Nothing Special   »   [go: up one dir, main page]

Afman11 251V1

Download as pdf or txt
Download as pdf or txt
You are on page 1of 182

BY ORDER OF THE AIR FORCE MANUAL 11-251, VOLUME 1

SECRETARY OF THE AIR FORCE Certified Current, 6 APRIL 2011


17 MARCH 2008
Incorporating Through Change 4,
21 MARCH 2011

Flying Operations

T-38C FLYING FUNDAMENTALS

COMPLIANCE WITH THIS PUBLICATION IS MANDATORY

ACCESSIBILITY: Publications and forms are available for downloading or ordering on the e-
Publishing website at www.e-Publishing.af.mil (will convert to
www.af.mil/e-publishing on AF Link).

RELEASABILITY: There are no releasability restrictions on this publication.

OPR: HQ AETC/A3FV Certified by: HQ USAF/A3O-A


(Col Gary L. Crowder)
Pages: 182

This manual implements AFPD 11-2, Aircraft Rules and Procedures, and AFI 11-2T-38, Volume
3, T-38 Operations Procedures. It provides a comprehensive document containing T-38
fundamental procedures and techniques that may be used to accomplish the various missions of
the T-38 in any major command (MAJCOM). This publication is the primary T-38 mission
employment reference document for Air Education and Training Command (AETC). Maneuvers
and procedures not described in this publication will not be accomplished without specific prior
approval from the AETC Director of Operations (HQ AETC/A3). With the exception of
associate instructor pilot programs, this publication does not apply to the Air Force Reserve
Command or the Air National Guard.This publication indicates items considered procedural
guidance for Specialized Undergraduate Pilot Training (SUPT), Euro-NATO Joint Jet Pilot
Training (ENJJPT), and Pilot Instructor Training (PIT) flying operations throughout by italicized
and bolded text. In all cases, compliance with these items is MANDATORY. HQ USAF/A3/5 is
approval authority for changes and revisions to this manual. The major command (MAJCOM)
A3 is waiver authority for this publication. Submit waiver requests through command channels
to the office of primary responsibility (OPR). Submit suggestions for improvement of this
publication to HQ AETC/ A3FV, 1 F Street, Suite 2, Randolph AFB TX 78150-4325, on AF
Form 847, Recommendation for Change of Publication, according to AFI 11-215, USAF Flight
Manuals Program (FMP).Units may supplement this manual with procedures and techniques for
their unique mission requirements. Unit supplements must be approved by the Numbered AF
commander and the MAJCOM A3 prior to publication. Ensure that all records created as a result
of processes prescribed in this publication are maintained in accordance with AFMAN 37-123
(will become AFMAN 33-363), Management of Records, and disposed of in accordance with the
2 AFMAN11-251V1 17 MARCH 2008

Air Force Records Disposition Schedule (RDS) located at


https://afrims.amc.af.mil/rds_series.cfm. See Attachment 1 for a glossary of references and
supporting information.

SUMMARY OF CHANGES

This change adds clarification to the execution of a 2-ship basic formation G-awareness exercise
(paragraph 6.10.1.1) and aligns Attachment 3 with paragraph 9.20. It also removes the
supersession line, which was incorrectly placed on publication. A margin bar (|) indicates
revision from the previous version.

Chapter 1MISSION PREPARATION 12


1.1. Objectives. ............................................................................................................. 12
1.2. Mission Briefing and Debriefing: .......................................................................... 12

Chapter 2GROUND OPERATIONS 14


2.1. Objectives. ............................................................................................................. 14
2.2. Checklist Discipline. .............................................................................................. 14
2.3. AFTO Form 781, ................................................................................................... 14
2.4. Ground Visual Signals. .......................................................................................... 14
2.5. Foreign Object Damage (FOD) Avoidance. .......................................................... 14
2.6. Taxi Operations: .................................................................................................... 14
2.7. Instrument Cockpit Checks. ................................................................................... 15
2.8. End of Runway (EOR): .......................................................................................... 17
2.9. Taking the Active Runway. ................................................................................... 18

Chapter 3TAKEOFF, CLIMB, AND LEVEL OFF 19


3.1. Introduction. ........................................................................................................... 19
3.2. Takeoff: .................................................................................................................. 19
Figure 3.1. Takeoff Attitude (Front Cockpit). .......................................................................... 20
3.3. Climb. .................................................................................................................... 20
3.4. Level off. ................................................................................................................ 21
3.5. Cruise. .................................................................................................................... 21
3.6. Abnormal Procedures: ........................................................................................... 21

Chapter 4TRAFFIC PATTERNS AND LANDINGS 23


4.1. Introduction. ........................................................................................................... 23
4.2. Judgment in the Traffic Pattern. ............................................................................. 23
AFMAN11-251V1 17 MARCH 2008 3

4.3. Wind Analysis. ....................................................................................................... 23


4.4. General Approach and Landing Information. ........................................................ 23
Figure 4.1. Final Approach. ..................................................................................................... 24
4.5. Normal Straight-In. ................................................................................................ 26
4.6. Normal Overhead (Full or 60 Percent Flaps): ........................................................ 26
Figure 4.2. No-Wind Runway Displacement (1,500 Feet AGL Traffic Pattern). .................... 27
Figure 4.3. Normal Final Turn. ................................................................................................ 28
4.7. Normal Final Approach and Landing. ................................................................... 29
Figure 4.4. Landing Picture (HUD On and HUD Off). ............................................................ 29
4.8. Full-Stop Landing and Aerobrake: ........................................................................ 30
4.9. Rollout and Wheel Braking: .................................................................................. 31
4.10. Touch-and-Go Landing: ......................................................................................... 31
4.11. Crosswind Landing: ............................................................................................... 31
4.12. No-Flap Patterns and Landings: ............................................................................. 32
Figure 4.5. No-Flap Runway Displacement (1,500 Feet AGL Traffic Pattern). ...................... 32
Figure 4.6. No-Flap Final Turn. ............................................................................................... 33
Figure 4.7. No-Flap Landing Picture (HUD On and HUD Off). ............................................. 34
4.13. Single-Engine Patterns and Landings: ................................................................... 34
4.14. Practice Single-Engine Go-Around: ...................................................................... 35
4.15. Low-Closed Traffic Pattern. .................................................................................. 35
4.16. Traffic Pattern Irregularities: ................................................................................. 35
4.17. Go-Around: ............................................................................................................ 38
4.18. Alternate Gear Extension. ...................................................................................... 39
4.19. Abnormal Procedures: ........................................................................................... 39

Chapter 5CONTACT 41

Section 5AGeneral Methods and Procedures 41


5.1. Introduction. ........................................................................................................... 41
5.2. Area Orientation. ................................................................................................... 41
5.3. Energy Management: ............................................................................................. 41
Figure 5.1. Energy Maneuverability Diagram. ......................................................................... 43
5.4. Flight Control Characteristics: ............................................................................... 43
5.5. Pilot-Induced Oscillation (PIO). ............................................................................ 43
5.6. G-Awareness Exercise: .......................................................................................... 44
4 AFMAN11-251V1 17 MARCH 2008

Section 5BAircraft Handling 44


5.7. Airframe Buffet Levels. ......................................................................................... 44
5.8. Aircraft Handling Characteristics (AHC). ............................................................. 44
5.9. Full Aft-Stick Stall: ................................................................................................ 44
5.10. Simulated Trim Failure: ......................................................................................... 45
5.11. Rudder Effectiveness at Slow Speed: .................................................................... 45
5.12. Aileron Effectiveness Exercise. ............................................................................. 46
5.13. Turn Reversals: ...................................................................................................... 46
5.14. Accelerated Stall: ................................................................................................... 47
5.15. Pitchback: ............................................................................................................... 47
5.16. Sliceback. ............................................................................................................... 47
5.17. Pitch-to-Slice Exercise. .......................................................................................... 47
5.18. Lift Vector Control Exercise. ................................................................................. 48
5.19. Turn Rate and Radius Exercise. ............................................................................. 48
5.20. Low-Speed Stability Exercise: ............................................................................... 48
5.21. Slow Flight. ............................................................................................................ 49
5.22. Slow Flight Recovery Demonstration: ................................................................... 49
5.23. Supersonic Flight: .................................................................................................. 49

Section 5CTraffic Pattern Stalls and Approach-to-Stall Training 49


5.24. Purpose: ................................................................................................................. 50
5.25. Turning Approach-to-Stall Exercise. ..................................................................... 50
5.26. Landing Attitude Approach-to-Stall Exercise. ....................................................... 50
5.27. Stall and Approach-to-Stall Recovery Completion. .............................................. 50

Section 5DAbnormal Flight Recoveries 50


5.28. Purpose. .................................................................................................................. 51
5.29. Abnormal Recovery Setup Guidelines: ................................................................. 51
5.30. Nose-High Recovery: ............................................................................................ 51
5.31. Nose-Low Recovery: ............................................................................................. 52

Section 5EAerobatic Maneuvers 52


5.32. Purpose. .................................................................................................................. 52
5.33. Aerodynamic Parameters. ...................................................................................... 52
Table 5.1. Summary of Entry Parameters for Aerobatics. ...................................................... 52
AFMAN11-251V1 17 MARCH 2008 5

5.34. Factors Affecting Aerobatic Maneuvers in the Vertical. ....................................... 53


5.35. Energy and Airspace Requirements: ...................................................................... 53
Table 5.2. Airspace Requirements. ......................................................................................... 53
5.36. Aileron Roll. .......................................................................................................... 54
5.37. Lazy Eight: ............................................................................................................. 54
5.38. Barrel Roll: ............................................................................................................ 55
5.39. Loop: ...................................................................................................................... 55
5.40. Split-S: ................................................................................................................... 56
5.41. Immelmann: ........................................................................................................... 56
5.42. Cuban Eight: .......................................................................................................... 56
Figure 5.2. Cuban Eight. .......................................................................................................... 57
5.43. Cloverleaf: ............................................................................................................. 57
5.44. Chandelle: .............................................................................................................. 58

Chapter 6FORMATION 59

Section 6AFormation Administration 59


6.1. Introduction. ........................................................................................................... 59
6.2. Responsibilities: ..................................................................................................... 59
6.3. Radio Discipline and Procedures. .......................................................................... 61
6.4. Visual Signals: ....................................................................................................... 62
6.5. Inflight Checks. ...................................................................................................... 62
6.6. Lead Changes. ........................................................................................................ 63
6.7. Ground Operations: ................................................................................................ 63
Figure 6.1. Two-Ship/Three-Ship Runway Lineup. ................................................................. 64
Figure 6.2. Four-Ship Runway Lineup. .................................................................................... 65
6.8. Takeoff as a Formation: ......................................................................................... 65
6.9. Instrument Trail Departure: ................................................................................... 67
6.10. Area, MOA, or Route: ........................................................................................... 67
6.11. Knock-It-Off (KIO) and Terminate Procedures. .................................................... 68
6.12. Recovery: ............................................................................................................... 68
Table 6.1. Spacing References in the Stack Level Position. ................................................... 69

Section 6BBasic Formation 71


6.13. Fingertip: ................................................................................................................ 71
6 AFMAN11-251V1 17 MARCH 2008

Figure 6.3. Two-Ship Fingertip. ............................................................................................... 71


6.14. Route Formation. ................................................................................................... 72
Figure 6.4. Route Formation. ................................................................................................... 72
6.15. Chase. ..................................................................................................................... 72
6.16. Echelon: ................................................................................................................. 73
Figure 6.5. Echelon Turn. ......................................................................................................... 73
6.17. Crossunder: ............................................................................................................ 73
Figure 6.6. Crossunder. ............................................................................................................ 74
6.18. Pitchout: ................................................................................................................. 74
6.19. Take Spacing: ........................................................................................................ 75
6.20. Practice Lost Wingman Exercise. .......................................................................... 75
6.21. Rejoins: .................................................................................................................. 75
Figure 6.7. Various Aspect Views. .......................................................................................... 78
6.22. Overshoots: ............................................................................................................ 78
6.23. Breakout: ................................................................................................................ 79
6.24. Close Trail: ............................................................................................................ 79
6.25. Fighting Wing. ....................................................................................................... 80
Figure 6.8. Fighting Wing Cone. .............................................................................................. 80
6.26. ET Exercise: ........................................................................................................... 80
Figure 6.9. 40-Degree AA Picture from Lead Aircraft Front Cockpit. .................................... 83

Section 6CTactical Formation 86


6.27. Types and Principles: ............................................................................................. 86
6.28. Line Abreast (LAB). .............................................................................................. 87
Figure 6.10. Tactical Line Abreast. ............................................................................................ 87
6.29. Tactical Turns: ....................................................................................................... 88
6.30. Delayed 90-Degree Turns (Figure 6. ..................................................................... 89
Figure 6.11. Delayed 90-Degree Turn. ....................................................................................... 90
6.31. Delayed 45-Degree Turns (Figure 6. ..................................................................... 90
Figure 6.12. Delayed 45-Degree Turn. ....................................................................................... 91
6.32. Other Tactical Turn Variations. ............................................................................. 91
Figure 6.13. In-Place 90-Degree Turn. ....................................................................................... 92
6.33. Shackle: .................................................................................................................. 92
Figure 6.14. Shackle. .................................................................................................................. 93
AFMAN11-251V1 17 MARCH 2008 7

6.34. Hook Turns. ........................................................................................................... 93


Figure 6.15. Hook Turn. ............................................................................................................. 93
6.35. Cross Turns: ........................................................................................................... 94
Figure 6.16. Cross Turn. ............................................................................................................. 94
Figure 6.17. Cross Turn with Shackle. ....................................................................................... 95
6.36. Fluid Turns. ............................................................................................................ 95
Figure 6.18. Fluid Turn. ............................................................................................................. 96
Figure 6.19. Fluid Turns Into and Away from the Wingman. .................................................... 97
6.37. High Altitude Tactical. .......................................................................................... 97
6.38. Wedge. ................................................................................................................... 98
Figure 6.20. Wedge Formation. ................................................................................................. 99
6.39. Tactical Rejoins: .................................................................................................... 99
6.40. Four-Ship Tactical. ................................................................................................ 100
6.41. Fluid Four. ............................................................................................................. 100
Figure 6.21. Fluid Four Formation. ............................................................................................ 101
Figure 6.22. Fluid Four Turns. ................................................................................................... 101
6.42. Four-Ship Wall Formation. .................................................................................... 102
Figure 6.23. Four-Ship Wall Formation. .................................................................................... 102
Figure 6.24. Four-Ship Wall Delayed Turn. .............................................................................. 103
Figure 6.25. Four-Ship Wall Hook Turn. ................................................................................... 104
6.43. Four-Ship Box or Offset Box Formations: ............................................................ 104
Figure 6.26. Box and Offset Box Formation. ............................................................................. 105
Figure 6.27. Offset Box Formation Delayed Turn. .................................................................... 106
Figure 6.28. Offset Box Formation Hook Turn. ......................................................................... 107
Figure 6.29. Offset Box In-Place Hook Turn. ............................................................................ 108
6.44. Three- and Four-Ship Tactical Rejoins. ................................................................. 108
6.45. Three-Ship Options. ............................................................................................... 109

Section 6DFluid Maneuvering (FM) 109


6.46. Objectives. ............................................................................................................. 109
6.47. Responsibilities: ..................................................................................................... 109
6.48. FM Exercise. .......................................................................................................... 109
6.49. Training Aircraft. ................................................................................................... 109
6.50. Maneuvering Aircraft. ........................................................................................... 110
8 AFMAN11-251V1 17 MARCH 2008

6.51. FM Exercise Levels. .............................................................................................. 110


Table 6.2. Fluid Maneuvering Exercise Levels (Training Aircraft). ...................................... 110
6.52. Special Instructions (SPINS), TRs, and ROE. ....................................................... 110
6.53. Starting Parameters. ............................................................................................... 111
6.54. Setup Comm. ......................................................................................................... 111
6.55. FM Exercise Setups. .............................................................................................. 111
6.56. Initial Moves: ......................................................................................................... 112
6.57. Lag Reposition. ...................................................................................................... 112
Figure 6.30. Lag Reposition. ...................................................................................................... 112
6.58. Lead Reposition. .................................................................................................... 113
Figure 6.31. Lead Reposition. .................................................................................................... 113
6.59. Quarter Plane. ........................................................................................................ 114
Figure 6.32. Quarter Plane. ........................................................................................................ 114
6.60. Transition to ET. .................................................................................................... 114
6.61. Resets. .................................................................................................................... 115

Section 6EHandling Abnormal Situations in Formation 115


6.62. Takeoff Aborts: ...................................................................................................... 115
6.63. Airborne Emergencies. .......................................................................................... 116

Chapter 7INSTRUMENTS 119


7.1. Introduction. ........................................................................................................... 119
7.2. Instrument Cross-Check. ........................................................................................ 119
7.3. Prior to Instrument Takeoff (ITO). ........................................................................ 119
7.4. Rear Cockpit Takeoffs with an Instrument Hood. ................................................. 119
7.5. ITO. ........................................................................................................................ 119
7.6. Instrument Departure. ............................................................................................ 120
7.7. Level Off. ............................................................................................................... 120
7.8. Arc and Radial Intercepts: ..................................................................................... 120
7.9. Basic Aircraft Control Maneuvers: ........................................................................ 120
7.10. Fix-to-Fix with EGI. .............................................................................................. 121
7.11. Fix-to-Fix without EGI. ......................................................................................... 121
7.12. Arrival Checks. ...................................................................................................... 122
Figure 7.1. WHOLDSA Memory Aid. ................................................................................. 122
7.13. Holding: ................................................................................................................. 122
AFMAN11-251V1 17 MARCH 2008 9

7.14. En Route Descents. ................................................................................................ 122


Table 7.1. Techniques for Various 300 KCAS En Route Descent Gradients. ........................ 123
7.15. VORTAC Penetration. ........................................................................................... 123
7.16. Precision Approaches: ........................................................................................... 124
7.17. Nonprecision Approaches: ..................................................................................... 125
7.18. Circling. ................................................................................................................. 127
7.19. Sidestep: ................................................................................................................. 128
7.20. Missed Approach: .................................................................................................. 128

Chapter 8NAVIGATION 129


8.1. Introduction. ........................................................................................................... 129
8.2. Preflight Planning. ................................................................................................. 129
8.3. Single-Engine Planning. ........................................................................................ 129
8.4. Planning an IFR Navigation Mission: .................................................................... 129
8.5. Planning a VFR Navigation Mission. .................................................................... 131
8.6. Preflight Ground Operations: ................................................................................. 132
8.7. Departure: .............................................................................................................. 133
8.8. En Route IFR and VFR: ......................................................................................... 133
8.9. VFR Lost Procedures. ............................................................................................ 136
8.10. IFR Arrival: ............................................................................................................ 136
8.11. VFR Arrival on an IFR Flight Plan. ....................................................................... 137
8.12. VFR Arrival at an Unfamiliar Field: ...................................................................... 137
8.13. Off-Station, Postflight Ground Operations: ........................................................... 137

Chapter 9LOW-LEVEL NAVIGATION 139

Section 9APurpose 139


9.1. Introduction. ........................................................................................................... 139

Section 9BMission Planning 139


9.2. Overview. ............................................................................................................... 139
9.3. Military Training Route (MTR) Selection: ............................................................ 139
9.4. Map Preparation. .................................................................................................... 140
9.5. Route Development. .............................................................................................. 140
9.6. Routing To and From the Low-Level Route. ......................................................... 142
9.7. Scheduling. ............................................................................................................ 142
10 AFMAN11-251V1 17 MARCH 2008

9.8. Filing. ..................................................................................................................... 143


9.9. Map Study: ............................................................................................................. 143

