
h
Cats
Catc
A
Gc
AL

K02700
20000.00
20000.00
74.0000
1.6000
1.6000
535.000
505.000
0.0

psi
psi
mm
mm
mm
mm
mm
mm

Increase Tubesheet

Pexts
Pextc

NO
YES
1.0342
1.0342

bar
bar

A
B
Fod
Fid
Go
Gi

Both
625.000
475.000
538.000
475.000
515.000
495.000

mm
mm
mm
mm
mm
mm

Small end Hub thk.


Large end Hub thk.
Gasket Factor,
Gasket Design Seating Stress

g0
g1
m
y

10.0000
20.0000
2.50
10000.00

mm
mm
psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 155
ASME TS Calc :
Case:
1 11:15p Sep 5,2012
Flange Facing Sketch
Column for Gasket Seating
Gasket Thickness
Full face Gasket Flange Option
Bolting Information:
Diameter of Bolt Circle
Nominal Bolt Diameter
Type of Thread Series
Number of Bolts
Bolt Material
Bolt Allowable Stress At Temperature
Bolt Allowable Stress At Ambient
Weld between Flange and Shell/Channel

Code Sketch 1a
Code Column II
tg
4.5000
Program Selects

mm

C
570.000 mm
dB
22.0000 mm
TEMA Metric Thread
n
20
SA-193 B7
Sb
25000.00 psi
Sa
25000.00 psi
0.0000 mm

Alternate Flange Operating Bolt Load, Wm1


Alternate Flange Seating Bolt Load, Wm2
Alternate Flange Design Bolt Load, W

91245.60 kgf
92685.40 kgf
94225.04 kgf

Tubesheet Integral with


Tubesheet Extended as Flange
Notes/Error Messages/Warnings for Tubesheet number

None
No
1

Warning - Method (App. A) selected for computing Tube-Tubesheet Jt.


allow.
is not valid for U-tube tubesheets, use UHX method if it is a welded
joint.
ASME TubeSheet Results per Part UHX, 2010, 2011a
Elasticity/Expansion Material Properties :
Shell
- TM-1
Carbon Steels with C<= 0.3%
----------------------------------------------------------------Elastic Mod. at Design Temperature
215.0 C
0.19536E+07 kgf/cm
Elastic Mod. at Ambient Temperature
21.1 C
0.20670E+07 kgf/cm
Channel
- TM-1
Carbon Steels with C<= 0.3%
----------------------------------------------------------------Elastic Mod. at Design Temperature
185.0 C
0.19714E+07 kgf/cm
Elastic Mod. at Ambient Temperature
21.1 C
0.20670E+07 kgf/cm
Tubes
- TM-1
Carbon Steels with C<= 0.3%
----------------------------------------------------------------Elastic Mod. at Tubsht. Design Temp.
215.0 C
0.19536E+07 kgf/cm
Elastic Mod. at Ambient Temperature
21.1 C
0.20670E+07 kgf/cm

TubeSheet - TM-1
Carbon Steels with C<= 0.3%
----------------------------------------------------------------Elastic Mod. at Design Temperature
215.0 C
0.19536E+07 kgf/cm
Elastic Mod. at Ambient Temperature
21.1 C
0.20670E+07 kgf/cm

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 156
ASME TS Calc :
Case:
1 11:15p Sep 5,2012
Tube Required Thickness under Internal Pressure (Tubeside pressure) :
Thickness Due to Internal Pressure:
= (P*(D/2-CAE)) / (S*E+0.4*P) per Appendix 1-1 (a)(1)
= (34.03*(25.4000/2-0.000)/(13400.00*1.00+0.4*34.03)
= 0.4610 + 0.0000 = 0.4610 mm
Tube Required Thickness under External Pressure (Shellside pressure) :
External Pressure Chart
CS-1
Elastic Modulus for Material

at

215.00
1955261.25

C
kgf/cm

Results for Max. Allowable External Pressure (Emawp):