Section 9CBriefing 143


9.10. Overview. ............................................................................................................... 143
9.11. Route Briefing: ...................................................................................................... 143
9.12. Emergency or Contingency Briefing. .................................................................... 144

Section 9DFlying the Route 144


9.13. Departure and Route Entry: ................................................................................... 144
9.14. Route Basics: ......................................................................................................... 145
9.15. Altitude: ................................................................................................................. 146
9.16. Heading Control. .................................................................................................... 147
9.17. Timing: ................................................................................................................... 148
............................................................................................................................... 149
9.18. Turn Point Techniques: .......................................................................................... 150
Table 9.1. Time to Impact (OverbankFrom 500 Feet AGL). .............................................. 151
Table 9.2. Time to Impact (AttitudeFrom 500 Feet AGL). ................................................ 151
9.19. Approaching the IP or Target Area. ....................................................................... 151
9.20. Hands On Throttle and Stick (HOTAS) and Air-to-Air (A/A)/Air-to-Ground (A/G)
Master Modes. ....................................................................................................... 151
9.21. Route Exit: ............................................................................................................. 152
9.22. Abnormal Procedures: ........................................................................................... 152

Section 9ELow-Level Formations 153


9.23. Two-Ship, Low-Level Navigation. ........................................................................ 153
9.24. Preflight Planning. ................................................................................................. 153
9.25. Types of Low-Level Formations: .......................................................................... 153
9.26. Departure. .............................................................................................................. 154
9.27. Route Entry. ........................................................................................................... 154
9.28. Low-Level Contract and Priorities as Lead: ....................................................... 154
9.29. Low-Level Contract and Priorities for the Wingman: ........................................ 155
9.30. Low-Level Turns as Lead: ..................................................................................... 155
9.31. Low-Level Turns as the Wingman. ....................................................................... 156
9.32. Low-Level Position Changes. ................................................................................ 156
9.33. IP-to-Target Run. ................................................................................................... 156
AFMAN11-251V1 17 MARCH 2008 11

9.34. Target Egress. ........................................................................................................ 156


9.35. Lost-Sight Situations: ............................................................................................ 156
9.36. Radio Failure: ........................................................................................................ 157
9.37. IMC Route Abort: .................................................................................................. 158

Chapter 10NIGHT FLYING 159


10.1. Ground Operations: ................................................................................................ 159
10.2. Single-Ship Takeoff. .............................................................................................. 160
10.3. Use of Night Visual References: ............................................................................ 160
10.4. Depth Perception. ................................................................................................... 160
10.5. Night Optical Illusions. .......................................................................................... 160
10.6. Visual and Instrument Straight-In Approaches. ..................................................... 160
10.7. Overhead Patterns: ................................................................................................. 160
10.8. Night Formation: .................................................................................................... 161
10.9. Adopted Forms: ..................................................................................................... 162

Attachment 1GLOSSARY OF REFERENCES AND SUPPORTING INFORMATION 163

Attachment 2STADIAMETRIC RANGING 171

Attachment 3GUNS-TRACKING EXERCISE AND HEAT-TO-GUNS EXERCISE (80TH


OPERATIONS GROUP ONLY) 174
12 AFMAN11-251V1 17 MARCH 2008

Chapter 1

MISSION PREPARATION

1.1. Objectives. The objectives of every sortie in undergraduate flying training (UFT) are to
achieve proficiency in flying maneuvers, maximize situational awareness, increase
decisionmaking skills, and successfully apply task management skills. Preparation for any
training mission should be based on these objectives. The overall mission objective should give
the big picture of what needs to happen to accomplish a successful sortie. More specific
objectives should be used to determine success in relation to the syllabus, course training
standards, continuation training requirements, etc. A valid objective is realistic, achievable, and
measurable.
1.2. Mission Briefing and Debriefing:
1.2.1. General Rules of Engagement (ROE). During briefings and debriefings, the briefer
is in charge and should be the only one speaking until he or she asks for inputs. Any
questions or comments should be saved until requested by the briefer. Generally, no food or
drink is allowed during briefings without the approval of the briefer.
1.2.2. Briefing. The aircraft commander (AC) or flight lead must ensure the mission is
thoroughly briefed. As a minimum, use the briefing guides in appropriate AFI 11-series
publications, and include discussions on formal special interest items (SIIs). Other
members of the flight or formation should be prepared for the brief and assist the AC or
flight lead as directed. The brief should focus on successfully accomplishing all the
objectives.
1.2.2.1. Standard Mission Elements. Mission elements may be briefed as standard
provided they are published, and the proficiency level of all flight members would allow
them to be briefed as such.
1.2.2.2. Expectations. On student training sorties, the student is expected to obtain
relevant notices to airmen (NOTAMs), weather, airfield status, threat of the day,
emergency procedure of the day, etc., and have a lineup card prepared. On nonstudent
training sorties, the briefer will assign these responsibilities. Before the brief, all
crewmembers should ensure all go/no-go items are accomplished and life support
equipment is available and inspected for flight.
1.2.3. Debriefing. The main goal of the debrief is to determine if mission objectives were
achieved and to what level. Before the debrief, the student (or designated crew member)
should post the objectives and cue the tape to the G-exercise (or as directed by the debriefer).
If T-38 Mission Debrief System is used, it should be loaded and prepared as directed by the
debriefer.
1.2.3.1. The debriefer should curtail time spent on administrative items based on the
experience or proficiency level of the flight members, and avoid an item-by-item
description of every event that occurred. Instead, the debriefer should cover what went
right and what went wrong, with emphasis on the root cause of relevant errors and how to
improve on subsequent missions. The debriefer should relate everything back to the
mission objectives.
AFMAN11-251V1 17 MARCH 2008 13

1.2.3.2. For student sorties, the instructor pilot (IP) will identify areas of emphasis for the
next sortie, and provide focused instruction on them in this sorties debrief. The IP should
summarize at the end with emphasis on the major learning points and considerations for
future missions.
1.2.4. Formation Debrief. The flight lead should focus on formation-specific items, leaving
single-ship execution for individual aircraft debriefs. The amount of debrief allotted to the
entire flight is also affected by the skill level of the flight members, the presence of solos in
the flight, and the potential benefit to the entire flight of the items being discussed.
14 AFMAN11-251V1 17 MARCH 2008

Chapter 2

GROUND OPERATIONS

2.1. Objectives. The objectives of ground operations are to safely and correctly prepare the
aircraft for flight and return the aircraft to parking after flight.
2.2. Checklist Discipline. Ensure completion of all items in accordance with (IAW) the
applicable flight crew checklist. However, aircrew need not reference the checklist to complete
each individual item. You may accomplish a few items and then refer to the checklist to ensure
completion of all items. The pilot at the controls should initiate all checks and ensure the
asterisked items are accomplished. Challenge and response will be used to accomplish
asterisked items during student training.
2.3. AFTO Form 781, ARMS Aircrew/Mission Flight Data Document, Review and
Walkaround. Ensure the AFTO IMTs 781 are complete, correct, and the aircraft is airworthy.
Perform a walkaround IAW the flight crew checklist. If any doubt exists as to the condition,
setting, or operation of any system, consult a qualified maintenance representative.
2.4. Ground Visual Signals. Keep hands clear any time someone is under the aircraft. The
crew chief is your safety observer. Monitor the crew chiefs signals closely for safety actions. All
visual signals will be IAW AFI 11-218, Aircraft Operation and Movement on the Ground.
2.5. Foreign Object Damage (FOD) Avoidance. To reduce the risk of FOD during ground
operations, do not place objects on the cockpit glareshields during engine start or while the
engines are running unless the canopies are down and locked. In addition, do not allow
personnel to climb on the aircraft with either engine operating, and do not hand objects over the
cockpit side unless the engine on that side is shut down and has stopped rotating. Loose items in
the cockpit also pose a hazard to the multi-function display (MFD), up front control panel
(UFCP), and electronic engine display (EED) glass. Crews must exercise caution to ensure items,
especially the helmet and oxygen hose, do not strike these components.
2.6. Taxi Operations:
2.6.1. Clear in all directions before advancing the throttles. Keep the use of power to a
minimum. Normally, a power setting less than 80 percent revolutions per minute (rpm)
should be enough to taxi. Check the nosewheel steering and brakes as you taxi out of the
parking spot.
2.6.2. In congested areas, reduce throttles to idle while turning to avoid jet blast damage to
ground equipment, aircraft, and personnel. Check the flight instruments in the turn onto the
taxiway or ramp, not the marshaling turn out of the chocks. Aircrews should taxi at a
moderate speed, normally not greater than 25 knots groundspeed (GS) (available on the MFD
while taxiing). As a technique, taxi no faster than the reported runway condition reading
(RCR). Stagger only in authorized areas. Slow down and taxi on the centerline in congested
areas.
2.6.3. Use the brakes sparingly to prevent wear and overheating. When using the brakes,
ensure the throttles are in idle. Adjust taxi speeds during high or gusty wind conditions to
prevent exceeding the 50-knot canopy limit. When opening the canopy in high or gusty
winds, hold the canopy frame to prevent rapid fly-up.
AFMAN11-251V1 17 MARCH 2008 15

2.6.4. When taxiing closely behind aircraft with engines running, lower the canopies to
prevent exhaust windblast effects. Do not taxi within 10 feet of any obstacle. Do not taxi
within 25 feet of an obstacle without a wing walker. For additional procedural guidance,
refer to AFI 11-218, AFI 11-2T-38, Volume 3, and the flight manual.
2.7. Instrument Cockpit Checks. Before flight, accomplish a thorough instrument cockpit
check according to AFMAN 11-217, Volume 1, Instrument Flight Procedures. Checking the
following items will satisfy all requirements:
2.7.1. Navigation Publications. Ensure all publications required for your departure, en
route, destination, and alternate are current.
2.7.2. Pitot Heat. Check for proper operation, including the heating of the total air
temperature probe and angle of attack (AOA) transducer vane.
2.7.3. Clock. Check for the correct time of day (TOD) via Window 2 on the UFCP CLK
key display, the heads-up display (HUD) or the MFD. The global positioning system (GPS)
is the main source for the TOD. The TOD can be set by the pilot via the UFCP. However, the
manually entered time will only remain if the system is not receiving a GPS time input. Also,
check Window 1R on the UFCP CLK display for the desired function, TOD, or chronometer
(CRN), depending on mission requirements.
2.7.4. Vertical Velocity. On the MFD, the green arc around the altimeter display should not
be visible and the instantaneous vertical velocity (IVV) should indicate zero. On the F-16
HUD, the IVV graphical display, or on the military standard (MIL-STD) 1787B HUD, the
IVV digital display and IVV arc should indicate zero. The standby vertical velocity indicator
(VVI) should indicate zero.
2.7.5. Attitude System. Set the standby attitude indicator at 3 degrees nose-low. The
electronic attitude direction indicator (EADI) on the MFD should display the horizon line 3
degrees above the waterline when the aircraft is on level ground. If the climb/dive marker
(CDM) is selected via UR-4 on the UFCP navigational (NAV) submenu display, the horizon
line is displayed in the center of the EADI coincident with the waterline symbol when the
aircraft is on level ground. These settings will approximate the level-flight indication for
intermediate level offs and normal cruise conditions.
2.7.6. Magnetic Compass. Check the accuracy of heading information.
2.7.7. Heading System. Ensure the electronic horizontal situation indicator (EHSI) is
within 8 degrees of the magnetic compass and within 5 degrees of a known heading. Check
for correct indicator movement in turns.
2.7.8. Airspeed Indicators. Check for proper indications on the HUD, MFD, and standby
indicators.
2.7.9. Altimeters. Set the current altimeter setting in the UFCP ALT key display and the
standby altimeter. The maximum error of each altimeter at a known elevation point is 75
feet.
2.7.10. Embedded GPS/Inertial Navigation System (INS) (EGI) Area Navigation
(RNAV) Check. Prior to conducting RNAV operations, verify the currency of the
International Civil Aviation Organization (ICAO) database, the aircrafts present position
16 AFMAN11-251V1 17 MARCH 2008

(PP) during alignment, the GPS is providing civil (C) code data, select the correct EGI
solution, and verify the EGI accuracy.
2.7.10.1. ICAO Database Currency. Verify the currency of the ICAO database by
checking the expiration date of the ICAO data loaded in the MDP (located on the MFD
LOAD TO MDP display page) versus the current digital aeronautical flight information
file (DAFIF) cycle. An expired date requires the aircrew to load the current ICAO data
from the data transfer cartridge (DTC) to the MDP via ML-5 on the MFD LOAD OP2
display page. ICAO data can only be loaded with weight on wheels. Refer to AFI 11-202,
Volume 3, General Flight Rules, for procedures and restrictions when flying with an
expired database.
2.7.10.2. Present Position (PP). Verify the aircrafts PP during the EGI alignment by
verifying destination (DEST) 200 coordinates against the aircrafts known position. The
DEST 200 coordinates are available on the UFCP DST key display or the MFD EGI
display page. If the coordinates are incorrect, manually update the coordinates. If the PP
coordinates are changed in DEST 200 during the alignment process and prior to GPS
reception of satellites, the alignment process is automatically aborted and reinitiated.
Refer to T.O. 1T-38C-1, Flight Manual, USAF Series T-38C Aircraft (referred to as the
flight manual), for EGI alignment procedures.
2.7.10.3. GPS Code. Verify the GPS is providing C code data by checking Window 4L
on the UFCP EGI key display. If the EGI display does not indicate GPS code C (indicates
Y or MIX), RNAV is not authorized, and the pilot should make an AFTO Form 781,
ARMS Aircrew/Mission Flight Data Document, entry after the flight. AFMAN 11-217,
Volume 1, explains GPS signal characteristics and levels of service.
2.7.10.4. EGI Solution. RNAV operations may be conducted with the EGI operating in
either the blended GPS-INS solution, the GPS only solution, or the INS only solution.
The EGI solution is displayed and can be selected on the UFCP EGI key display via UL-
3/Window 3L or UR-2/Window 2R, and is also displayed after MODE on the MFD EGI
display page.
2.7.10.5. EGI Accuracy. RNAV operations may be conducted with the EGI operating
in the INS only solution provided a full gyrocompass alignment has been completed
IAW T.O. 1T-38C-1 and the predicted accuracy of the INS is 7 (greater than 500 up to
1,000 meters) or less. The INS only solution is displayed and can be selected on the
UFCP EGI key display via UL-2/Window 2L, and is also displayed after MODE on the
MFD EGI display page. When the EGI is switched to NAV mode and when assured the
GPS antenna is not obstructed (e.g., aircraft shelter), check the MFD EGI display page.
INS STAT should be NAV, INS ACCR should be 7 or less, GPS FOM should be 3 or
better, and GPS SAT should be 4. Refer to T.O. 1T-38C-1.
2.7.11. Flight Director System and Instrument Landing System (ILS) Check:
2.7.11.1. Tune and identify an appropriate ILS frequency.
2.7.11.2. Set the localizer final approach course via the UFCP SET key display or
the course rocker switch on the MFD. Ensure the selected course window reflects the
correct front course.
AFMAN11-251V1 17 MARCH 2008 17

2.7.11.3. Select ILS as the primary navigation source (PNS) via the MFD (MT-5) or
via the UFCP NAV source submenu display. The course deviation indicator (CDI) and
aircraft symbol should indicate the proper relative position to the localizer course in NAV
master mode. The glideslope raw data should indicate on the MFD vertical deviation
indicator. The flight director (FD) (at MT-1) defaults to selected (on). Pitch and bank
steering bars should be in view on the MFD and the HUD. Absence of a CDI, a vertical
deviation indicator, or pitch and bank steering indicates either a lack of data or a system
failure. Glideslope raw data and pitch steering may not be present until proximity to the
glideslope transmitter is resolved. Subsequent selection of MT-5 on the MFD allows
monitoring of localizer (LOC) mode.
2.7.12. Tactical Air Navigation (TACAN), Very-high Frequency Omnidirectional
Range (VOR), and Distance Measuring Equipment (DME) Checks: (Note: CDI
displays will be checked with either TACAN or VOR as the PNS.)
2.7.12.1. TACAN, VOR, and DME Channels. Tune and identify appropriate
TACAN, VOR, and DME channels. Verify the MFD NAV data block displays the
correct channels. The NAV data block will indicate the TACAN station identifier, if
available. With valid signals, check that the range data block contains valid data and the
primary flight reference provides a CDI for both TACAN and VOR as the PNS.
2.7.12.2. Bearing Pointers. Ensure the bearing pointers point toward the stations.
2.7.12.3. CDI Requirements. Center the CDI and check for proper CDI displacement.
With the CDI centered, change the selected course and verify the CDI displaces to the
correct side and the correct amount. One technique is to change the course by 5 degrees
and verify the CDI deflects one dot. If the FD is selected, it will also displace
appropriately.
2.7.12.4. TO-FROM Indicator. Check the TO-FROM indicator. Change the selected
course past 90 degrees from the centered CDI course and check that the TO-FROM
indicator switches sides.
2.7.12.5. NAVAID Ground Checkpoint Checks. At designated ground check points,
the allowable bearing pointer and CDI error is 4 degrees from the depicted course to the
station. The allowable DME error is nautical miles (nm) or 3 percent of the distance to
the facility, whichever is greater. (Note: When a designated ground checkpoint is not
available, the VOR and TACAN are both considered reliable for instrument flight if the
systems check within 4 degrees of each other against collocated VOR and TACAN
stations.)
2.7.13. Side Slip Symbol. Check to ensure that the side slip symbol (trapezoid shape
located below the bank arrow on the HUD and the MFD EADI) indicates properly in
turns. In the T-38C, there is no turn rate indicator (turn needle).
2.8. End of Runway (EOR):
2.8.1. Ensure all flight crew checklist items through Before Takeoff are completed.
2.8.2. Check the FCP speedbrake switch to ensure it is centered and up.
2.8.3. Review takeoff procedures as well as how you might handle serious emergency
procedures during and immediately after takeoff. Review your go/no-go criteria. A common
18 AFMAN11-251V1 17 MARCH 2008

technique is to set the go/no-go speed as the green speed and single-engine takeoff speed
(SETOS) as the yellow speed. Another common technique is to set Guard (243.00) in the
backup ultra high frequency (UHF) radio as the UHF backup frequency in case of MDP
failure during a time critical emergency.
2.8.4. When inspecting the flight control surfaces during the before-takeoff checks, there are
two separate tasks. The first task is to visually confirm free and proper movement of the
flight control surfaces. Apply smooth and controlled stick movements while confirming the
direction and deflection of each flight control surface. Failure to be smooth and controlled
could place undue strain on the aileron control mechanisms. The second task is to check for
rudder and aileron neutrality. With the stick and rudder pedals in the neutral position,
check that all surfaces are approximately flush with the surface of the wing and the
vertical stabilizer. It is crucial that this final surfaces check occurs as close as possible to
takeoff. The final check of aileron and rudder neutrality should occur no earlier than
arriving at the EOR/hold short area and no later than taking the active runway. Check
other aircraft for leaks, loose panels, proper configuration, streamers, FOD, etc. If able,
make sure their stabilator is properly trimmed for takeoff by inspecting the alignment
marks. Alert the aircrew if anything looks abnormal.
2.8.5. Ensure the videotape recorder (VTR) tape has been titled and that the appropriate
display is being recorded via the VTR key display IAW mission requirements. Title the VTR
to include call sign, tail number, name(s), date, and mission.
2.9. Taking the Active Runway.
2.9.1. Once cleared for takeoff, confirm the approach and departure ends of the runway are
clear of aircraft.
2.9.2. Ensure the canopy is down and locked prior to engine runup.
2.9.3. Note your takeoff time and taxi into a takeoff position that allows maximum use of the
runway. Release the nosewheel steering button during the last few degrees of turn onto the
runway, and momentarily displace the rudder pedals to ensure the nosewheel is disengaged.
To ensure the nosewheel is centered, allow the aircraft to roll forward once it is aligned with
the runway.
2.9.4. Confirm your heading system is within tolerances.
AFMAN11-251V1 17 MARCH 2008 19