TCA
ODCA
SLEN
D/T
L/D
Factor A
B
2.1100
25.40
2933.50
12.04
50.0000 0.0075908
12731.09
EMAWP = (4*B)/(3*(D/T)) = ( 4 *12731.0918 )/( 3 *12.0379 ) = 97.2243 bar
Results for Reqd Thickness for Ext. Pressure (Tca):
TCA
ODCA
SLEN
D/T
L/D
Factor A
B
0.5196
25.40
2933.50
48.89
50.0000 0.0004602
6399.79
EMAWP = (4*B)/(3*(D/T)) = ( 4 *6399.7900 )/( 3 *48.8879 ) = 12.0344 bar
Summary of Tube Required Thickness Results:
Total Required Thickness including Corrosion all.
Allowable Internal Pressure at Corroded thickness
Required Internal Design Pressure
Allowable External Pressure at Corroded thickness
Required External Design Pressure
Required Thickness due to Shell Side pressure

0.5196
164.43
34.03
97.22
12.03
0.5196

----------------------------------------------------------------Detailed Results for load Case 3 un-corr. (Ps + Pt)


----------------------------------------------------------------Intermediate Calculations For Gasketed Tubesheets:
ASME Code, Section VIII, Div. 1, 2010, 2011a
Gasket Contact Width,
Basic Gasket Width,
Effective Gasket Width,
Gasket Reaction Diameter,

N
b0
b
G

=
=
=
=

(Goc-Gic) / 2
N / 2.0
b0
(Go+Gi) / 2.0

Flange Design Bolt Load, Seating Condition


Flange Design Bolt Load, Operating Condition

10.000
5.000
5.000
505.000
W :
Wm1:

94225.04
26915.69

mm
mm
mm
mm
kgf
kgf

Results for ASME U-tube Tubesheet Calculations for Configuration d,


Per Edition 2010, 2011a, Original Thickness :

mm
bar
bar
bar
bar
mm

Minimum Required Thickness for Shear [HreqS]:


= 1/(4 * Mu) * (Do/(0.8 * S)) * |Ps - Pt| + Cats + Catc
= 1/(4 * 0.200 ) * (470.40 /(0.8 * 20000.00 )) * |11.00 - 33.00 | +
0.000

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 157
ASME TS Calc :
Case:
1 11:15p Sep 5,2012
= 11.7262 mm
UHX-12.5.1 Step 1:
Compute the Equivalent Outer Tube Limit Circle Diameter [Do]:
= 2 * ro + dt
= 2 * 222.5000 + 25.4000 = 470.400 mm
Determine the Basic Ligament Efficiency for Shear [mu]:
= (p - dt) / p
= (31.750 - 25.400 ) / 31.750 = 0.200
UHX-12.5.2 Step 2 :
Compute the Ratio [Rhos]:
= Gs / Do (Configurations d, e, f)
= 505.0000 / 470.4000 = 1.0736
Compute the Ratio [Rhoc]:
= Gc / Do (Configurations d)
= 505.0000 / 470.4000 = 1.0736
Moment on Tubesheet due to Pressures (Ps, Pt) [Mts]:
= Do/16 * [(Rhos-1)*(Rhos+1)* Ps - (Rhoc-1) * (Rhoc+1) * Pt ]
= 470.400/16 * [ (1.074 - 1) * (1.074 + 1) * 11.000 (1.074 - 1) * (1.074 + 1) * 33.000 ]
= -48171.8125 bar*mm
UHX-12.5.3 Step 3, Determination of Effective Elastic Properties :
Compute the Ratio [rho]:
= ltx / h = 71.0000 / 74.0000 = 0.9595 ( must be 0 <= rho <= 1 )
Compute the Effective Tube Hole Diameter [d*]:
= max( dt - 2tt*( Et/E )( St/S )( rho ), dt - 2tt)
= max( 25.4000 -2*2.1100 *(1953564 /1953564 )*
( 13400 /20000 )*(0.959 ), 25.4000 -2*2.1100 )
= 22.6872 mm
Compute the Effective Tube Pitch [p*]:
= p / sqrt( 1 - 4 * min( AL * CNV_factor, 4*Do*p)/(Pi * Do) )
= 31.7500 / sqrt( 1 - 4 * min( 0.00 *1.000 , 4*470.400 *31.750 )
(3.141* 470.400) )
= 31.7500 mm
Compute the Effective Ligament Efficiency for Bending [mu*]:
= (p* - d*) / p* = (31.7500 - 22.6872 ) / 31.7500 = 0.28544
E*/E and nu* for Triangular pattern from Fig. UHX-11.3.
h/p =
2.330709 ; mu* =
0.285442

E*/E =

0.262137 ;

nu* =

0.364478 ;

E* = 512101. kgf/cm

Note: As h/p (2.331) is > 2, data values for h/p = 2 were used.

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 158
ASME TS Calc :
Case:
1 11:15p Sep 5,2012
Skip Step 4 for Configuration d :
UHX-12.5.5 Step 5:
Diameter ratio [K]:
= A / Do = 535.0000 / 470.4000 = 1.1373
Determine Coefficient [F]:
= (1 - nu*)/E* * ( E * ln(K) )
= (1 - 0.36 )/512100 * ( 1953564 * ln(1.14 ) )
= 0.3120
UHX-12.5.6 Step 6:
Moment Acting on Unperforated Tubesheet Rim [M*]
= Mts + W* * (Gc - Gs)/(2 * pi * Do)
= -48171.8 + 84280.4 * (505.000 - 505.000 )/(2 * pi * 470.400 )
= -48171.8125 bar*mm
Note: W* is the maximum of the bolt loads between the shell and channel
sides.
UHX-12.5.7 Step 7:
Maximum Bending Moment acting on Periphery of Tubesheet [Mp]:
= ((M*) - Do/32 * F * (Ps - Pt) ) / (1 + F)
= ((-48171.81 ) - 470.400/32 * 0.312 * (11.00 - 33.00 ) ) / (1 + 0.31 )
= -542.1605 bar*mm
Maximum Bending Moment acting on Center of Tubesheet [Mo]:
= Mp + Do/64 * (3 + rnu*)(Ps - Pt)
= -542.16 + 470.400/64 * (3 + 0.364 )(11.00 - 33.00 )
= -256456.7344 bar*mm
Maximum Bending Moment acting on Tubesheet [M]:
= Max( |Mp|, |Mo| )
= Max( |-542.160 |, | -0.3E+06| )
= 256456.7344 bar*mm
UHX-12.5.8 Results for Step 8:
Tubesheet Bending Stress at Original Thickness:
= 6 * M / ( (mu*) * ( h - hg') )
= 6 * 256456.734 / ( (0.2854 ) * ( 74.0000 - 5.0000 ) )
= 16422.0703 psi
The Allowable Tubesheet Bending Stress [SigmaAll]:
= 2 * S = 2 * 20000.00 = 40000.00 psi

Tubesheet Bending Stress at Final Thickness [Sigma]:


= 6 * M / ( (mu*) * ( h - hg')
= 6 * 256611.516 / ( (0.2891 ) * ( 48.9498 - 5.0000 )
= 39995.8828 psi

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 159
ASME TS Calc :
Case:
1 11:15p Sep 5,2012
Required Tubesheet Thickness, for Bending Stress [HreqB]:
= H + CATS + CATC = 48.9498 + 0.0000 + 0.0000 = 48.9498 mm
Required Tubesheet Thickness for Given Loadings (includes CA) [Hreq]:
= Max( HreqB, HreqS ) = Max( 48.9498 , 11.7262 ) = 48.9498 mm
UHX-12.5.9 Step 9:
|Ps - Pt| = |11.00 - 33.00 | = 22.000 bar
Shear Stress check [Tau_limit]:
= 3.2 * S * MU * h / Do
= 3.2 * 20000.00 * 0.200 * 74.000 / 470.40 = 138.83 bar
Average Shear Stress at the Outer Edge of Perforated Region [Tau]:
= 1/(4* Mu) * (Do/h) * |Ps - Pt|
= 1/(4*0.200)*(470.40/74.00)*|11.00-33.00|psi
= 2535.40 psi
Note: Analysis Completed for Tubesheet Configuration d.
Tube Weld Size Results per UW-20:
Warning: Seal weld cannot be checked per UW-20.
Stress/Force summary for loadcase 3 un-corr. (Ps + Pt):
-----------------------------------------------------------------------Stress Description
Actual
Allowable
Pass/Fail
-----------------------------------------------------------------------Tubesheet bend. stress
16422.1 <=
40000.0 psi
Ok
Tubesheet shear stress
2535.4 <=
16000.0 psi
Ok
-----------------------------------------------------------------------Thickness results for loadcase 3 un-corr. (Ps + Pt):
--------------------------------------------------------------------------Thickness (mm)
Required
Actual
P/F
--------------------------------------------------------------------------Tubesheet Thickness :
48.950
74.000
Ok
Tube-Tubesheet Fillet Weld Leg :
0.000
2.000
Ok
Tube-Tubesheet Groove Weld Leg :
0.000
2.000
Ok
---------------------------------------------------------------------------