Chapter 3

TAKEOFF, CLIMB, AND LEVEL OFF

3.1. Introduction. This phase of flight is very dynamic and can be as complicated as any other
part of the mission. Complex departure procedures may be required immediately after takeoff in
the low altitude environment, and communications can be very busy leaving the terminal area.
Emergency situations, when they occur in this phase of flight, require forethought, and quick
correct action. Solid preparation is essential to success.
3.2. Takeoff:
3.2.1. Description. Two takeoff options exist: static and rolling. The static takeoff is used
early in training because it provides more time to accomplish required checks and verify
proper engine operation. A static takeoff is also required at night, for solo students, and for
formation takeoffs. A rolling takeoff aids traffic flow in a busy pattern and is a smooth
transition from taxi to takeoff roll. Rolling takeoffs may increase takeoff distance 150 to 300
feet. Either option (static or rolling takeoff) can be accomplished as a single aircraft or within
a formation.
3.2.2. Static Takeoff. Remind the other crew member to guard the brakes. (When guarding
the brakes, do not exert pedal pressure but be in a position to immediately assume control.)
Exert as much pedal pressure as necessary to prevent creeping during the engine runup. Look
outside the aircraft and advance the engines to military (MIL) power. Your primary concern
is to ensure the aircraft is not creeping forward or pulling to one side. If the brakes fail to
hold at MIL power, reduce power and attempt to build sufficient hydraulic pressure by
pumping the brakes. If the second attempt to keep the aircraft from rolling fails, consider
aborting the aircraft. Once the lineup checks are complete, release the brakes, select
maximum power (MAX), confirm afterburner operation, and confirm exhaust gas
temperature (EGT) readings stabilize within limits.
3.2.3. Rolling Takeoff. Ensure all lineup checks prior to engine runup are complete, and
taxi onto the runway in a normal manner. After attaining proper runway alignment, check the
heading system, disengage the nosewheel steering, and advance the throttles to MAX.
Confirm proper engine operation during the takeoff roll.
3.2.4. Takeoff Roll:
3.2.4.1. Maintain directional control by tapping the brakes until the rudder becomes
effective. Once the rudder is effective, drop your heels to the floor. This will ensure you
do not inadvertently apply the brakes while using the rudder. Check the minimum
acceleration check speed (MACS) and remain aware of go/no-go speeds.
3.2.4.2. Depending on aircraft gross weight, pilots should normally initiate backstick
pressure at approximately 145 knots calibrated airspeed (KCAS), and set the boresight
cross (F-16 HUD) or waterline (MIL-STD HUD) at 7 degrees nose-high on the pitch
ladder (Figure 3.1). Nosewheel liftoff should occur at approximately 155 KCAS, and the
aircraft should fly off the runway at approximately 165 KCAS depending on aircraft
gross weight. When safely airborne with a positive climb, retract the gear.
20 AFMAN11-251V1 17 MARCH 2008

Figure 3.1. Takeoff Attitude (Front Cockpit).

3.2.4.3. Following gear retraction, ensure sufficient airspeed exists before retracting
wing flaps, then check gear and flap indications to verify they are up.
3.2.4.4. Whenever significant crosswinds are a factor, use aileron into the wind
throughout the takeoff roll to prevent an early liftoff of the upwind wing, and use rudder
to maintain runway alignment. As airspeed increases, crosswind control inputs must
decrease.
3.3. Climb. Climb IAW local procedures. If practical, use the restricted MIL power climb
schedule to maximize fuel economy.
3.3.1. Restricted MIL Power Climb:
3.3.1.1. Unless accomplishing a formation rejoin, begin a smooth power reduction out of
MAX power between 220 and 280 KCAS, and terminate afterburner by 300 KCAS.
Accelerate to, and hold, 300 KCAS (approximately 10 to 12 degrees nose-high) until
passing 10,000 feet mean sea level (MSL).
3.3.1.2. After passing 10,000 feet MSL, accelerate in a shallow climb (approximately
1,000 to 2,000 feet per minute [fpm]) until reaching cruise indicated mach number (IMN)
for the altitude assigned. If you reach 400 KCAS before the desired cruise IMN, climb at
400 KCAS until reaching cruise IMN. If assigned an intermediate level off, maintain the
cruise IMN for the altitude assigned (.5 mach + altitude [in thousands]/100) until
assigned a higher altitude. At that time, accelerate to the higher cruise IMN.
3.3.2. MAX Power Climb. In full afterburner, an attitude of approximately 20 to 25
degrees nose-high will hold 300 KCAS. Passing 10,000 feet MSL, lower the nose and
accelerate to and maintain .9 IMN.
3.3.3. Climb Check. You may combine the climb check with the level off check when
cruise altitude is at or below flight level (FL) 180. Applicable steps of the climb check can be
completed prior to 10,000 feet MSL; however, the cabin altitude scheduling should be
reconfirmed above 10,000 feet MSL.
AFMAN11-251V1 17 MARCH 2008 21

3.4. Level off. The level off should be a smooth, continuous pitch change to level flight. Avoid
abrupt pitch changes and stair stepping to the desired altitude. Normally, a smooth level off is
accomplished as follows: when IVV is less than 6,000 fpm, begin the level off at 10 percent of
the vertical velocity; when IVV is greater than 6,000 fpm, reduce power, lower the nose to cut
the picture in half about 1,000 feet prior in MIL power (or 2,000 feet prior in MAX power), and
then use 10 percent of the vertical velocity.
3.5. Cruise. Attain cruise airspeed, set power, and trim the aircraft for level flight. A technique
for attaining cruise speed at medium/low altitude is to set a fuel flow of approximately 1,200
pounds per hour (pph) per engine to maintain 300 KCAS. Another technique is to use the range
(RNG) profile in the emergency divert mode, and fly the commanded calibrated airspeed (CAS)
or IMN. When using this technique, pilots must be aware that the aircrafts range mode may
command a max range speed which places the aircraft close to the edge of the engine operating
envelope. This is more likely to occur at higher altitudes. In all cases when flying above 35,000
MSL, pilots should fly a minimum speed of 0.9 mach. You can also set the flight manual
recommended fuel flows for other altitude and airspeed combinations.
3.6. Abnormal Procedures:
3.6.1. Overview. It is not the intent of this paragraph to cover every situation a pilot may
encounter, to replace or supersede procedures in the flight manual, or to replace the use of
sound judgment. Unusual or complex circumstances will require pilot judgment and systems
knowledge to alleviate the situation. In an emergency, the supervisor of flying (SOF), tower
personnel, runway supervisory unit (RSU) personnel, and other controlling agencies can
assist the pilot. However, if anyone requests information at an inconvenient time, do not
allow radio communications or other tasks to distract you from the primary responsibility of
flying the aircraft. Take charge of the situation, and dont hesitate to direct controllers to
stand by until you are able to safely provide the requested information. When making radio
transmissions, be clear, concise, and emphasize exactly what assistance you need.
3.6.2. Takeoff Aborts. If there is reason to abort the takeoff, do not hesitate to do so. If the
pilot not flying sees something hazardous, he or she will inform the pilot that is flying. If the
AC is not flying during a time-critical situation that requires immediate action, and there is
no time to relay this to the pilot flying the aircraft, the AC should take control of the aircraft
and accomplish the appropriate procedures.
3.6.3. Wake Turbulence. Anticipate wake turbulence when taking off behind other aircraft
on the same or parallel runways, especially if the wind is calm or straight down the runway.
Wake turbulence is formed when an aircraft is creating lift, therefore plan to take off at a
point prior to the preceding aircrafts takeoff point or after their point of touchdown.
3.6.4. Barrier Operations. Procedures for barrier engagement are specified in the flight
manual. The MA-1, MA-1A, and BAK-15 (61QSII) are the only suitable barriers. If aborting
on a runway where the BAK-15 barrier is raised only on request, transmit BA RRIER,
BARRIER, BARRIER on the appropriate frequency.
3.6.5. Ejection. If abandoning the aircraft becomes necessary, the AC will use the
command B AILOUT, BAILOUT, BAILOUT as the final directive. If time and conditions
permit, discuss and accomplish ejection procedures with the other crewmember, using the
term ejection rather than bailout. Normally, the rear cockpit pilot will eject first. In
22 AFMAN11-251V1 17 MARCH 2008

critical situations, do not delay an ejection waiting for the BAILOUT command, and do not
delay an ejection once the command is given.
3.6.6. Single Engine Taxi. Do not taxi the T-38 single engine. You may, however, clear an
active runway if you have downside hydraulics or the landing gear is pinned.
3.6.7. Transfer of Aircraft Control without Intercom. In all cases, transfer of aircraft
control should follow procedures found in AFI 11-2T-38, Volume 3. Transfer of aircraft
control can result in disastrous crew confusion if not done in a positive, previously briefed
manner. When the AC assumes control, the other crewmember will immediately relinquish
all controls and momentarily show both hands to the AC (use the mirrors as necessary).
Normally, the AC will maintain control for the remainder of the flight; however, some
circumstances may necessitate a subsequent transfer of control. In these situations, the AC
will yaw the aircraft to signal the transfer of aircraft control back to the other crewmember.
The other crewmember will acknowledge by shaking the stick and looking for the AC to
show hands clear.
3.6.8. Transfer of Aircraft Control during Critical Phases of Flight. During critical
phases of flight, maintaining aircraft control often requires rapid intervention by the AC. The
possibility exists for both pilots to simultaneously be on the controls until the transfer of
aircraft control is complete. Pilots assuming aircraft control must be aware there are other
control inputs that can affect the aircrafts performance but are not readily apparent. For
example, a pilot assuming aircraft control to abort a takeoff may not be aware that the other
pilot has mistakenly depressed the nosewheel steering button. If there is an overlap in aircraft
control while the nosewheel steering button is depressed and the throttles are then retarded
out of afterburner, the aircraft could enter an unrecoverable skid.
AFMAN11-251V1 17 MARCH 2008 23

Chapter 4

TRAFFIC PATTERNS AND LANDINGS

4.1. Introduction. High volume traffic patterns require diligent visual lookout and a complete
knowledge of traffic pattern procedures. For all patterns, the runway is the primary reference.
The flight manual describes the basic procedures for flying the T-38 in the traffic pattern and
landing environment. From the flight manual procedures, a variety of techniques can be used to
safely and effectively land the aircraft. The remainder of this section outlines the techniques
most commonly used and taught in the UFT and pilot instructor training (PIT) environment.
4.2. Judgment in the Traffic Pattern. Your judgment in determining whether an approach is
safe must take into account airspeed; aircraft buffet; AOA indications; aural, HUD, and MFD
stall warnings; and sink rate. When used together, these indicators can warn you of an
approaching stall. Heavy buffet or a high AOA indication in the traffic pattern may indicate one
or more of the following conditions: an incorrect configuration, a miscalculated or poorly flown
airspeed, an incorrectly set airspeed marker, too much backstick pressure, or an AOA or airspeed
system malfunction. Low airspeed or high AOA may require a go-around. Also, erratic pitch
changes can cause momentary flashing of the indexer lights.
Note: More T-38 fatalities have occurred because of improperly flown final turns than for any
other reason. If stall indications or an excessive sink rate occur in the traffic pattern,
immediately execute a stall recovery. Do not attempt to maintain the traffic pattern
groundtrack because the altitude needed for recovery may significantly increase.

4.3. Wind Analysis. Adjust all traffic patterns to compensate for known wind conditions. Use
all available wind information to attain adequate downwind displacement during and after the
break or pulling closed. Accurate pattern winds can be obtained on the MFD, and surface winds
can be obtained from the controlling agency. Compensate for winds on inside downwind by
crabbing into the wind to maintain the desired groundtrack to the perch. With a strong headwind
on initial, you should delay the break and begin the final turn earlier than for no-wind conditions.
The opposite is true for significant tailwinds on initial. Move your perch point into the wind.
4.4. General Approach and Landing Information. The basics for landing the T-38 involve
flying down the glidepath at final approach speed to a desired aimpoint. As the aircraft
approaches the aimpoint, the pilot reduces power and transitions the aircraft to level flight, where
the aircraft is flared down to touchdown airspeed in ground effect (Figure 4.1).
24 AFMAN11-251V1 17 MARCH 2008

Figure 4.1. Final Approach.

4.4.1. Glidepath:
4.4.1.1. The desired glidepath is 3 degrees with an aimpoint at the threshold. A 3-degree
glidepath positions the aircraft 300 feet AGL at 1 nautical mile (nm) from the threshold.
4.4.1.2. The desired touchdown point may be altered in cases where prudence would
dictate a slightly longer aimpoint, such as in runways where there are hazards in the
overrun environment, no overrun, or raised lights at the threshold. Generally, an aimpoint
100 to 200 feet past the threshold (around the top of the numbers on an instrument
runway) is sufficient to provide a margin of safety and still ensure adequate runway
remaining for landing rollout.
4.4.2. Transition. The transition phase is where the pilot transitions from maintaining
glidepath, aimpoint, and airspeed to level flight in preparation for the flare. The transition
involves both a power reduction and a pitch change. Gross weight, airspeed, winds, height
above the runway, descent rate, and AOA affect the timing of the power reduction and the
rate of pitch change. As the aircraft completes the transition, it must be positioned at the
correct altitude, pitch, and airspeed to flare. A properly trimmed aircraft will require less
backstick forces on final, which will make the transition much easier.
4.4.2.1. One transition technique is to maintain final approach airspeed until
approximately half way through the overrun. At this point, the power should be reduced
throttle knob width and the aimpoint initially shifted to 100 to 200 feet beyond the
threshold. Power should be reduced to idle before crossing the threshold.
4.4.2.2. Another technique is to begin a smooth, gradual power reduction by latching
the throttles to the threshold so that power is pulled at the same rate the threshold is
approaching. Using this technique, the aimpoint is initially shifted the same as above.
4.4.2.3. For a landing 150 to 1,000 feet down the runway, the aircraft should cross the
runway threshold approximately 5 to 10 feet off the ground and 5 to 10 knots below final
approach speed. As the aircraft approaches the desired height above the runway, raise
your eyes to the other end of the runway and increase backstick pressure to smoothly
arrest the descent. The aimpoint will continue to shift down the runway. Shifting your
eyes helps pick up peripheral cues to judge and cancel out descent at the right height. It
will also help you maintain directional control, especially during crosswinds.
AFMAN11-251V1 17 MARCH 2008 25

4.4.2.4. If the glidepath is steeper than normal, a greater pitch change will be required to
arrest the descent. With a larger pitch change, the pilot must delay the power reduction
until a normal transition line is established.
4.4.2.5. If you are coming in from below a normal glidepath, power should be held until
a normal transition line is established (at which point the rules of thumb listed above
apply). If buffet is felt during the transition, delay the power reduction or consider adding
power as required to avoid stall indications.
4.4.2.6. Premature touchdowns can result from insufficient backstick pressure in the
transition, early or rapid power reduction causing a sink rate, or an incorrect perception of
aircraft height and descent rate. If an excessive sink develops, execute a stall recovery.
With a strong headwind or gusty crosswinds, use caution when reducing power to idle.
4.4.2.7. Long, fast touchdowns can result from a delayed or slow power reduction.
4.4.2.8. Sinking flares, firm touchdowns, or hard landings can result from excessive
height at the end of the transition. Excess height results when the transition is started too
high (shifting the aimpoint early); back pressure is applied too rapidly (shifting the
aimpoint too fast); airspeed is carried too long; or height is not judged correctly.
4.4.2.9. Pilots must be aware of hand placement on the control stick to prevent
inadvertent nosewheel steering actuation during approach and landing. Unintentional
nosewheel steering activation during a landing or touch-and-go may place the aircraft in
an unrecoverable skid.
4.4.3. Flare and Landing. The flare is where the aircraft remains in level flight and
dissipates kinetic energy to slow to touchdown speed. Since power is reduced to idle during
the transition, remaining in level flight involves a pitch change as the airspeed decreases.
Ideally, the aircraft reaches touchdown speed in the landing attitude as the main gear
smoothly touches the runway (fully flared) approximately 150 to 1,000 feet down the
runway. Landing deviations can result from conditions established in the transition or from
flare execution.
4.4.3.1. A low height at the end of the transition or insufficient back pressure to maintain
level flight during the flare causes premature (early or short) touchdowns.
4.4.3.2. Excessive back pressure during the flare, with sufficient airspeed, causes the
aircraft to balloon. If this happens, consider if a go-around is required. Otherwise,
momentarily relax back pressure, reestablish the correct height, and continue the flare to
landing.
4.4.4. Heavy Weight Landing. Although the speed reduction from final approach speed to
landing speed is the same for the lightweight and heavyweight landing (approximately 25
knots), the heavyweight aircraft will tend to bleed off airspeed faster when the pilot reduces
power. Therefore, the power reduction will need to be slower (or later) to prevent slow
airspeed, a sink rate from developing, or landing short. If the pilot is not certain that the sink
rate has been adequately reduced, the power reduction will have to be delayed, and a longer
and (or) faster touchdown will result. This may indicate that a go-around for stopping
distance is required.
26 AFMAN11-251V1 17 MARCH 2008

4.4.5. Approach Lighting Systems. Approach lighting systems, including visual approach
slope indicator (VASI) and precision approach path indicator (PAPI) systems, can help
establish a safe glidepath. For normal contact approaches where the aimpoint is the runway
threshold, these systems are good for reference 3 to 4 miles out, but will show below
glidepath indications inside approximately 1 mile.
4.4.5.1. Standard VASI and PAPI. The standard VASI and PAPI have a 2- to 3-
degree glideslope and a glidepath intercept point (aimpoint) approximately 750 feet
beyond the runway threshold. The glidepath is normally coincidental with the ILS or
precision approach radar (PAR) glideslope. When flying the standard VASI or PAPI
glidepath down to the flare, expect to land up to 2,000 feet down the runway. This is
normally not desired during a normal contact approach where you want to land 150 to
1,000 feet down the runway.
4.4.5.2. Other Approach Lighting Systems. Some Air Force bases use the Pulsating
Visual Approach Slope Indicator (PVASI) and most naval air stations use the Fresnel
Lens Optical Landing System (FLOLS). Refer to AFMAN 11-217, Volume 1, and Flight
Information Publications (FLIP) for complete guidance on these systems.
4.5. Normal Straight-In. Normally, slow to approximately 240 knots or less on base or
approximately 10 to 15 miles from touchdown on an extended straight-in. Local procedures or
traffic deconfliction may require adjustments. Avoid slowing to less than final turn airspeed for
the current flap setting until established on final. Prior to intercepting the glidepath, establish the
landing configuration and trim while allowing the airspeed to gradually decrease to the computed
final approach airspeed (approximately .6 AOA). Strive to be configured at final approach speed
upon intercepting the glidepath. From this point, follow procedures outlined in Normal Final
Approach/Landing this section.
4.6. Normal Overhead (Full or 60 Percent Flaps):
4.6.1. Normal Break. The end result of the break should be a properly spaced downwind
with an established drift correction while maintaining traffic pattern altitude. Unless the
controller directs otherwise, initiate the break between the approach end and 3,000 feet
down the runway. Do not go into the break until 45 degrees off from another aircraft to
ensure 3,000-foot spacing, and abeam another aircraft to ensure 6,000-foot spacing. Ideally,
adjust the breakpoint for winds, and vary the bank angle or back pressure during the break to
rollout on the desired groundtrack. Maintain level flight during the break. As a guide, the
pitot boom and flightpath marker will be on the horizon during the break turn. A MIL power
break turn with AOA and G to reduce airspeed will result in tighter displacement than a
reduced power break turn. One technique is to leave the throttles where they are on initial
and use AOA and G to reduce airspeed (no wind). Slow to below 240 knots indicated
airspeed (KIAS), but no less than final turn airspeed by rollout.
4.6.2. Normal Closed Pattern. With clearance for the closed pattern, begin the pull-up
with a minimum of 240 KCAS. Normally, power will be in MIL, although a closed pullup
from a go-around may require less power. Execute a climbing 180-degree turn, maintaining
a minimum of 200 KCAS until wings-level on downwind. Consider winds (overshooting or
undershooting), and establish the proper crab on rollout. Visually clear for traffic in the break
and for other aircraft on downwind.
AFMAN11-251V1 17 MARCH 2008 27

4.6.3. Normal Inside Downwind. Getting from the break or closed downwind to the perch
incorporates pitch, trim, and configuration changes. Check runway displacement when
rolling out on inside downwind and adjust spacing if needed. The normal no-wind spacing is
approximately 1 to 1.25 miles for a 1,500 feet AGL traffic pattern (Figure 4.2). As a guide,
crab into the wind with twice as much crab as you used on initial. One technique is to have
the runway heading set in the CDI course to provide quick heading reference since the
canopy rail slopes and can present an illusion. If the EOR can be selected as the steerpoint,
EGI can be used to check runway displacement when abeam the EOR. Compute and verify
final turn and final approach airspeeds, and strive to configure no later than abeam the
touchdown point. Monitor airspeed during flap extension to prevent flap overspeed when
lowering full flaps. Prior to beginning the final turn, ensure the landing gear is down and
locked and the flaps have traveled a sufficient amount to ensure no asymmetry exists
(approximately 60 percent). Maintain a minimum of final turn airspeed. Strive to arrive at
the perch at or slightly above final turn speed, on altitude, and with the proper spacing and
configuration.

Figure 4.2. No-Wind Runway Displacement (1,500 Feet AGL Traffic Pattern).

4.6.4. Final Turn. The goal of a final turn is to arrive over the desired rollout point, on the
extended runway centerline, with appropriate heading, altitude, and airspeed. Normally, the
rollout point is 300 to 375 feet AGL at 1 to 1.25 nm from the threshold. Begin the final turn
when abeam the no-wind rollout point, adjusted for winds. To adjust for winds, move the
perch point into the wind. Other reference techniques include: when aligned with the overrun
chevron closest to the runway or when reaching approximately a 45-degree angle from the
threshold (no wind). A preceding T-38 should be two-thirds of the way around the final turn
to ensure 3,000-foot landing spacing or abeam for 6,000-foot landing spacing.
4.6.4.1. Flying the Final Turn:
4.6.4.1.1. Confirm configuration and enter approximately a 45-degree banked turn
with a shallow rate of descent and blend in back pressure to establish an onspeed
28 AFMAN11-251V1 17 MARCH 2008

AOA. Adjust power, bank, back pressure, and trim to hold final turn airspeed and fly
over your rollout point, on altitude, and crabbed into the wind, if necessary. Maintain
approximately .6 AOA throughout the final turn and on final, and do not allow the
airspeed to decrease below final turn airspeed until initiating the rollout onto final.
4.6.4.1.2. A visual reference for pitch in the final turn is two-thirds ground and one-
third sky in the front windscreen with the angled portion of the glareshield roughly
parallel to the horizon. Also, the top corner of the HUD should be approximately on
the horizon (Figure 4.3). The flightpath marker (FPM) (or CDM) will be
approximately 6 to 9 degrees nose-low in the HUD. Whether using the HUD or visual
references, the runway remains the primary reference and must be cross-checked in
the attempt to intercept a 3-degree glidepath.
4.6.4.1.3. Sometime during the early part of the final turn, make a gear-down call.
The vertical velocity will eventually indicate approximately 2,000 fpm rate of descent
for a 1,500-foot AGL traffic pattern. Halfway around the final turn, check altitude;
you should lose about half the altitude between traffic pattern altitude and rollout
altitude with approximately half of your lateral downwind displacement remaining. If
it becomes obvious that the final turn is nearly complete and less bank will be
required to complete the turn, power may be reduced to begin slowing to final
approach speed corresponding to the amount of bank needed to complete the turn.

Figure 4.3. Normal Final Turn.

4.6.4.2. Rolling Out on Final. Rolling out on final, crab into the wind as necessary, and
raise the nose of the aircraft to capture the glidepath based on your desired aimpoint as
you slow down. Once established on final and on airspeed, the vertical velocity should be
approximately 700 to 900 fpm.
AFMAN11-251V1 17 MARCH 2008 29

4.7. Normal Final Approach and Landing. On final approach, the goal is to maintain the
desired glidepath, aimpoint, and final approach speed until transitioning to a flare and landing.
4.7.1. Glidepath. Use the runway and surrounding environment as the primary reference for
establishing a 3-degree glidepath. Once the proper aimpoint is set, the HUD pitch scale
should indicate 3 degrees nose-low with the FPM (or CDM) on the aimpoint. Trim off stick
pressures to aid in glidepath control. Corrections to glidepath are made by increasing or
decreasing the current pitch until the desired glidepath is regained. If you need to correct for
a steep glidepath, aim slightly shorter until re-intercepting a 3-degree glidepath. If you need
to correct for a shallow glidepath (being drug-in), aim slightly longer until re-intercepting a
3-degree glidepath. In either case, do not allow an excessive descent or sink rate to develop.
4.7.2. Aimpoint. For a normal final approach (gear and full flap and onspeed), the
aimpoint will be approximately in the middle of the front windscreen or the top of the HUD
combining glass (the lower piece of glass in the HUD). One technique is to note the FPM
position in the HUD; when the HUD is off, use this point. This will not be a fixed point in the
HUD, rather an approximation which varies based on winds, glidepath corrections, etc. The
point in the windscreen that appears stationary (it just grows bigger as you approach it) is
your true aimpoint. This aimpoint needs to be maintained (assuming on glidepath) until
reaching the transition point. When using the HUD, the FPM will help you visualize the
aimpoint (Figure 4.4).

Figure 4.4. Landing Picture (HUD On and HUD Off).


30 AFMAN11-251V1 17 MARCH 2008

4.7.3. Airspeed. Ideally, the aircraft should be flown at the computed final approach speed
and .6 AOA. With gusty winds, increase the final approach and landing speed by one-half
the gust factor IAW the flight manual. Approximately 90 percent rpm will maintain onspeed
indications on a normal glidepath with gear and full flaps. When making adjustments to
glidepath, a power adjustment may also be required. If there appears to be a calibration
discrepancy between the airspeed and AOA indications, take all factors (such as aircraft feel)
into account to determine the appropriate speed to fly. Flying a higher speed than required is
far safer than attempting to fly on speed with suspect indicators.
4.7.4. Landing on Alternate Sides of the Runway. When traffic permits, land in the center
of the runway. However, during a busy traffic pattern or when using reduced runway
separation, plan the final approach and landing using alternate sides of the runway, keeping
the aircraft toward the center. When landing on alternate sides of the runway, position the
runway centerline between the main landing gear and wingtip opposite the side of the runway
you are landing on. For example, on the right side of the runway land with the centerline
between left main landing gear and left wingtip. Dont allow the aircraft to drift across the
runway centerline. We refer to the two sides of the runway as hot side (the side of the runway
opposite the turnoff taxiways) and the cold side (the side of the runway adjacent to turnoff
taxiways).
4.8. Full-Stop Landing and Aerobrake:
4.8.1. Ensure the throttles are in idle. On a full-stop landing after touchdown, smoothly
increase back pressure to attain approximately a 10 to 12-degree pitch attitude for an
aerobrake. A technique is to place the boresight cross (F-16 HUD) or the waterline (MIL-
STD HUD) slightly above the 10-degree nose-high reference line. Just prior to the loss of
stabilator authority, lower the nosewheel to the runway. Aerobrake as appropriate for gross
weight (i.e., with 1,000 pounds of fuel remaining, the maximum attitude of 12 degrees can be
achieved at about 130 KCAS). Do not aerobrake abruptlya lightweight T-38 can leap
dangerously into the air with speeds at or above the computed landing speed.
4.8.2. Smoothly fly the nose to the runway approaching 100 KCAS. Heavyweight aircraft
stopping characteristics are different than lightweight characteristics. The aerobrake can
AFMAN11-251V1 17 MARCH 2008 31

begin at a faster calibrated airspeed, and the nose will settle to the runway sooner following
the aerobrake. Because the touchdown airspeed is higher, the stopping distance is longer and
the wheel brakes will initially feel less effective. After lowering the nosewheel to the runway,
keep the stick full aft to increase weight on the main gear and use cautious wheel braking to
prevent possible skidding.
4.9. Rollout and Wheel Braking:
4.9.1. During a landing roll, apply aileron into the wind, and maintain directional control
with the rudder. After lowering the nosewheel, check for brake system pressure by gently
pressing the brake pedals. To prevent possible directional control problems, make sure both
pedals are applied with equal pressure in one smooth brake application. Do not pump the
brakes unless a single application provides insufficient pressure.
4.9.2. Use steady braking to reduce to taxi speed. Keep the stick full aft throughout the
landing roll to maximize aerodynamic deceleration. Maintain directional control with the
rudder and differential braking until you reach taxi speed, then use nosewheel steering. When
routinely operating from very long runways, practice the braking technique required to stop
on shorter runways.
4.9.3. When landing in the center of the runway or on the hot side, plan to cross to the cold
side with speed under control and sufficient distance down the runway to prevent a conflict
with other traffic. If turning off the runway prior to the end, clear for aircraft behind you on
the runway before crossing to the cold side. Comply with local procedures.
4.10. Touch-and-Go Landing:
4.10.1. At touchdown, advance power to MIL (or MAX, if required) and smoothly lower the
nose to the takeoff attitude or slightly below. Do not release backstick pressure abruptly.
Attempt to keep the nosewheel from contacting the runway. Momentary contact is
acceptable. Check the engine instruments, and accelerate to takeoff airspeed.
4.10.2. When reaching takeoff speed (between approximately 10 knots below final approach
speed and final approach speed), establish the takeoff attitude, and allow the aircraft to fly off
the runway. Then follow initial takeoff procedures. High gross weights, high temperatures,
high-pressure altitudes, full flaps, etc., may adversely affect acceleration. Consider selecting
afterburner under these conditions. Another technique is to retract the flaps to 60 percent
until reaching 200 KCAS to avoid losing altitude as the flaps are retracted beyond 60 percent.
4.11. Crosswind Landing:
4.11.1. Final Approach. Counteract the drift by crabbing into the wind. Maintain the crab
until touchdown. The aircraft will reduce the crab angle when both main tires are on the
ground. When the crosswind component exceeds 15 knots, plan to touch down on the
upwind side of the runway.
4.11.2. Full-Stop Landing:
4.11.2.1. When the crosswind component exceeds 15 knots, maintain the landing
attitude and do not aerobrake. Maintaining the landing attitude requires additional
backstick pressure as airspeed decreases. Increasing backstick pressure too rapidly may
result in the aircraft becoming airborne or drifting across the runway.
32 AFMAN11-251V1 17 MARCH 2008

4.11.2.2. Tire damage is highly probable if you allow the aircraft to drift across the
runway by not applying aileron into the wind. Maintain directional control with the
rudder. Applying aileron into the wind will aid in directional control, help prevent
compression of the downwind strut, and prevent the upwind wing from becoming
airborne.
4.11.2.3. Just prior to the loss of stabilator authority, lower the nosewheel to the runway
and apply aileron into the wind. Do not lower the nose prematurely with a crosswind.
Insufficient crosswind controls may result in compression of the downwind strut and poor
directional control and, when combined with weathervaning, can result in damage to the
downwind tire.
4.11.2.4. Applying these techniques during crosswind landings may increase the landing
distance by approximately 50 percent. Expect to be farther down the runway when you
lower the nose, with less runway remaining to stop the aircraft.
4.12. No-Flap Patterns and Landings:
4.12.1. No-Flap Straight-In. Practice a no-flap straight-in to prepare for an actual
emergency that requires a no-flap landing. The basic procedures for flying the approach are
the same as the normal straight-in.
4.12.2. No-Flap Overhead. The reason we do no-flap overhead patterns is to maximize no-
flap landing training. For an actual emergency requiring a no-flap landing, a straight-in
approach should be flown. Due to the increased final turn airspeed and resulting increased
turn radius, the no-flap pattern requires a wider downwind displacement. The no-flap no-
wind spacing is approximately 1.5 miles for a 1,500 feet AGL traffic pattern (Figure 4.5).

Figure 4.5. No-Flap Runway Displacement (1,500 Feet AGL Traffic Pattern).

4.12.2.1. Flying the No-Flap Final Turn. The desired rollout point for a no-flap final
turn is the same as for a normal overhead. Realize youre wider on a no-flap; therefore, if
you use the same visual reference (in relation to the runway) to begin the turn as on a
AFMAN11-251V1 17 MARCH 2008 33

normal pattern, you will be too long at the perch. Confirm configuration and enter
approximately a 45-degree banked turn. Let the nose of the aircraft fall very slightly, and
smoothly add back pressure to establish an onspeed AOA. The visual reference for a no-
flap final turn is approximately half ground and half sky with the angled portion of the
glareshield roughly parallel to the horizon (Figure 4.6). The horizon should
approximately touch the top corner of the combining glass. The FPM or CDM will be
approximately 4 to 6 degrees nose-low in the HUD, however, the aircraft pitch attitude
will be higher than what you see during the normal final turn. Trim to reduce stick
pressure as pitch and airspeed are changed. Maintain approximately .6 AOA throughout
the final turn and on final, and do not allow the airspeed to decrease below final turn
airspeed until initiating the rollout onto final.

Figure 4.6. No-Flap Final Turn.

4.12.2.2. Rolling Out on a No-Flap Final Approach. As you rollout on final, reduce
power to attain final approach airspeed as soon as practical. Because of the reduced drag
with flaps up, you will need a larger power reduction to slow at the same rate as an
aircraft configured with full flaps. Without the flap/slab interconnect, more stick travel in
pitch is required to arrest the sink rate as the glidepath is captured.
4.12.3. No-Flap Final Approach and Landing:
4.12.3.1. For a no-wind, no-flap final, place the desired aimpoint about one-third of the
way up from the bottom of the front windscreen, or approximately the same height as the
top of the AOA indexer (Figure 4.7). Trim off backstick pressure, and monitor aimpoint,
airspeed, and glidepath. The transition and landing phases are the same as a normal
landing with the exception of pulling the power to idle. Because of the reduced drag
without flaps, power reduction normally needs to begin 300 to 500 feet sooner than on an
approach with full flaps. Exercise diligence when reducing power and transitioning to the
flare to avoid a sink. Without the flap/slab interconnect, more aft stick travel is required
to achieve the desired pitch change, arrest the sink, and flare.
4.12.3.2. Due to higher landing speed and less effective aerobraking on a no-flap
approach and landing, expect landing distances to be approximately twice the landing
distance of a normal landing at similar fuel weights. Reference the no-flap landing
checklist in an actual emergency.
34 AFMAN11-251V1 17 MARCH 2008

4.12.3.3. When the crosswind component exceeds 15 knots, apply the crosswind
landing procedures shown in paragraph 4. 11. The no-flap crosswind landing
distance will be longer than most runways.

Figure 4.7. No-Flap Landing Picture (HUD On and HUD Off).

4.13. Single-Engine Patterns and Landings:


4.13.1. Single-Engine Pattern. Fly single-engine patterns from a straight-in approach.
Set the simulated failed engine not less than 60 percent rpm during a simulated single-
engine approach. Power on the good engine will be approximately 98 percent on glidepath.
Use the rudder to counteract the yaw induced by asymmetrical thrust (step on the good
engine). Yaw will be greater during low-airspeed, maximum-thrust situations such as a
single-engine go-around.
4.13.2. Single-Engine Landing. The single-engine landing is similar to the normal landing
with the following exceptions: With 60 percent flaps selected, drag is not as great as with full
flaps, and power must be reduced slightly sooner than a full flap landing under the same
AFMAN11-251V1 17 MARCH 2008 35

conditions to touch down in the same location. However, use caution to prevent landing short
of your desired touchdown point. Ensure both throttles are checked in idle for touchdown.
When performing an actual or simulated single-engine full-stop landing with 60 percent
flaps, the landing roll will be approximately 500 feet longer. If heavy weight or if landing
distance is critical, consider using full flaps when landing is assured according to the flight
manual.
4.13.3. Touch-and-Go from a Single-Engine Landing. Use both engines for the takeoff
following a simulated single-engine touch-and-go landing.
4.13.4. Go-Around from a Single-Engine Approach. If a go-around is required for any
reason other than a planned single-engine go-around practice, use both engines. Refer to
paragraph 4.14 for single-engine go-around practice procedures.
4.13.5. Single-Engine Safety Considerations. Heavy fuel loads, high outside air
temperatures, high pressure altitudes, or a combination of these conditions makes single-
engine approaches more difficult. These conditions may also result in MIL power being
insufficient to maintain level flight while configured. If these conditions exist, consider
configuring the aircraft just prior to intercepting the glideslope. Use afterburner if needed to
maintain final approach speed on final.
4.14. Practice Single-Engine Go-Around:
4.14.1. The setup and planned execution should be prebriefed, and may be accomplished
from either a straight-in or overhead pattern. The aircraft should be stabilized on final at final
approach airspeed with the simulated inoperative engine set no less than 60 percent rpm.
4.14.2. If the single-engine go-around is practiced from an overhead pattern, fly the final
turn portion of the pattern with 60 percent flaps or full flaps, using both engines until rolling
out on final. Once on final, simulate the engine failure, and then apply the boldface to
initiate the go-around. Use coordinated rudder to offset the adverse yaw produced by one
engine in afterburner. Once the simulated single-engine go-around exercise is complete,
advance the simulated inoperative engine to MIL prior to coming out of afterburner on the
other engine. If an unsafe situation is developing, do not hesitate to abandon a simulated
single-engine go exercise and recover the aircraft using both engines.
4.15. Low-Closed Traffic Pattern. Use a low-closed traffic pattern to practice circling
approach procedures. The procedures for a low-closed pull-up are the same as for the normal
closed pull-up except you must adjust the pull-up to attain the published low-closed altitude and
the appropriate downwind displacement. Be aware of the reduced power and pitch requirements
since the downwind altitude is lower. From the downwind position, fly the practice circling
approach as described in Chapter 7.
4.16. Traffic Pattern Irregularities:
4.16.1. Excessive Sink Rates:
4.16.1.1. Excessive sink rates are insidious and potentially deadly in the traffic pattern. If
allowed to continue, recovery may not be possible due to engine response time, lack of
excess thrust, and (or) insufficient altitude.
4.16.1.2. Excessive sink rates are generally not accompanied by approach to stall
indications. Vertical velocity is the primary indication of excessive sink rate.
36 AFMAN11-251V1 17 MARCH 2008