U-Tube Tubesheet results per ASME UHX-12 2010, 2011a


Results for

6 Load Cases:

--Reqd. Thk. + CA
-------- Tubesheet Stresses
Case
Pass/
Case# Tbsht
Extnsn
Bend
Allwd
Shear Allwd
Type
Fail
--------------------------------------------------------------------------1uc 59.736
...
25405
40000
3922
16000
Fvs+Pt
Ok
2uc 37.502
...
8983
40000
1387
16000
Ps+Fvt
Ok

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 160
ASME TS Calc :
Case:
1 11:15p Sep 5,2012
3uc 48.950
...
16422
40000
2535
16000
Ps+Pt
Ok
1c
61.311
...
26321
40000
4100
16000
Fvs+Pt-Ca
Ok
2c
39.093
...
9307
40000
1450
16000
Ps+Fvt-Ca
Ok
3c
50.637
...
17014
40000
2650
16000
Ps+Pt-Ca
Ok
--------------------------------------------------------------------------Max: 61.3107
... mm
0.658
0.256 (Str. Ratio)
Load Case
Fvs,Fvt Ps, Pt Ca
-

Definitions:
User-defined Shell-side and Tube-side vacuum pressures or 0.0.
Shell-side and Tube-side Design Pressures.
With or Without Corrosion Allowance.

Summary of Thickness Comparisons for 6 Load Cases:


--------------------------------------------------------------------------Thickness (mm)
Required
Actual
P/F
--------------------------------------------------------------------------Tubesheet Thickness :
61.311
74.000
Ok
Tube Thickness :
0.520
2.110
Ok
Tube-Tubesheet Fillet Weld Leg :
0.000
2.000
Ok
Tube-Tubesheet Groove Weld Leg :
0.000
2.000
Ok
--------------------------------------------------------------------------Tubesheet MAWP used to Compute Hydrotest Pressure:
Stress / Force
| Tubeside (0 shellside) | Shellside (0
tubeside) |
Condition
|
MAWP
|Stress Rat.|
MAWP
|Stress
Rat.|
----------------------------------------------------------------------------Tubesheet Bending Stress
|
51.720 |
1.000 |
51.720 |
1.000 |
Tubesheet Shear Stress
|
132.829 |
1.000 |
132.829 |
1.000 |

Tube Pressure Stress


|
164.425 |
1.000 |
97.223 |
1.000 |
----------------------------------------------------------------------------Minimum MAWP
|
51.720 |
|
51.720 |
|
Tubesheet MAPnc used to Compute Hydrotest Pressure:
Stress / Force
| Tubeside (0 shellside) | Shellside (0
tubeside) |
Condition
|
MAPnc
|Stress Rat.|
MAPnc
|Stress
Rat.|
----------------------------------------------------------------------------Tubesheet Bending Stress
|
53.585 |
1.000 |
53.585 |
1.000 |
Tubesheet Shear Stress
|
138.833 |
1.000 |
138.833 |
1.000 |
Tube Pressure Stress
|
164.425 |
1.000 |
106.123 |
1.000 |
----------------------------------------------------------------------------Minimum MAPnc
|
53.585 |
|
53.585 |
|
PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.
2012

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 161
Vessel Design Summary :
Step:
28 11:15p Sep 5,2012
Design Code: ASME Code Section VIII Division 1, 2010, 2011a
Diameter Spec : 475.000 mm ID
Vessel Design Length, Tangent to Tangent
Specified Datum Line Distance
Shell Material Specification
Nozzle Material Specification
Re-Pad Material Specification
Shell Side Design Temperature
Channel Side Design Temperature

3790.00

mm

0.00

mm

SA-516 70
SA-106 B
SA-516 70
215
185

C
C

Shell Side Design Pressure


Channel Side Design Pressure

11.000
33.000

bar
bar

Shell Side Hydrostatic Test Pressure


Channel Side Hydrostatic Test Pressure

14.300
42.900

bar
bar

Required Minimum Design Metal Temperature


Warmest Computed Minimum Design Metal Temperature
Wind Design Code
Earthquake Design Code