4.16.1.3. In the final turn from a standard 1,500-foot overhead pattern, a vertical velocity
in excess of 4,000 fpm is normally an indication of an excessive sink rate condition. On
short final approach, a vertical velocity of 2,000 fpm is usually too much. In most
mishaps the sink rates developed first, and were followed by a stall during the recovery.
Ground rush will occur at 300 to 500 feet AGL, independent of vertical velocity. Note:
Any time you encounter an excessive sink rate in the traffic pattern, immediately
execute a stall recovery. Proper stall/sink rate recovery procedures take priority over
maintaining the published groundtrack.
4.16.2. Stall Indications in the Traffic Pattern:
4.16.2.1. An actual stalled condition is immediately preceded by heavy, low-frequency
buffet, and in most cases, moderate wing rock. The actual stall is indicated by a
combination of a very high sink rate, heavy buffet, and high AOA (above 1.0). Training
and recovery techniques must concentrate on approach-to-stall characteristics to prevent
an actual stall.
4.16.2.2. The definite increase in buffet intensity will normally occur close to 0.8 AOA,
indicating the approach to stall. Individual aircraft performance may differ. The sequence
of flight characteristics up to and beyond the approach-to-stall indication include:
4.16.2.2.1. Gradual buffet progression.
4.16.2.2.2. Normal gear and flap vibration.
4.16.2.2.3. Definite increase in buffet intensity.
4.16.2.2.4. A 0.8 AOA.
4.16.2.2.5. The aural, HUD, and MFD stall warnings (a boxed, blinking, STALL
warning displayed on the HUD and MFD, and a stall warning tone, when the landing
gear is extended and the AOA is at or above 0.80).
4.16.2.2.6. Low-frequency, high-intensity airframe buffet.
4.16.2.2.7. Glareshield shaking, erratic buffet (no set frequency).
4.16.2.2.8. Wingtips stall first and may cause a wing to drop.
4.16.2.2.9. Light wing rock due to alternately stalling wingtips.
4.16.3. Recovery Procedures for Stall, Approach-to-Stall, or Excessive Sink Rate:
4.16.3.1. In the traffic pattern, execute the stall/sink recovery any time you
encounter a definite increase in buffet intensity, aural, HUD, and MFD stall
warnings, or excessive sink rate. Simultaneously advance both throttles to MAX,
relax backstick pressure, and roll the wings level. Rudder can be an effective way to
initiate the roll to wings level; however, use caution to avoid overcontrolling. After the
wings are level, maintain an AOA just below the definite increase in buffet intensity and
achieve a positive nose track until establishing a climb. Note: Maintaining an AOA just
below the definite increase in buffet intensity may activate the aural, HUD, and MFD
stall warnings.
4.16.3.2. Once a safe climb has been established and obstacle clearance is assured, relax
backstick pressure to allow the aircraft to accelerate. Avoid heavy buffet or secondary
AFMAN11-251V1 17 MARCH 2008 37

stall during the recovery. Since decreasing bank significantly reduces the stall speed, do
not delay raising the nose after the wings are level. Airspeed can also be used as an
indication of maximizing performance. In general, excess thrust during recovery should
be used for establishing a climb versus increasing airspeed. Therefore, airspeed should
not increase during the recovery, but rather remain constant.
4.16.4. Avoiding Stall/Sink Rate Situations. Avoiding situations that can lead to a
stall/sink rate is the best way to prevent one. Four pilot-controlled variables determine
controlled patternsattitude, airspeed, configuration, and power. When one or more of these
variables is flown incorrectly, pilots tend to allow a sink rate to develop in order to hold the
other variables in the optimum range. For example, a pattern can appear normal in every
respect as long as the pilot allows a sink rate to compensate for an improperly set bug speed.
Any combination of situations can rapidly deteriorate into a stalled or sink-rate condition
without exaggerating any single condition. Some of these situations include the following:
4.16.4.1. Beginning the final turn with an improper configuration.
4.16.4.2. Beginning the final turn with less than the computed final turn airspeed.
4.16.4.3. Beginning the final turn with inadequate downwind displacement.
4.16.4.4. Beginning the final turn with an excessively nose-low attitude.
4.16.4.5. Flying a stabilized final turn with more than 0.6 AOA or 45 degrees of bank.
4.16.4.6. Using low power settings.
4.16.4.7. Making abrupt control movements.
4.16.4.8. Overbanking to correct an overshooting final turn
4.16.5. Rudder Overcontrol. When configured, the T-38's 30 degrees of available rudder is
highly effective in rolling the aircraft. Although the rudder is not needed to coordinate flight,
it may be useful during high AOA turns. However, to prevent overcontrolling, use only small
rudder inputs in the traffic pattern. When using the rudder for turns, neutralize it quickly to
prevent an overcontrol situation. Do not attempt to correct drift by simply yawing the
aircraft. Instead, bank the aircraft and turn to a new heading. If a large heading change is
needed to correct drift or centerline displacement in the flare, execute a go-around. In all
cases, exercise caution to avoid overcontrolling with the rudder.
4.16.6. Balloons, Bounces, and High Flares:
4.16.6.1. Balloons, bounces, and high flares are the result of abrupt control inputs in the
transition and flare or a misjudgment of the height above runway. They can all result in
the same dangerous situationan aircraft above the runway with insufficient airspeed for
a controlled descent.
4.16.6.2. In mild cases, they may only result in a firm landing. In extreme cases, they can
result in a wing rock, wingtip contact with the runway, or departure from the prepared
surface.
4.16.6.3. For minor deviations, reestablish the landing attitude and continue with a flare
and touchdown. For larger or more pronounced deviations, immediately perform a go-
around. Simultaneously select MIL or MAX power and establish a safe pitch attitude.
38 AFMAN11-251V1 17 MARCH 2008

You may need to fly the aircraft back to the runway or accept a hard landing and (or)
bounce while waiting for acceleration. In all cases, use extreme caution to avoid
approach-to-stall indications or wing rock. Recovery should appear much like a landing
attitude stall recovery with most of your concentration focused on keeping the wings
level and flightpath down the runway.
4.16.7. Porpoise. A porpoise is a series of bounces between the main gear and the nose
gearthe result of improper control inputs during the touchdown. If a porpoise action
begins, do not attempt to counter it with fore and aft stick movements. Due to the
aerodynamic forces acting on the aircraft and a possible delay in stick movements caused by
reaction time, your inputs may aggravate the problem. The best remedy for a porpoise is to
freeze the control stick slightly aft of neutral and execute a go-around with MAX power.
4.16.8. Overrotation. An abrupt or excessive application of backstick pressure during a
takeoff usually causes overrotation. However, during a touch-and-go landing, maintaining
the landing attitude while increasing the power may also cause overrotation. Overrotation can
lead to a premature liftoff at a potentially dangerous airspeed. To correct this situation,
establish the normal takeoff attitude, select MAX if necessary, and allow the aircraft to
accelerate. It may be necessary to allow the aircraft to settle back to the runway to accelerate
in a three-point attitude to attain safe flying airspeed and avoid approach to stall indications.
4.17. Go-Around:
4.17.1. Go-Around from the Final or Landing Phase. Advance power to MIL (MAX, if
required), accelerate to a minimum of final approach airspeed, and retract the landing gear
only after ensuring touchdown will not occur. Ensure sufficient airspeed exists before
retracting the flaps. Climb, following local procedures for groundtrack and altitudes. Use
caution not to overspeed the gear, gear doors, or flaps. If the runway is clear, you do not have
to offset to the side of the runway.
4.17.2. Go-Around from the Final Turn:
4.17.2.1. On a go-around from the final turn, the potential for gear or flap overspeed is
high. Therefore, cross-check your flight parameters during the go-around. MIL is not
always required in these situations. To execute a go-around from the final turn, maintain
a minimum of final turn airspeed, climb or descend as required, and retract the gear and
flaps only after attaining a safe flying airspeed. If the runway is clear, you do not have to
offset to the side of the runway. Maintain 240 to 300 KCAS on the go-around.
4.17.2.2. With the aircraft under control and if time permits, notify the RSU or tower
when initiating a go-around. Never break out from the final turn; execute a go-around
instead. Consider lowering flaps to 60 percent when going around from an overshooting,
no-flap final turn. If a dangerous situation develops, do not attempt to conform to the
prescribed traffic pattern groundtrack. Your first priority is to maintain aircraft control.
4.17.3. Touching Down During a Go-Around. If an airborne go-around is impossible,
continue to fly the aircraft to touchdown. Do not attempt to hold the aircraft off the runway in
a nose-high attitude. Instead, maintain the landing attitude and accept a touchdown. Then
perform a takeoff in the same manner as the takeoff phase of a touch-and-go landing, using
MAX power if necessary.
AFMAN11-251V1 17 MARCH 2008 39

4.18. Alternate Gear Extension. Allow extra time for the gear extension when using the
alternate system. After practicing an alternate gear extension, ensure the alternate release
handle is fully stowed. Then reset the landing gear system. Accomplish this by moving the
landing gear handle down, then up, and then back to the down position. When accomplishing
an alternate extension, lower the flaps, as required, before lowering the gear IAW the flight
manual.
4.19. Abnormal Procedures:
4.19.1. Alternate Gear Extension. Under conditions requiring alternate gear extension, the
front cockpit pilot must be prepared to lower the landing gear with the alternate gear release
handle. Without intercom, the rear seat occupant may signal the need to use the alternate gear
release system by lowering the landing gear handle.
4.19.2. Airspeed Indicator Malfunction. With a known or suspected airspeed indicator
malfunction, ensure the pitot heat is on, and establish a known power setting or fuel flow for
the desired cruise airspeed, and refer to your checklist. If possible, use a chase aircraft for
recovery. If one is not available, use known power settings and (or) fuel flows in
combination with the AOA system to approximate desired airspeeds. (A 0.3 AOA equals 230
+ gas; a 0.5 AOA usually indicates a safe gear-lowering speed.) You can use the AOA
system to safely recover the aircraft because it is independent of the pitot static system.
Ground speed should still be displayed on the MFD and can be used to approximate airspeed.
4.19.3. Bird Strike. A bird strike poses a hazard to low-altitude operations, particularly in
the traffic pattern and on low-level navigation routes. The two most serious forms of damage
from bird strikes are engine failure and cockpit penetration. In the traffic pattern,
consideration must be given not to make an aggressive bird avoidance maneuver that may
lead to a more severe stall or ground impact situation. Due to the critical nature of cockpit
penetration, thoroughly brief procedures for transfer of aircraft control and reestablishment of
intercockpit communications.
4.19.4. Go/No-Go Decisions from a Touch-and-Go Landing. Although TOLD for touch-
and-go landings is impractical, the following rules of thumb are useful:
4.19.4.1. Normally, at or near the point of touchdown, both an abort and a takeoff are
safe options, even with a single-engine failure. The abort is possible because the aircraft
is lighter than on initial takeoff. Barring a catastrophic, compound problem, the takeoff is
equally safe. At touchdown, the aircraft is no more than 25 knots below final approach
speed with most of the runway remaining. In most cases, either option will work,
provided you stick to your original decision and correctly apply the procedures.
4.19.4.2. For a no-flap touch-and-go, an abort requires further consideration. By
regulation, the landing fuel weight will be below 2,500 pounds. According to the flight
manual, the stopping distance for a no-flap landing is approximately 2 x (2,500 + fuel
weight). For fuel weights closer to 2,500 pounds, the stopping distance from the actual
touchdown point could exceed actual runway available. A takeoff decision in this
scenario should be the safer option.
4.19.4.3. The go/no-go decision is largely a matter of pilot preference, but the most
common technique is to consider the throttle position. That is, if the throttles are in idle
when the problem occurs, leave them there because you are psychologically prepared to
40 AFMAN11-251V1 17 MARCH 2008

land. However, if you have advanced the throttles or they have stabilized in MIL power,
consider continuing the takeoff. In either case, apply the appropriate boldface for the
selected decision.
4.19.4.4. As with other emergency situations, you should weigh all factors, including the
runway remaining, runway condition, configuration, aircraft weight, weather, barrier
type, and obstacles on departure. In any case, two fundamental questions will serve you
well: (1) Is a safe abort possible? and (2) Is a safe takeoff possible? Take the time to
answer these questions on the groundbefore you fly. This discussion highlights why we
emphasize landing on speed in the desired landing zoneto provide maximum runway
remaining to stop (or go) during an emergency.
4.19.5. After-Landing Procedures with an Emergency. If you need assistance from fire
department or maintenance personnel following an emergency landing, hold the brakes and
raise both hands. This signals to the ground crew that they are clear to inspect the aircraft. Do
not actuate switches without visual coordination with the ground crew.
AFMAN11-251V1 17 MARCH 2008 41

Chapter 5

CONTACT

Section 5AGeneral Methods and Procedures

5.1. Introduction. Contact flying in the T-38 incorporates areas of training in which pilots
learn and practice the basics, including takeoffs, landings, and a wide variety of area work.
Contact training is flown single ship, with an emphasis on using primarily outside, visual
referencesthe horizon, ground, runway, etc. The basic objective of contact flying in the T-38 is
to build a solid feel for the aircrafts performance capabilities through a large portion of its flight
envelope, including stalls, aerobatics, advanced handling characteristics, and normal and
emergency traffic patterns.
5.2. Area Orientation. Maintain area orientation using all available means (ground references,
NAVAIDs, or horizontal situation display [HSD]). Ground references should be the primary
reference, when available. There are three methods of using the aircraft instrumentsHSD,
center radial, and pie-in-the-sky as follows:
5.2.1. HSD Method. The HSD can depict flying zones based on the data transfer system
(DTS) load. With the correct area boundaries depicted on the HSD, turn as required to
maintain the aircraft symbol within the confines of the depicted flying training zone
boundaries. Select an HSD range which allows sufficient detail to determine proximity to
borders and turn direction. Normally, 15 or 30 nm ranges will be sufficient. Momentarily
increasing the display scale can prevent confusion when trying to discern between training
zone boundaries.
5.2.2. Center Radial. The center radial technique is best used in narrow areas (20 radials
wide or less). Dial the center radial into the course select window (CSW). The center of the
area is always towards the CDI.
5.2.3. Pie-in-the-Sky. The pie-in-the-sky technique is best used in wide areas (20 radials
wide or more). Set one course boundary bearing (not radial) in the CSW, and mark the other
course boundary bearing with the heading marker. Keep the head of the bearing pointer
which always fallsbetween the head of the course arrow and the heading marker.
5.3. Energy Management:
5.3.1. General. Energy management requires maintaining effective combinations of
altitude, airspeed, power settings, and AOA or G loading. Airspeed provides the kinetic
energy required to maneuver the aircraft. Altitude provides potential energy that may be
exchanged for airspeed. Power settings, AOA or G loading, and plane of motion (POM)
control can be used to gain or lose energy.
5.3.2. Exchanging Altitude and Airspeed. Altitude and airspeed can be traded at a given
rate. The most common rule of thumb is 1,000 feet of altitude is worth about 50 knots of
airspeed. You can exchange altitude and airspeed in these proportions by using MIL power
with the canopy bow on the horizon or 80 to 85 percent rpm at 20 degrees nose-high.
5.3.3. Optimum Energy Level. To do aerobatic maneuvering in a standard UFT or PIT
military operations area (MOA), the optimum energy level allowing you to do nearly all
42 AFMAN11-251V1 17 MARCH 2008

maneuvers is 300 KCAS at an altitude midway between the top and the bottom of the MOA.
Minimum and equivalent energy levels (the altitude-airspeed relationship) may be calculated
using the 50 knots at 1,000 feet exchange rate rule shown earlier in paragraph 5.3.2. For
example, 16,000 feet MSL at 300 KCAS is approximately the same energy level as 14,000
feet MSL at 400 KCAS.
5.3.4. Losing Energy. Losing energy is easy through the use of low power settings,
increased drag due to configuration or speed brakes, and (or) increased AOA/G loading. A
simple way to lose energy is to perform a constant speed descent until the desired energy
level is reached.
5.3.5. Gaining Energy. The best way to gain a large amount of energy is a wings-level
climb at or near the tech order climb schedule. Gaining energy is enhanced with light AOA
or G loading and maximization of excess thrust with the aircraft lift vector pointed vertically
up. MAX power could be used (within engine envelope restrictions) but is rarely the most
fuel-efficient way to gain energy. Many pilots will use MIL power for most energy-gaining
maneuvers. Do not hesitate to use MAX power for small, quick changes in airspeed or when
the aircraft is already at a high CAS.
5.3.6. Maneuverability Diagrams:
5.3.6.1. An energy maneuverability diagram (Figure 5.1) plots airspeed or mach against
turn rate with lines of constant G-load, turn radius, and specific excess power (PS or P-
sub-S). PS contours represent the performance capabilities of an aircraft for a given set
of flight conditions, including altitude, configuration, weight, and power setting.
5.3.6.2. The lines on the diagram represent the aircraft's ability to change altitude,
airspeed, and direction of flight by considering lift, aerodynamic drag, structural limits,
thrust, weight, and velocity.
AFMAN11-251V1 17 MARCH 2008 43

Figure 5.1. Energy Maneuverability Diagram.

5.4. Flight Control Characteristics:


5.4.1. Rudder. Effective use of the rudder is important throughout the T-38 flight regime
and should not be ignored. Generally, the rudder is more effective at high AOA and less
effective at low AOA.
5.4.2. Ailerons. Ailerons are most effective at low AOA and become less effective as AOA
increases. Be cautious of aileron sensitivity and rapid aircraft roll rates, especially at low
AOA. At high speeds and low AOA, large stick deflections may exceed aircraft limits.
5.4.3. Speed Brake. The speed brake has minimal effect below 250 KCAS. Little or no
pitch change occurs when activating the speed brake below 250 KCAS. At airspeeds above
250 KCAS, speed brake extension causes a slight pitch up, and retraction causes a slight
pitch down. The pitch changes are not abrupt; you can easily overcome them with smooth
control inputs.
5.4.4. Trim Techniques. Proper trim technique is essential for smooth and precise aircraft
control during all phases of flight. The basic rule for proper trim is simple: Establish and hold
a desired attitude by applying control stick pressure, then trim to relieve the pressure.
Normally, large trim changes are not necessary. Use clicks of trim when trimming the
aircraft.
5.5. Pilot-Induced Oscillation (PIO). Overcontrolling pitch corrections can result in a PIO,
especially at high airspeeds. During a PIO, your control inputs lag behind the aerodynamic forces
acting on the aircraft, and flight deviations will actually increase as you try to correct them. To
44 AFMAN11-251V1 17 MARCH 2008

avoid this potentially dangerous situation, make smooth control inputs and, if encountered,
freeze the stick slightly aft of neutral until oscillations stop.
5.6. G-Awareness Exercise:
5.6.1. Perform the G-awareness exercise to warm up or assess your personal G-tolerance,
and practice the timing and execution of your anti-G straining maneuver (AGSM). Also
check your anti-G suit and the aircrafts system for proper operation. Use MIL power and
420 to 450 KCAS to provide adequate airspeed to sustain the appropriate Gs without losing
excessive altitude. Set the FPM approximately 7 degrees nose-low to maintain 4 Gs and
approximately 15-17 degrees nose-low to maintain 5 Gs.
5.6.2. When executing high-G maneuvers while looking over your shoulder, you will find
the AGSM more difficult to do properly and more tiring. Increased emphasis on the AGSM
is necessary during high-G maneuvers.

Section 5BAircraft Handling

5.7. Airframe Buffet Levels. As a baseline for common reference, this manual will use the
following terms for airframe buffet levels, described in order of increasing AOA:
5.7.1. Light Tickle. The light tickle is the first consistent appearance of high frequency, low
amplitude vibration on the airframe due to AOA. The lower the airspeed the higher the AOA
at which this occurstypically at about 0.55 AOA during clean 1G deceleration in level
flight, to about 0.4 AOA at 400 knots.
5.7.2. Light Buffet. The light buffet is defined as the buffet at 0.6 AOA (green donut).
5.7.3. Moderate Buffet. Moderate buffet is the buffet from approximately 0.69 AOA to the
definite increase in buffet intensity, just short of wing rock.
5.7.4. Definite Increase in Buffet Intensity. The definite increase in buffet intensity is the
point where the buffet increases in amplitude, but the frequency becomes slower and
irregular. This typically occurs at approximately 0.8 AOAusually closer to 0.8 with the
flaps up, and often slightly higher (0.8 to about 0.83) with the flaps at 60 or 100 percent.
5.7.5. Heavy Buffet. Heavy buffet is the buffet from AOA higher than the definite increase
in buffet intensity to the point where the stick is at the aft stop.
5.8. Aircraft Handling Characteristics (AHC). The following exercises display the handling
characteristics and qualities of high-performance, swept-wing aircraft. They are exercises, not
precise maneuvers. Developing a feel for handling characteristics is more important than
achieving specific parameters. When observing or flying these exercises, note when the flight
control surfaces are most effective and how airspeed and AOA changes affect the aircraft
handling characteristics.
5.9. Full Aft-Stick Stall:
5.9.1. This stall demonstrates aircraft characteristics throughout the stall regime and shows
the importance and effectiveness of relaxing backstick pressure during a stall recovery. In
this stall, the stall progresses far beyond the situation encountered in normal flight or
approach-to-stall training.
AFMAN11-251V1 17 MARCH 2008 45

5.9.2. This exercise demonstrates the aircrafts stability in a stall, the ability to recover from
any stall simply by relaxing backstick pressure, and the excessive altitude lost when
recovering from a stall without using increased power. Always consider increasing power to
minimize altitude loss in an inadvertent stall recovery.
5.9.3. Begin in level flight below FL 200 with power set at 80 percent rpm minimum.
5.9.4. As airspeed decreases, hold the pitch constant by smoothly and steadily pulling the
stick straight back to the stop with no aileron inputs. Mild wing rock is normal as AOA
increases.
5.9.5. As you approach full aft stick, wing rock will occur and a high sink rate will develop.
Keep the ailerons neutral and the stick full aft against the stop. Note the buffet and AOA
progressionespecially the definite increase in buffet intensity around 0.8 AOA, full stall
around 1.0 AOA, and fully-developed stall at 1.1 AOA. In the fully developed stall, pitch
stabilizes slightly nose-low, airspeed settles around 140 KCAS, AOA reaches the stop at 1.1,
and vertical velocity increases to a 6,000 fpm descent.
5.9.6. After the stall is fully developed, recover by leaving the power alone and relaxing
backstick pressure. As the airspeed increases, reapply backstick pressure and add power as
required. Recover to a level-flight attitude. Use caution not to overspeed the gear and (or)
flaps during the recovery.
5.9.7. Slight variations in aircraft rigging, coupled with flight control inputs, may cause
severe wing rock. If bank exceeds 90 degrees or stabilizes over 60 degrees, discontinue the
exercise and recover the aircraft from the stall. Write the aircraft up following completion
of the mission. Watch for potential gear or flap overspeed if configured.
5.10. Simulated Trim Failure:
5.10.1. Simulated inoperative trim will familiarize you with the stick pressures required
when the stabilator trim fails. If you release pressure on the control stick after the stabilator
trim has failed, the stick will move to the trimmed position and the aircraft will
aerodynamically search for the trimmed airspeed.
5.10.2. Perform this exercise below FL 200. Begin with airspeed above 300 KCAS and
trim the aircraft for level flight. Without retrimming, slow the aircraft to normal final
approach airspeed. As the airspeed decreases below 240 KCAS, configure the aircraft with
gear and full flaps. Note the increase in stick forces as the airspeed decreases and the
configuration changes.
5.10.3. After experiencing the pressures at final approach airspeed, retrim the aircraft to
relieve the stick pressures. Without trimming the aircraft, execute a simulated go-around,
retracting the gear and flaps, and accelerate to an airspeed above 300 KCAS. Note the
increasing stick pressures associated with the configuration and airspeed changes. Turn the
aircraft and note how increased bank helps maintain altitude and provide relief from the
constant forward stick pressures.
5.10.4. After completing the exercise, and before any other maneuvering, retrim the aircraft.
If you encounter approach-to-stall indications at any time, simultaneously execute stall
recovery procedures and retrim the aircraft to eliminate unwanted stick pressures.
5.11. Rudder Effectiveness at Slow Speed:
46 AFMAN11-251V1 17 MARCH 2008

5.11.1. This exercise demonstrates flight characteristics during the landing phase and the
measurable delay between the time a rudder input is applied and the time it takes effect on
the aircraft. With the aircraft configured with gear down and flaps at any setting (for
example, full, 60 percent, or no-flap), apply varied amounts of rudder inputs for varying
lengths of time and examine the roll characteristics.
5.11.2. First, configure the aircraft and achieve a level attitude with approach-to-stall
parameters (approximately 0.8 to 0.85 AOA).
5.11.3. Then, as quickly as possible, apply full-rudder deflection and return the rudders to
neutral. Keep the control stick in approximately the same position throughout the maneuver
to maintain AOA. Maintain neutral aileron inputs to isolate rudder characteristics.
5.11.4. After a delay of 1 to 2 seconds, the aircraft will roll into approximately 90 degrees of
bank. Note: When applying near-full rudder deflection, it is important to return the rudder to
neutral quickly to avoid excessive bank.
5.11.5. Recover the aircraft using controlled rudder to return to level flight.
5.11.6. Accomplish this demonstration starting with varying bank angles and varying
amounts of top rudder in an attempt to return to level flight.
5.12. Aileron Effectiveness Exercise. This exercise demonstrates the increased effectiveness
of the ailerons at low G-loads and AOA. With the power set between 85 percent rpm and MIL
power, roll the aircraft at various G loads and AOA using only the ailerons. One technique is to
establish a 20-degree nose-high pitch attitude, set the power at approximately 90 percent rpm,
and allow the airspeed to decrease to 150 KCAS. At 150 KCAS, increase backstick pressure to
attain moderate buffet. Maintain this buffet, and roll the aircraft using the ailerons. Note the roll
rate. Next, while maintaining the moderate buffet and the same aileron deflection, smoothly
unload the aircraft to approximately 0.5 G. Note how the roll rate increases. Ailerons become
more effective as the angle of attack decreases, regardless of airspeed. Relaxing backstick
pressure will reduce angle of attack, thereby increasing aileron effectiveness.
5.13. Turn Reversals:
5.13.1. This exercise demonstrates the tactical usefulness of turning the aircraft with ailerons
alone under a low AOA condition vice turning the aircraft with the rudder alone under higher
AOA conditions. The order in which you accomplish the turns is not important, but
accomplish both turns between 350 and 400 KCAS with a minimum of MIL power.
5.13.2. For both turns, roll the aircraft into approximately 90 degrees of bank and increase
the backstick pressure to achieve approximately 4Gs. Be careful not to exceed the
asymmetrical G limits of the aircraft during this exercise.
5.13.3. After establishing approximately 4Gs, accomplish one reversal by unloading the
aircraft and using only the ailerons to quickly reverse the lift vector, and establish a 4G turn
in the opposite direction. Note how quickly you accomplish the turn and how little airspeed
you lose during the reversal.
5.13.4. After establishing approximately 4Gs again, accomplish one reversal by using only
the rudder. Altitude and energy will determine whether you use the top or bottom rudder. If
using the top rudder, note the airspeed bleed off during the reversal. If using the bottom
AFMAN11-251V1 17 MARCH 2008 47

rudder, note the altitude loss. In both cases, the reversal will be slower than the one
accomplished with ailerons and low AOA.
5.14. Accelerated Stall:
5.14.1. This stall demonstrates the effect that increasing AOA has on turning performance
and airspeed loss. For this exercise, use approximately 300 KCAS to decrease the necessary
G loading and the potential to exceed G limits and to reduce the time required to reach the
increased buffet or mild wing rock.
5.14.2. Begin by entering a 2 to 3 G turn with MIL power and approximately 300 KCAS.
Increase the bank and backstick pressure as required to achieve the light buffet in a level
turn. Note the turn rate. This is optimum turn performance for the T-38.
5.14.3. Then rapidly increase the bank and backstick pressure to achieve either increased
buffet or mild wing rock. Note that the turn rate will increase initially, but as the AOA
continues to increase, the turn rate will decrease and the airspeed loss will increase. This is
also very evident during HUD VTR review during debrief.
5.14.4. Without reference to any cockpit indications, you should be able to note when the
AOA has increased beyond a useful point. Next, relax the backstick pressure to decrease the
AOA and continue the turn with a light buffet.
5.15. Pitchback:
5.15.1. Fighter aircraft use a pitchback to reverse direction of flight in minimum time while
attempting to attain and maintain corner velocity. A pitchback is similar to an Immelmann
except it begins with a bank angle greater than 0 degrees (but less than 90 degrees) and uses
less altitude. The objective is to minimize turn time while maneuvering using visual
references. Concentrate on the simple mechanics of flying a pitchback without regard to
energy level or corner velocity.
5.15.2. Enter the pitchback from level flight with 450 to 500 KCAS. With the power at MIL,
roll to the desired bank angle, neutralize the ailerons, and apply backstick pressure to attain 4
to 5 Gs. Maintain 4 to 5 Gs or a light buffet as airspeed decreases and a straight-nose track
through approximately 180 degrees of turn.
5.16. Sliceback. A sliceback is similar to a split-S except it begins with a bank angle greater
than 90 degrees (but less than 180 degrees) and uses less altitude. The objective is to reverse
direction of travel using potential energy (altitude) to maintain or gain airspeed. Enter the
sliceback with 200 to 300 KCAS. With the power stabilized at MIL, roll to the desired bank
angle, neutralize the ailerons, and apply backstick pressure to attain the light buffet. Maintain the
light buffet and a straight-nose track through approximately 180 degrees of turn. The higher the
entry airspeed the more you need to watch the Gs at the bottom, and use caution for rolling
inputs which could cause an asymmetrical over-G.
5.17. Pitch-to-Slice Exercise. Fighter aircraft use a pitch to slice when a tactical situation
requires a reduction of airspeed to corner velocity while maximizing turn rate and minimizing
turn radius. Start the exercise by executing a pitchback at 450 to 500 KCAS at MIL power and a
bank angle greater than 0 degrees (but less than 90 degrees). Turn your head to look straight back
toward the tip of the vertical tail; pick a point above you (a cloud if available; if not available,
pick an imaginary point); and execute a 4 to 5G straight pull. As you pull through the horizon (at
48 AFMAN11-251V1 17 MARCH 2008

greater than 90 degrees of bank), continue with a sliceback with a straight pull at the light buffet.
Continue to look at the vertical tail and pick a point on the ground to pull to. The exercise is
complete when you return to level flight in a bank greater than 0 degrees (but less than 90
degrees). This maneuver teaches a reliance on visual lookout and clearing while sensing bank
and pitch by looking outside the cockpit as well as flying the aircraft by feel for buffet and G.
5.18. Lift Vector Control Exercise. Fighter pilots must learn to control the lift vector while
looking over the shoulder to be successful in the air-to-air combat environment. Start this
exercise at approximately 400 KCAS and MIL power. Roll as required to set the lift vector for an
approximate 10-degrees nose-low POM, and initiate a 4 to 5G constantly descending 360-degree
turn. This should look similar to the G warmup turn. Look over your left or right shoulder, and
use the relationship between the vertical tail and the horizon to maintain the lift vector for the
entire 4 to 5G, 360-degree turn while maintaining approximately 400 KCAS. To properly
execute the turn while looking over your shoulder, momentarily sit forward in the seat, turn your
upper body to rest your shoulder against the seat. This will allow you to turn your head enough
to see the vertical tail.
5.19. Turn Rate and Radius Exercise. Careful study of energy maneuverability diagram
(figure 5.1) will show the relationship between turn radius and turn rate and will reveal how both
change during this exercise. Start this exercise at 350 to 375 KCAS and MIL power. Roll as
required to set the lift vector for an approximate 10- to 15-degrees nose-low POM, and initiate a
4 to 4.5 G constantly descending 360-degree turn. Look over your left or right shoulder, and use
the relationship between the vertical tail and the horizon to maintain the lift vector required to
initially maintain 4 to 4.5 Gs. Momentarily maintain 10- to 15-degrees nose-low and 4 to 4.5 Gs,
then increase backstick pressure slightly to increase G while maintaining the lift vector. As you
maintain the lift vector and increase the G slightly, turn rate and turn radius change. Slowly
continue to pull allowing airspeed to decrease and AOA to increase to the moderate buffet. Once
the moderate buffet is reached, quickly look inside the cockpit, note the airspeed and altitude,
and discontinue the exercise. Airspeed and altitude will be significantly lower than at entry, and
you will recognize a decrease in nose track across the horizon (i.e., decreased turn rate relative to
the beginning of the maneuver). The decrease in turn radius performance will be more difficult to
recognize during the sortie but can be addressed during the debrief using the T-38 Mission
Debrief System.
5.20. Low-Speed Stability Exercise:
5.20.1. Commonly referred to as the stab ex, or stab demo, this exercise demonstrates
the stability potential of high-performance aircraft at extremely low airspeeds. Establish a 60-
degree nose-high pitch attitude, and set power at a minimum of 85 percent rpm. Use the
power setting to control the airspeed bleed off and altitude gain.
5.20.2. As the airspeed decreases through 170 KCAS, unload the aircraft and maintain
approximately 0.5 G. With the aircraft unloaded, note how far the airspeed decreases without
stall indications or loss of control. As the aircraft passes level-flight attitude, apply full
backstick pressure and attempt to maintain level flight. Note the immediate onset of stall
indications.
5.20.3. Once again, unload the aircraft and note how stall indications cease. Maintain 0.5 G
until reaching an airspeed between 175 and 200 KCAS; then recover the aircraft to level
flight. Do not move the throttles until greater than 175 KCAS unless required for safety.
AFMAN11-251V1 17 MARCH 2008 49

Maintain at least 0.5 G throughout this maneuver to ensure proper oil system operation. If the
airspeed decreases below stabilator effectiveness, the aircraft will immediately stall and may
enter post-stall gyrations.
5.20.4. Because the coefficient of lift for a symmetrical airfoil is always zero at 0 G, the
wing cannot exceed the critical AOA. Therefore, when faced with a nose-high, low-airspeed,
unusual attitude, unloading the aircraft will ensure aircraft control as long as possible.
5.21. Slow Flight. Slow flight demonstrates the low-speed handling characteristics of the T-38
and emphasizes the importance of smooth control inputs during this flight condition. After
configuring, slow to 10 knots below computed final approach airspeed. Normally accomplish
slow flight in level flight; however, a slight descent may be required. The AOA indexer lights
will show a slow indication (approximately 0.7 AOA). Perform coordinated turns, using various
angles of bank. Note how the AOA changes with fore and aft stick movements, throttle
movements, and changes in bank.
5.22. Slow Flight Recovery Demonstration:
5.22.1. This demonstration shows the effects of various flap settings on aircraft acceleration
at low airspeeds. It is particularly applicable to aircraft handling during the flare and (or) go-
around.
5.22.2. In level flight with gear down, full flaps, slow flight airspeed, and a constant power
setting, retract the flaps to 60 percent. Note how the aircraft accelerates and the AOA
decreases. Reestablish full flaps and slow flight airspeed. When stabilized in level flight and
while maintaining a constant power setting, fully retract the flaps. Note that, as the flaps pass
through 60 percent, the aircraft starts to accelerate and the AOA decreases. As the flaps
continue toward the full-up position, the buffet increases, airspeed decreases, and aircraft
approaches a stall.
5.23. Supersonic Flight:
5.23.1. Due to its unique nature, this type of flight requires additional planning
considerations. Prior to the preflight briefing, check the forecast temperature at the
supersonic run altitude, and review engine operating limitations, associated emergency
procedures, the afterburner climb schedule, and any local coordination requirements and
restrictions. During flight, use actual outside air temperature (OAT) displayed on the MFD
DATA display page to verify your minimum mach number.
5.23.2. The single significant consequence of going supersonic is wave drag. This increase
in total drag starts slightly above critical mach (noticeable by .95 mach). The transition from
subsonic to supersonic flight occurs with little apparent aircraft reaction. At mach 1, a
detached shock wave forms in front of the pitot tube causing the altimeter and vertical
velocity indications to jump. Because the engines are operating in an area of increased stall
susceptibility, use caution when terminating the supersonic run. Smoothly retard one throttle
out of afterburner, and ensure proper engine operation before retarding the second throttle out
of afterburner. Also, do not allow the airspeed to decrease below the IMN recommended in
the flight manual. Finally, use caution to prevent exceeding mach 1 during the descent below
FL 300.

Section 5CTraffic Pattern Stalls and Approach-to-Stall Training


50 AFMAN11-251V1 17 MARCH 2008

5.24. Purpose:
5.24.1. The Air Force has lost many lives and aircraft due to traffic pattern accidents. In the
T-38, it is particularly easy to put yourself into an unrecoverable stall or sink rate situation
before the indicators get your attention.
5.24.2. Stall training in the MOA develops a number of critical skills that can prevent
catastrophe in the traffic pattern. Stall training keys on the important areas of recognition and
recovery. Approach-to-stall training is not a precise maneuver. It is designed to teach stall
recognition and stall recovery. Although approach-to-stall training simulates conditions that
may arise in the traffic pattern, this training is applicable to all phases of a T-38 mission.
Practice with 0 percent, 60 percent or full flaps. Note the less defined onset of the increased
buffet at lower flap settings. There will be a greater possibility for a secondary stall during
no-flap approach-to-stall training.
5.24.3. It is important that you are able to recognize all approach-to-stall characteristics.
Individual aircraft can have slightly different handling characteristics near the approach-to-
stall region. The definite increase in buffet intensity can occur slightly before or after the
aural, HUD, or MFD stall warnings (triggered at and above 0.80 AOA). In order to gain an
understanding of the feel of the aircraft at the definite increase in buffet intensity, the
AC/instructor can brief to ignore the aural, HUD, or MFD stall warnings during MOA stall
training. Another reason for needing to understand the feel of the aircraft at the definite
increase in buffet intensity is so that, during the stall recovery, you are able to maximize
aircraft performance by flying just shy of the definite increase in buffet intensity. It is not
abnormal during a wings-level, MAX power stall recovery to be at or above 0.80 AOA and
have the aural, HUD, or MFD stall warnings activated.
5.25. Turning Approach-to-Stall Exercise. Establish the landing configuration, set the power
(80 percent rpm minimum), and fly a simulated final turn with an intentional error. Possible
errors include a level final turn, a diving final turn, or an overshooting final turn. For the level
final turn, maintain a fairly constant bank angle and allow the airspeed to decrease until reaching
the definite increase in buffet intensity, or the aural, HUD, or MFD stall warnings. For errors
other than the level final turn, progressively increase the bank and backstick pressure. For any of
the above examples, as you detect a definite increase in buffet intensity, the aural, HUD, or
MFD stall warnings, however briefed by the AC/instructor, execute the stall recovery.
5.26. Landing Attitude Approach-to-Stall Exercise. Establish the landing configuration, set
the power (80 percent rpm minimum), attain a landing attitude, and allow the airspeed to
decrease. A common technique is to maintain level to approximately 1,000 fpm vertical velocity.
As you detect a definite increase in buffet intensity, or the aural, HUD, or MFD stall
warnings, however briefed by the AC/instructor, execute the stall recovery. Use greater finesse
to recover due to the slow stall speed in a wings-level situation.
5.27. Stall and Approach-to-Stall Recovery Completion. Recovery is complete when the
descent is stopped, a positive controlled climb is established (altimeter and vertical velocity
reversed), and the aircraft has sufficient airspeed for continued flight.