0
-29

C
C
IS-875
IS-1893 SCM

Element Pressures and MAWP: bar


Element Desc

| Design Pres. | External | M.A.W.P | Corrosion


| + Stat. head | Pressure |
| Allowance
--------------------------------------------------------------------BONNET DISH
33.047
1.034
40.635
3.0000
BONNET SHELL
33.047
1.034
39.400
3.0000
BONNET FLANGE
33.047
1.034
34.636
3.0000
SHELL FLANGE
11.047
1.034
No Calc
3.0000
SHELL
11.047
1.034
39.400
3.0000
DISHED END
11.047
1.034
40.635
3.0000
Liquid Level: 475.00 mm

Dens.: 999.552 kgm/m

Sp. Gr.: 1.000

Element
"To" Elev Length
Element Thk
R e q d T h k
Joint Eff
Type
mm
mm
mm
Int.
Ext. Long Circ
----------------------------------------------------------------------Ellipse
40.0
40.0
12.0
8.7
4.5
1.00 1.00
Cylinder
670.0
630.0
10.0
8.8
4.9
1.00 1.00
Body Flg
670.0
90.0
80.0
67.2
62.0
1.00 1.00
Body Flg
834.0
90.0
80.0
65.7
65.7
1.00 1.00
Cylinder
3750.0
3006.0
10.0
4.9
6.5
1.00 1.00
Ellipse
3790.0
40.0
12.0
4.9
4.5
1.00 1.00

Element thicknesses are shown as Nominal if specified, otherwise are


Minimum
Saddle Parameters:

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD


FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 162
Vessel Design Summary :
Step:
28 11:15p Sep 5,2012
Saddle Width
Saddle Bearing Angle
Centerline Dimension
Wear Pad Width
Wear Pad Thickness
Wear Pad Bearing Angle
Distance from Saddle to Tangent

133.000
120.000
498.000
200.000
10.000
131.000
630.000

mm
deg.
mm
mm
mm
deg.
mm

Baseplate Length
Baseplate Thickness
Baseplate Width
Number of Ribs (including outside ribs)
Rib Thickness
Web Thickness
Height of Center Web

451.250
25.400
200.000
2
8.000
8.000
228.000

mm
mm
mm
mm
mm
mm

Summary
Maximum
Maximum
Maximum

of Maximum Saddle Loads, Operating Case :


Vertical Saddle Load
1746.04
Transverse Saddle Shear Load
139.03
Longitudinal Saddle Shear Load
364.06

kgf
kgf
kgf

Summary
Maximum
Maximum
Maximum

of Maximum Saddle Loads, Hydrotest Case :


Vertical Saddle Load
1542.86
Transverse Saddle Shear Load
45.88
Longitudinal Saddle Shear Load
13.12

kgf
kgf
kgf

Weights:
Fabricated
Shop Test
Shipping
Erected
Empty
Operating
Field Test

Bare W/O Removable Internals


Fabricated + Water ( Full )
Fab. + Rem. Intls.+ Shipping App.
Fab. + Rem. Intls.+ Insul. (etc)
Fab. + Intls. + Details + Wghts.
Empty + Operating Liquid (No CA)
Empty Weight + Water (Full)

1288.0
1939.7
1288.0
1288.0
1288.0
1860.9
1807.4

kg.
kg.
kg.
kg.
kg.
kg.
kg.

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc.


2012

Table of Contents
Cover Sheet
Title Page
Warnings and Errors :
Input Echo :
XY Coordinate Calculations :
Flg Calc [Int P] :
FLANGE
Flg Calc [Int P] :
FLANGE
Internal Pressure Calculations :
External Pressure Calculations :
Element and Detail Weights :
Nozzle Flange MAWP :
Wind Load Calculation :
Earthquake Load Calculation :
Center of Gravity Calculation :
Lifting Lug Calcs : Left Side
Lifting Lug Calcs : Right Side
Horizontal Vessel Analysis (Ope.) :
Horizontal Vessel Analysis (Test) :
Nozzle Calcs. : N1
Nozzle Calcs. : N2
Nozzle Calcs. : N8
Nozzle Calcs. : N3
Nozzle Calcs. : N6
Nozzle Calcs. : N9
Nozzle Calcs. : N7
Nozzle Calcs. : N5
Nozzle Calcs. : N4
Nozzle Schedule :
Nozzle Summary :
MDMT Summary :
Tubesheet,
Vessel Design Summary :

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

1
2
11
12
18
24
30
34
37
38
40
41
43
48
53
64
74
83
92
100
108
116
124
132
140
148
150
151
153
161

You might also like