Section 5DAbnormal Flight Recoveries


AFMAN11-251V1 17 MARCH 2008 51

5.28. Purpose. You may find yourself in a flight attitude where loss of aircraft control is
imminent unless you initiate a proper recovery. Although the recoveries indicated in paragraphs
5.30 and 5.31 may appear simple, the events leading up to them can result in confusion or
disorientation that would severely hamper your recovery efforts.
5.29. Abnormal Recovery Setup Guidelines:
5.29.1. During any abnormal flight recovery setup, IP vigilance is paramount. Do not
compromise safe flight during IP demonstration or student performance of recovery training.
In all situations where transfer of aircraft control is involved, it will be accomplished IAW
AFI 11-2T-38, Volume 3.
5.29.2. Abnormal flight recovery training should be thought of in the following three phases
of proficiency: (Note: These phases are not necessarily linked to a particular block of
training, but are linked to the students flying abilities and situational awareness [SA].)
5.29.2.1. The IP demonstrates and flies the complete setup and recovery while delivering
appropriate verbal instruction. Once the student has seen the recovery demonstrated and
has a basic grasp of why the recovery training is performed, the IP begins setting up
recovery situations for the student and talking him or her through the recovery
procedures.
5.29.2.2. When the student shows proficiency in the recovery procedures, the IP begins
setting up observable situations requiring an abnormal flight recovery. When the setup is
completely developed, the IP transfers control of the aircraft to the student, using the
verbal command, You have the aircraftrecover. The student takes the aircraft and
recovers from the abnormal attitude.
5.29.2.3. Once the student has seen all the different types of setups and can confidently
and proficiently recover from various situations, the IP sets up abnormal flight recoveries
randomly throughout the area profile. Once the setup is complete, the IP directs the
student to take the aircraft with You have the aircraft. The student takes the aircraft
with proper transfer procedures and recovers in the appropriate manner.
5.29.3. Once a student learns the correct stick and throttle inputs, it is imperative to build his
or her judgment and ability to recognize abnormal flight and the need to accomplish an
abnormal flight recovery. The IP should concentrate primarily on developing the students
SA.
5.30. Nose-High Recovery:
5.30.1. Use a nose-high recovery to return to level flight following an unrecognizable or
potentially unsafe nose-high attitude. Choose a recovery technique commensurate with the
severity of the nose-high attitude. Make any required power increases smoothly to prevent
engine compressor stalls and flameouts.
5.30.2. Some instances, such as moderate pitch attitudes or near wings-level attitudes, may
simply require relaxing backstick pressure and maintaining slight G forces while recovering
to level flight. However, extreme pitch attitudes may require rolling toward the nearest
horizon and pulling the nose down to a level-flight attitude. In addition, extremely low
airspeeds may require an unloaded recovery resembling the low-speed stability exercise.
52 AFMAN11-251V1 17 MARCH 2008

5.30.3. With all of these techniques, if airspeed is sufficient as the nose approaches the
horizon, rollout and return to level flight. If airspeed is insufficient to comfortably maintain
level flight as the nose passes the horizon, delay the rollout until the nose is definitely below
the horizon and continue to accelerate in a slight descent until you can return to level flight.
5.31. Nose-Low Recovery:
5.31.1. Use a nose-low recovery to return to level flight or a slight climb following an
unrecognizable or potentially unsafe nose-low attitude in the minimum turn radius. The
minimum turn radius is achieved by maintaining the aircraft at the aerodynamic or G limit
between approximately 250 knots and corner velocity (approximately 400 knots). To achieve
this, quickly roll the aircraft to the nearest horizon and apply backstick pressure to achieve
the moderate buffet or desired recover G (whichever comes first). Normally, 4 to 5 Gs are
sufficient for an expeditious recovery in the MOA. In a nose-low recovery situation where
proximity to the ground is a concern, do not hesitate to pull to the aerodynamic/G limit of the
aircraft.
5.31.2. Adjust power and (or) speed brakes to maintain the airspeed between approximately
250 and 400 knots. The feel of the aircraft may be used to help analyze airspeed. If the
aircraft is at the desired G limit and no buffet is felt, reduce the airspeed to minimize the turn
radius. If a moderate buffet is felt prior to reaching the desired G, set the power to at least
MIL until the buffet begins to go away at the desired recovery G.

Section 5EAerobatic Maneuvers

5.32. Purpose. Aerobatic maneuvers exploit the maneuvering envelope of the aircraft, develop
skills and confidence required to employ combat aircraft, improve energy management skills,
and build three-dimensional SA. As contact maneuvers, aerobatics require a disciplined
composite cross-check, using references inside and outside the cockpit. For example, airspeed,
altitude, and G loading must be verified inside the cockpit; clearing and groundtrack control
must be accomplished using outside references; and attitude and area orientation usually require
both inside and outside references. When available, use outside references to enhance clearing
and maneuver precision.
5.33. Aerodynamic Parameters. The mechanics of performing aerobatic maneuvers in the T-
38 are essentially the same as in previous training, but differences exist in power settings,
airspeeds, G loadings, required airspace, and handling characteristics. Entry parameters for each
maneuver are summarized in Table 5.1. Fly all aerobatic maneuvers using the range of airspeeds
and power settings within specified parameters. Remain in visual meteorological conditions
(VMC) during aerobatic maneuvering.

Table 5.1. Summary of Entry Parameters for Aerobatics.


I A B C
T
E
M Maneuver Airspeed Power Setting
1 Lazy Eight 350 to 400 KCAS 95 percent rpm
2 Barrel Roll 375 to 400 KCAS 95 percent rpm
AFMAN11-251V1 17 MARCH 2008 53

I A B C
T
E
M Maneuver Airspeed Power Setting
3 Loop 500 KCAS MIL power
4 Split-S 200 KCAS MIL power
5 Immelmann 500 KCAS MIL power
6 Cuban Eight
7 Cloverleaf 450 KCAS MIL power
8 Chandelle 400 KCAS 95 percent rpm
5.34. Factors Affecting Aerobatic Maneuvers in the Vertical. Several factors work together
to affect the altitude required to complete over-the-top or split-S type maneuvers. They are entry
airspeed, power setting, aircraft weight, and pilot technique. The following general rules of
thumb apply when flying aerobatic maneuvers:
5.34.1. Turn radius depends on G loading and airspeed.
5.34.2. Holding other parameters constant, higher G loading reduces the altitude required to
complete the maneuver, while higher airspeed increases the altitude required.
5.34.3. Higher power settings improve turn performance at low airspeeds. Thrust offsets the
higher induced drag present under higher AOA, thus preserving airspeed (and, therefore, G
available). In contrast, a lower power setting combined with high-induced drag degrades the
ability to acquire or sustain G available. Combinations of these variables can cause up to a
2,000 to 3,000 feet difference in altitude required for an over-the-top maneuver.
5.34.4. As a guide, plan for at least 10,000 feet when accomplishing aerobatics in the
vertical plane (over-the-top and split-S-type maneuvers).
5.35. Energy and Airspace Requirements:
5.35.1. Table 5.2 shows distances from the start of the actual maneuver to completion of the
maneuver. Theses distances do not include any airspace used in setting up the maneuver or
any airspace used to perform the flyout following the maneuver.

Table 5.2. Airspace Requirements.


I A B C
T
E
M Maneuver Lateral Distance Required Altitude Required
1 Lazy Eight 2 nm forward; 6 nm in direction of turns 4,000 to 6,000 feet above
2 Barrel Roll 3 nm forward 4,000 to 8,000 feet above
3 Loop 1 to 2 nm forward 8,000 to 10,000 feet above
4 Split S 1 nm forward; 1 nm behind 7,000 to 10,000 feet below
5 Immelmann 1 nm forward 8,000 to 10,000 feet above
6 Cuban Eight 1 nm forward; 2 nm behind
7 Cloverleaf 3 nm forward; 2 nm in direction of first turn;
3 nm opposite direction of first turn
54 AFMAN11-251V1 17 MARCH 2008

8 Chandelle 1 nm forward; 1 nm in direction of turn 6,000 to 7,000 feet above


5.35.2. Entering an over-the-top maneuver involves flying the aircraft to a point where entry
parameters can be reached with sufficient airspace above or below required to complete the
maneuver. First of all, the overall energy level must be assessed and adjusted, if required, to
meet entry parameters. Techniques for making this assessment were discussed in paragraph
5.3. Once the desired energy level has been attained, the aircraft must be flown to an altitude
that permits starting the maneuver. If this involves a descent, one technique is to lead the
pullout by 10 knots and (or) 500 feet for each 10-degree nose-low (for example, for 50-
degrees nose-low, lead the pullout by approximately 50 knots and (or) 2,500 feet). If the
over-the-top maneuver involves achieving the starting altitude at the completion of the
maneuver, ensure that the altitude for starting the maneuver allows for a buffer below the
starting altitude so that airspace limits are not violated. (Dont start at the airspace floor with
no room below for error).
5.35.3. Energy can be affected by how the maneuver is flown. Low energy can be affected in
one of two ways. First, if airspeed is relatively high, but altitude is low, fly the first portion of
the over-the-top maneuver using 4 to 4.5 Gs (vertical airspace permitting). Then use the light
tickle and float the upper portion of the pull. This technique may offer the opportunity to
gain energy during the loop. If airspeed is low (regardless of altitude), pull closer to 5 Gs
initially to make it over the top with greater than the minimum over-the-top airspeed of 150
KCAS. This should allow you to complete the loop; however, this technique may result in an
overall energy loss. High energy can easily be reduced by increasing induced drag (higher
AOA and G loading) during the maneuver.
5.36. Aileron Roll. Aileron rolls can be performed at any airspeed and at various pitch
attitudes. The T-38 is capable of an extremely high roll rate, so relax control pressure during the
last part of the roll to prevent overshooting the wings-level attitude. Stay smooth, and dont
attempt to keep the nose on a point.
5.37. Lazy Eight:
5.37.1. Entry parameters are 350 to 400 KCAS using 95 percent rpm.
5.37.2. From straight-and-level flight, pick a point 90 degrees off the nose (in the direction
of the first turn). Start a smooth, climbing turn in that direction so the nose describes an arc
above the horizon, reaching the maximum pitch attitude at approximately 45 degrees of turn.
5.37.3. One technique is to drag the landing gear handle (left turn) or NAV backup control
panel (right turn) across the horizon. This should equate to approximately 20 degrees to 30
degrees nose-high. The nose should then start back down, passing through the horizon after
90 degrees of turn with approximately 90 degrees of bank at approximately 200 knots. As the
nose passes through the horizon, begin a smooth, gradual rollout and pullup, planning to
reach the maximum nose-down pitch attitude after approximately 135 degrees of turn. At this
point, the canopy bow should be on or near the horizon (approximately 20 degrees to 30
degrees nose-low).
5.37.4. Complete the first half of the maneuver after approximately 180 degrees of turn in a
wings-level flight attitude with the entry airspeed. Enter the second half of the maneuver by
turning in the opposite direction. Complete the lazy eight with the aircraft headed in the
original direction at entry airspeed.
AFMAN11-251V1 17 MARCH 2008 55

5.37.5. The emphasis is on flying a smooth, symmetrical maneuver with constantly changing
parameters.
5.37.6. A lazy eight will require approximately 2 nm forward, 6 nm to your right or leftin
the direction of the turnsand 4,000 to 6,000 feet above.
5.38. Barrel Roll:
5.38.1. Entry parameters are 375 to 400 KCAS using approximately 95 percent rpm.
5.38.2. The barrel roll is a coordinated roll in any direction in which the nose of the aircraft
describes a circle around a point. Choose a point on or slightly above the horizon and
maneuver the aircraft to attain entry parameters in a wings-level attitude with the aircraft 30
to 45 degrees to the side of the selected point. Begin a rolling pull in the desired direction and
use smooth control inputs to maintain a circular flightpath around the reference point. You
should be (1) in 90 degrees of bank directly above the selected reference point, (2) in a
wings-level inverted attitude when passing abeam the reference point at 180 degrees of roll,
(3) in 90 degrees of bank directly below the selected reference point, and (4) in a wings-level
upright attitude when completing the maneuver. The pitch at (1) and (2) should be the same
amount of degrees above and below the reference point.
5.38.3. Another technique is to begin the maneuver by choosing a desired roll axis from
which to fly the barrel. Offset this roll axis the number of degrees that defines the size of the
roll (normally 30 to 45 degrees). Pick a point on the horizon twice the number of degrees of
the offset in the desired direction of the roll. For example, if selecting a 45-degree offset,
pick a point 90 degrees off the nose.
5.38.4. Begin a coordinated roll and pull to fly the nose of the aircraft to be inverted at the
point. Continue the coordinated roll or pull to fly the aircraft back to the original offset
heading. You should be at 90 degrees of bank as the nose of the aircraft passes the original
roll axis (both on the first and second half of the roll), and the degrees nose-high and -low at
these points are defined by the number of degrees of the original offset. The ending airspeed
should be approximately the same as the entry airspeed for a symmetrically flown maneuver,
but symmetry is more important than finishing at entry airspeed.
5.38.5. Maintain positive G loading throughout the roll. To gain energy, use higher power
settings or a lighter G loading.
5.38.6. A barrel roll will require a forward distance of approximately 3 nm and 4,000 to
8,000 feet above.
5.39. Loop:
5.39.1. Entry parameters are 500 KCAS using MIL power.
5.39.2. Begin the loop with entry airspeed and approximately 10,000 feet of altitude above
you. Smoothly apply backstick pressure until reaching approximately 4.5 to 5 Gs in a straight
pull. Continue to increase backstick pressure to maintain the light buffet green donut.
Ensure wings are level when passing through the horizon inverted. Maintain backstick
pressure to maintain the light buffet to light tickle as Gs build to approximately 4 to 5 on the
bottom side of the loop. Finish the maneuver in level flight at entry parameters, unless
flowing immediately into another maneuver.
56 AFMAN11-251V1 17 MARCH 2008

5.39.3. A loop will require approximately 1 to 2 nm forward and 8,000 to 10,000 feet above
you from the start of the pull until maneuver completion. This does not include airspace used
to set the maneuver up or post-loop maneuvering.
5.40. Split-S:
5.40.1. Entry parameters are 200 KCAS using MIL power.
5.40.2. The split-S is essentially the last half of a loop. Enter the split-S from a slight climb
to ensure completion of the roll to the wings-level inverted attitude before the nose reaches
the horizon. Once inverted, neutralize the ailerons and increase backstick pressure to attain
light buffet in a straight pull. Maintain the light buffet until reaching 4 to 5 Gs or the
completion of the maneuver.
5.40.3. The maneuver is complete when you are wings level approximately 180 degrees
from entry heading. There is no exit airspeed, although exits as high as 380 to 400 KCAS are
typical. If the maneuver is intended to blend into another maneuver, the pull may be modified
to attain desired follow-on entry airspeed. A split-S requires approximately 1 nm forward, 1
nm behind, and 7,000 to 10,000 feet below.
5.41. Immelmann:
5.41.1. Entry parameters are 500 KCAS using MIL power.
5.41.2. The Immelmann resembles the first half of a loop followed by a half roll at the top.
Begin the Immelmann by using the same mechanics as a loop. Just prior to reaching the
inverted, level-flight attitude (front cockpit referencecanopy bow on the horizon), relax
backstick pressure and execute a half roll in either direction. Complete the maneuver in level
flight 180 degrees from the original heading.
5.41.3. An Immelmann will require approximately 1 nm forward and 8,000 to 10,000 feet
above.
5.42. Cuban Eight:
5.42.1. Entry parameters are 500 KCAS using MIL power.
5.42.2. Begin the Cuban eight by using the same mechanics as a loop. Continue to pull
through the inverted, level-flight attitude. As the aircraft approaches a 45-degree, nose-low
inverted attitude, relax backstick pressure and execute a half roll in either direction. Set the
FPM (or CDM) approximately 45 degrees nose-low and hold it until beginning the next 4.5
to 5 G pull-up (Figure 5.2). In the 45-degree dive, the G loading will be approximately 0.7 to
hold the dive angle and aimpoint. In the dive, look through the HUD, and pick an object on
the ground and dont let it move in the HUD. Do not allow the nose to drift up as airspeed
increases until initiation of the pullup.
AFMAN11-251V1 17 MARCH 2008 57

Figure 5.2. Cuban Eight.

5.42.3. To obtain entry airspeed for the second half of the maneuver, lead the pullup by
approximately 50 knots (10 knots for each 10 degrees nose-low). Initiating a 4.5 to 5 G pull
at 450 KCAS will allow the aircraft to descend another 2,500 to 3,000 feet before the FPM
passes through the horizon. Repeat the entire maneuver, except at the 45-degree, nose-low
inverted attitude, the direction of roll will be opposite that of the first roll. Complete the
maneuver in level flight, at entry speed, and heading in the original direction.
5.42.4. A Cuban eight will require approximately 1 nm forward, 2 nm behind, and 8,000 to
10,000 feet above.
5.43. Cloverleaf:
5.43.1. Entry parameters are 450 KCAS using MIL power.
5.43.2. A complete cloverleaf consists of four identical maneuvers (leaves), flown
consecutively and in the same direction, with each entry heading 90 degrees from the
previous one.
5.43.3. From level flight, choose a 90-degree reference point and then begin a 2 to 3 G
pullup. Approaching 45 degrees of pitch, begin a slow, rolling pull to lay the aircraft on its
back at your selected 90-degree reference point. The airspeed should be between 175 to 200
KCAS as the aircraft passes through the inverted, level-flight attitude.
5.43.4. The pullout part of each leaf resembles a split-S. Smoothly increase backstick
pressure to maintain the light buffet as the Gs increase. After passing the nose-low, vertical
position, adjust backstick pressure to arrive at the level-flight attitude with entry airspeed.
Continue the maneuver by starting the next leaf.
5.43.5. A cloverleaf will require approximately 3 nm forward, 2 nm in the direction of the
first turn, 3 nm opposite the direction of the first turn, and 8,000 to 10,000 feet above. Note:
58 AFMAN11-251V1 17 MARCH 2008

Because most of a cloverleaf will be away from your first turn, you should turn into the
closest border for the first leaf.
5.44. Chandelle:
5.44.1. Entry parameters are 400 KCAS using 95 percent rpm.
5.44.2. The chandelle is a steep, climbing turn of approximately 180 degrees with maximum
altitude gain for a given power setting and entry airspeed. The maneuver involves constantly
changing your altitude, airspeed, and nose track; the altitude is always increasing, and the
airspeed is always decreasing.
5.44.3. Begin on parameters, with the nose below the horizon. Start a climbing turn so the
nose of the aircraft passes through the horizon after 30 to 45 degrees of turn with
approximately 60 degrees of bank. The nose of the aircraft should continue to rise at a
constant rate and describe a straight-line diagonal to the horizon.
5.44.4. Hold the bank constant, using top aileron and (or) rudder as necessary, until
approximately 135 to 150 degrees of turn. At this point, continue the nose track and start
decreasing the bank angle to complete the maneuver with the wings level (not level flight) at
approximately 200 KCAS and 180 degrees of turn. The lower the nose at the beginning, the
higher it will be at the end, and vice versa. For example, if you enter at 15 degree nose-low,
you will finish at approximately 45 degrees nose-high. If you enter at 20 degrees nose-low,
you will finish at approximately 60 degrees nose-high.
5.44.5. A chandelle will require approximately 1 nm forward, 1 nm in the direction of the
turn, and 6,000 to 7,000 feet above.
AFMAN11-251V1 17 MARCH 2008 59

Chapter 6

FORMATION

Section 6AFormation Administration

6.1. Introduction. The purpose of flying formation is to provide the mutual support required to
accomplish a given mission. Whether the mission is air superiority, interdiction, or close air
support, mutual support is essential for mission accomplishment. More than any other type of
flying, formation provides the best environment for building confidence and for teaching self-
reliance, self-discipline, and the proper application of aggressiveness in military flying.
Procedures used in formation typically remain the same whether in two-ship or larger
formations. Differences in procedures will be highlighted throughout this chapter.
6.2. Responsibilities:
6.2.1. Flight Lead. The flight lead is ultimately responsible for the safe and effective
conduct of the mission. The flight lead plans, briefs, and debriefs the flight. This position
gives both the authority and the responsibility to ensure the flight proceeds as intended. The
flight lead must concentrate efforts on accomplishing the mission, achieving objectives, and
returning with the flight intact. The flight lead must consider the capabilities of all flight
members in planning a sortie. Taking this into consideration, the flight lead should optimize
training for all flight members and plan missions accordingly, to include briefing mission-
specific parameters.
6.2.1.1. NAV Lead. This may be used when the flight lead wants the wingman to
navigate and clear. The lead will fly the wing position, deconflict within the flight, and
keep the radios (for example, battle damage [BD] check).
6.2.1.2. Administrative (Admin) Lead. This is used to pass lead responsibilities to
another member of the flight. The admin lead is expected to run all aspects of the profile
to include navigating, managing the radios, and making changes to the profile if external
conditions dictate. With an admin lead change, the aircraft within the flight are
administratively renumbered to match the position being flown (for example, Sling 11 is
now 2 for intraflight communication purposes but retains Sling 11 as his or her call
sign). However, the flight lead still retains ultimate authority for the formation. Flight
leads should consider passing the squawk with the admin lead to allow the aircraft
primarily responsible for clearing outside the flight to have the traffic collision avoidance
system (TCAS) available (for example, when splitting fuel and number 2 gets the lead
during a UFT or PIT mission, or when number 3 is given the lead during a four ship).
6.2.1.3. Tactical Lead. This may be used when the flight lead needs the wingman to
lead an event or segment of the flight. (Note: This is rarely used in UFT but is more
common in follow-on training.) In this case, the wingman would pick up tactical,
navigation, and radio responsibilities, but not the overall flight leadership responsibility.
6.2.2. Wingmen. Wingmen must be tasked commensurate with their skill to achieve the
mission. Tasks include mission planning, threat study, and providing information in the brief.
Once airborne, the wingman must execute the plan as briefed. Whether the flight is taxiing
out to the runway or flying up initial, look and sound good, match leads configuration and
60 AFMAN11-251V1 17 MARCH 2008

always anticipate, never assume, and always have an aggressive attitude. To contribute
successfully, wingmen must prioritize tasks based on the phase of flight. Accomplishing the
following responsibilities in order will help safely execute the mission: Aviate, Navigate,
Communicate! In other words, fly your jet, stay visual, be in the perfect formation (or
aggressively correcting), then do everything else (FENCE-ing in (reference paragraph 6.5.2),
managing avionics, changing radios, etc.). As proficiency and task management allow, the
wingman should also strive to back up the flight lead.
6.2.3. Flight Discipline. The effectiveness of a formation mission is highly dependent on
solid flight discipline, which begins with mission preparation and continues through briefing,
ground operations, flight, and debrief. Mission effectiveness requires an in-depth knowledge
of flight rules, unit standards, and procedures. When lead establishes the precedent, those
orders must be followed. However, the wingman must speak up rather than allow the flight to
enter an unsafe or unauthorized situation. If directed tasks are beyond a wingmans ability,
the wingman must immediately inform lead. Uncompromising flight discipline is absolutely
essential for successful mission execution.
6.2.4. Collision Avoidance. Each aircrew member shares the responsibility of avoiding a
collision. The wingman retains primary responsibility for deconfliction between flight
members. This responsibility transfers to lead if the wingman becomes blind or is placed in a
blind cone during maneuvering. If any conflict develops between flight members, they
should take immediate action and then transmit their intentions as time permits (Reno 2 is
going high.). They should also avoid attempting to direct other flight members because they
may misunderstand or be unable to perform the directed course of action.
6.2.4.1. Lead. Flying in the lead position allows the most flexibility to clear visually for
the flight while interpreting traffic calls from ATC. Lead should focus on avoiding traffic
and maintaining a safe altitude above the ground. If a wingman becomes padlocked,
blind, or placed in a blind cone during tactical maneuvering, lead will assume
responsibility for intraflight deconfliction.
6.2.4.2. Wingmen:
6.2.4.2.1. Normally, wingmen will ensure deconfliction. If any conflict exists
between flight members, the wingman should maneuver predictably and then transmit
specific intentions, affording the other aircraft a means to deconflict. For example, the
wingman will transmit, Reno 2 is going low, while crossing leads flightpath in a
delayed turn nearly in-plane. The transmission indicates Reno 2 will be maneuvering
below lead to remain well clear. Lead may then maneuver anywhere away from the
wingmans predictable POM. This technique prevents an aircraft from directing a
course of action the other aircraft may be unable to perform.
6.2.4.2.2. While maintaining position in formation, wingmen also have standard
visual lookout responsibilities. If they discover a traffic conflict, they will initiate a
directive call to eliminate any conflict. They will follow with a descriptive call to
allow other flight members to acquire the traffic and maneuver appropriately. The
descriptive call should follow the bearing, range, and altitude (BRA) format, for
example, Reno 21, climb, traffic, 12 oclock, 1 mile, level. Wingmen will also
provide mutual support by maintaining SA through calls from controlling agencies
describing the position of potential traffic conflicts.
AFMAN11-251V1 17 MARCH 2008 61

6.2.5. Visual Lookout. All flight members share visual lookout responsibilities. Excellent
visual lookout depends on the ability to focus and refocus the eyes at appropriate ranges
throughout the flight. Lookout priorities can change at a minutes notice, depending on the
mission, weather, threats, altitude, and formation. In tactical formation, lookout priorities
may change based on the mission, weather, threat, altitude, formation, etc.
6.2.5.1. Lead. In addition to briefing visual lookout responsibilities, lead must clear in
the direction of the flight, focusing on avoiding traffic and maintaining a safe altitude
above the ground. While employing in a tactical formation, lead shares responsibility
with wingmen to visually clear for threats and traffic conflicts.
6.2.5.2. Wingman. The wingmans primary job is to execute disciplined visual lookout
without sacrificing proper formation position or deconfliction responsibilities. Emphasis
on deconfliction is directly related to aircraft proximity. For example, in fingertip,
deconfliction requires more attention than in route or tactical. Beyond fingertip, the
wingman must continue an active and systematic visual lookout with an emphasis on
deconflicting with other flight members. Visual lookout priorities should be briefed by
lead.
6.2.5.3. Traffic Conflict. Initiate a directive call to eliminate immediate conflict.
Followup the directive call with a descriptive call to allow other flight members to
acquire the traffic and maneuver appropriately (Buzz 21, climb, traffic your 12 oclock,
1 mile, level). TCAS can aid in awareness of potential traffic conflicts but shouldnt
replace a vigilant visual lookout. Cross-checking the TCAS will help to focus your visual
search as well as adjust your flightpath if necessary. If a TCAS intruder will pass within 1
mile or 1,000 feet of the formation without visual contact, consider a directive call to
maneuver the formation away.
6.2.6. Fuel Awareness:
6.2.6.1. All flight members must understand the factors to consider in determining joker
and bingo fuel. Afterburner should not normally be used after reaching bingo fuel unless
required for safety of flight. Flight members should increase their frequency of fuel
checks during high fuel flow operations (for example, extended trail (ET), fluid
maneuvering, and low altitude training). Lead must continually monitor the flights fuel
state and adjust the profile, frequency of ops checks, and joker or bingo, as necessary.
6.2.6.2. Unless already established on the return to base (RTB) phase of flight, wingmen
will inform lead when reaching joker and bingo and receive an acknowledgment. If fuel
drops below joker before informing lead, wingmen will reference the fuel state from
bingo (Iron 2 is bingo plus 1.).
6.3. Radio Discipline and Procedures. Preface all communications (except for wingman
acknowledgment) with the complete flight call sign. Communications are a good indicator of
flight discipline. Radio calls should normally begin with the full call sign (Ground, Sling 11,
taxi 4 T-38s with Zulu or Reno 11, FENCE-in). Voice recognition is often a significant factor
in tactical operations, but it should not be relied upon for primary identification or
communications. Intraflight radio calls to a specific position should reference that position
(Bam 2, breakout.). Normally, flights will operate on UHF- with outside agencies and very
high frequency (VHF) intraflight. Setting split volumes could help determine which radio is
62 AFMAN11-251V1 17 MARCH 2008

being used by lead. Wingmen should acknowledge go frequency changes with call sign and
position (Mega 21, cleared as filed, squawk 2345, go channel 4, acknowledgments: 2, 3, 4);
do not acknowledge frequency changes initiated with push. In most cases, wingmen will
mimic leads radio transmissions.
6.3.1. Lead. Ensure calls are clear and concise, and combine calls when practical. Delay
frequency changes or flight check-in as necessary based on wingman proficiency or flight
conditions.
6.3.2. Wingmen. Change radio frequencies only when directed by lead. When performing a
channel change, maintain your formation position unless otherwise prescribed or briefed.
During task intensive situations such as IMC fingertip, if unable to change frequencies,
maintain the proper position, and communicate on the intraflight frequency until the channel
change can be accomplished. To minimize head-down time, a technique is to identify the
raised 5 button on the UFCP. UHF preset frequencies may be incremented or decremented
via the 2 or 8 buttons by feel and then visually confirmed. Wingmen will mimic the
format of leads calls, but will provide accurate information (Veg 31, Ops Check, 1 is 2.3,
5 Gs, 2 is 2.1, 4.5 Gs, etc.). Unless briefed, lead speaks for the flight when
communicating with other agencies until flight split up. Wingmen will normally respond to
all directive calls, unless briefed otherwise or if the wingmans action is obvious. Query lead
if calls are unclear.
6.4. Visual Signals:
6.4.1. When using visual signals, use AFI 11-205, Aircraft Cockpit and Formation
Flight Signals, to the maximum extent possible. Any nonstandard visual signals must be
briefed. Do not hesitate to use the radio to avoid confusion. To minimize confusion, only the
pilot at the controls should give visual signals to another aircraft in the formation. Visual
signals must be clear and appropriate for range (for example, slight wing rock to reform from
route versus large wing rock from tactical).
6.4.2. Wingmen should acknowledge all visual signals. This acknowledgment may take the
form of a head nod, a thumbs-up, or a change in formation position as appropriate. To
minimize confusion, make your head nod big and clear. If a wingman does not acknowledge
a signal, it should be interpreted as a request for clarification. Repeat the signal or make a
radio call. Pass visual signals down the line, if appropriate.
6.5. Inflight Checks. Each flight member must accomplish required checks. Visual signals or
radio calls from lead may be used to initiate required checks for the appropriate phase of flight.
Wingmen should be given an appropriate amount of time to complete inflight checks. Lead
should adjust the formation position if necessary based on wingmens skill level. Lead should
also avoid any abrupt maneuvering to afford wingmen time to accomplish cockpit tasks without
compromising deconfliction abilities. While performing inflight checks, wingmen will continue
to prioritize their attention on lead, using only short glances to perform cockpit duties.
6.5.1. Ops Check. When conducting ops checks on the radio, use the following format
(Buzz 31, Ops Check, 1 is 2.3, 5.5 Gs, 2 is 2.2, 5.8 Gs). If accomplishing an admin
portion of the mission (departure, RTB, etc.), Gs need not be included. Upon completion of
ops checks following high-G maneuvering (i.e., > 4 Gs), pilots may reset their G meter.
AFMAN11-251V1 17 MARCH 2008 63

6.5.2. FENCE Check. FENCE-in is normally directed by lead upon entering the
MOA/route. FENCE-out will normally be accomplished exiting the MOA or route at
leads direction. Items to accomplish will vary with the mission type and will change during
follow-on training. You may accomplish items in any meaningful sequence or cockpit flow.
The FENCE acronym is one good technique for accomplishing required items in UFT and is
explained as follows:
6.5.2.1. Fire Control - Master Arm and EGI Master Mode (NAV, air-to-air [A/A],
or air-to-ground [A/G]).
6.5.2.2. Emitters - TCAS, A/A TACAN, and RALT.
6.5.2.3. NAVAIDS - HSD and area setup.
6.5.2.4. Camera - Confirm VTR on.
6.5.2.5. Electronic Countermeasures (ECM) CMD.
6.6. Lead Changes. Lead changes require a clear transfer of responsibilities from one flight
member to another. During the lead change, both pilots must monitor the other aircraft to ensure
separation is maintained.
6.6.1. Do not initiate lead changes with the wingman further aft than a normal fingertip
or route position, or greater than 30 aft from line abreast. Flight or element leads will
not initiate a lead change unless the aircraft assuming the lead is in a position from which
the lead change can be safely initiated and visual contact maintained. When a lead change
is done from a close formation, the designated wingman moves out and forward to ensure
wingtip separation while primarily focusing attention on lead. The wingman accepts the lead
after reaching leads 3/9 line and assumes lead responsibilities. The old lead will assume
wingman responsibilities. Unless changed by the new lead, the formation will remain in the
formation from which the position change was initiated. For example, if the position change
was initiated from route, the flight will remain in route.
6.6.2. Three- and four-ship lead changes will be accomplished over the radio, and the new
lead will acknowledge.
6.7. Ground Operations:
6.7.1. Chocks. Engine start and check-in procedures will be IAW unit standards or as
briefed. If delays occur, inform the flight lead as soon as possible but not later than the
briefed check-in time. If visual, pass a thumbs-up to lead when ready.
6.7.2. Taxi. Lead should taxi at a speed that allows wingmen to attain proper spacing.
Wingmen will match leads configuration, inspect each other for proper configuration and
abnormalities prior to takeoff, and continue inspecting throughout the sortie. An approximate
reference for 150-foot staggered spacing is the 2.5-degree pitch-line just under the main gear
of the preceding aircraft.
6.7.3. Runway Lineup (Two- and Four-Ship). For a static takeoff, runway lineup is
normally determined by wind direction and other factors, such as direction of traffic and
weather turn out. Lead will ensure wingmen have sufficient room to maneuver into position.
Minimum wingtip spacing is 10 feet wingtip clearance, but may be wider as desired or
64 AFMAN11-251V1 17 MARCH 2008

required. On the runway, a head nod is used for visual signals instead of a thumbs-up.
Note: Always ensure 50 feet of wingtip spacing within an element if either crew is solo.
6.7.3.1. Two-Ship. Each aircraft will usually take the center of its half of the runway.
Wing will line up leads main gear doors as a fore and aft reference (Figure 6.1). Once in
position with canopy closed, the wingman will give lead a head nod to signal ready for
engine runup.
6.7.3.2. Three-Ship. Normal three-ship lineup is echelon (Figure 6.1). If required
however, three-ship formations may use any four-ship lineup as briefed. Note: Always
ensure 50 feet of wingtip spacing if any crew is solo.

Figure 6.1. Two-Ship/Three-Ship Runway Lineup.

6.7.3.3. Four-Ship. Number 3 or 4 can line up in the slot. In either case, lead should line
up as far to the side of the runway as practical. Number 2 will place the wingtip closest to
lead on the centerline and line up the gear doors.
6.7.3.3.1. Number 3 in the Slot. Normally a four-ship lineup will have number 3 in
the slot. Number 3 lines up between lead and number 2, maintaining nose-tail
clearances. Number 4 will line up offset from number 2s jet blast while aligning the
gear doors of number 3 (Figure 6.2).
6.7.3.3.2. Number 4 in the Slot. Number 3 will line up with wingtip clearance on
Number 2 in echelon position. Number 4 will pull in between lead and number 2 with
wingtip clearance (Figure 6.2).
AFMAN11-251V1 17 MARCH 2008 65

Figure 6.2. Four-Ship Runway Lineup.

6.7.3.3.3. Four-Ship Signals. Number 4 will use a head nod to signal ready for
engine runup, and the signal will be relayed up the line (432). Number 3 may
need to relay the ready signal via the radio if the lead element is displaced down the
runway.
6.7.4. Engine Runup. For a static takeoff, once all aircraft have signaled ready, lead may
direct runup visually or over the radio. During the engine runup, continue to primarily
focus your attention outside the aircraft with only short glances inside the cockpit. Signal
ready for takeoff with head nods up the line. If three is unable to see two for any reason, call
ready after receiving fours head nod.
6.8. Takeoff as a Formation:
6.8.1. Formation Takeoff. Formation takeoffs are always accomplished from a static lineup.
6.8.1.1. Lead:
6.8.1.1.1. A helmet tap is the preparatory command for brake release and selecting
MAX afterburner. The execution command is a head nod. As your chin hits your
chest, simultaneously release brakes and select MAX, reduce power slightly on both
engines (approximately 60 percent nozzles but not less than minimum afterburner),
and verify both afterburners have lit.
6.8.1.1.2. Confirm wing is safely airborne before retracting the gear and flaps. The
visual signal for gear retraction is the gear doors opening. Begin a smooth power
reduction out of MAX between 220 and 280 KCAS, and terminate afterburner
operation by 300 KCAS. Monitor wing throughout the takeoff. Pay close attention to
airspeed to prevent the possibility of overspeeding gear or flaps during the takeoff.
6.8.1.2. Wingmen:
66 AFMAN11-251V1 17 MARCH 2008

6.8.1.2.1. Monitor lead for the preparatory and execution signals. Release the brakes
and aggressively advance the throttles to MAX afterburner when leads chin hits his
or her chest. Tap brakes as required to maintain position initially. Do not drag the
brakes in an attempt to stay behind the lead aircraft. Confirm two good afterburner
lights.
6.8.1.2.2. If a substantial power advantage or disadvantage is apparent, request one
increase or decrease in power (for example, Rocky 3, give me one/push it up.). Use
caution to prevent pulling the throttles out of afterburner. If wing cannot remain in
position (either overrunning lead or falling behind) with power set between
minimum and MAX afterburner, wing should check both throttles in MAX,
maintain separation from lead, and perform a separate takeoff.
6.8.1.2.3. Rotate with leads aircraft and concentrate on maintaining a proper
position. Normally, the first indication of leads rotation will be the movement of the
stabilator or the extension of the nose gear strut. Duplicate leads pitch attitude for
liftoff.
6.8.1.2.4. When both aircraft are airborne, maintain a stacked-level position until
retracting the gear and flaps. The visual signal for gear retraction is leads gear doors
opening. Confirm the gear and flaps are retracted then move into fingertip.
6.8.1.2.5. After takeoff, if ahead of lead, check slightly away from lead, while
continuing to fly off lead, if possible. Lead may pass the lead to wing if conditions
warrant.
6.8.2. Interval Takeoff. Interval takeoffs can be accomplished from a static lineup (required
for formation takeoffs) or as rolling takeoffs (single ship takeoffs only). Either option (static
or rolling takeoff) can be accomplished as a single aircraft or within a formation.
6.8.2.1. Static Interval Takeoff. When ready for takeoff, lead will release the brakes
and perform a takeoff. Wingmen will ensure a minimum of 10 seconds following a
single aircraft or 15 seconds following a formation takeoff. If not executing a 2+2
formation takeoff, each aircraft should steer toward (but not cross) the center of the
runway after the start of the takeoff roll. To help expedite the rejoin, lead should
terminate afterburner early (220 knots minimum), continue to accelerate to 300 KCAS in
MIL power, and climb at a reduced power setting (550 degrees exhaust gas temperature
[EGT]). Unless briefed otherwise, number 2 will rejoin to the inside of the first turn out
of traffic. If necessary, coordinate for an intermediate level off to maintain visual VMC
until wingmen are joined. Wingmen should delay coming out of afterburner until
sufficient overtake is achieved.
6.8.2.2. Rolling Interval Takeoff. When cleared for takeoff on a rolling interval
takeoff, lead will taxi on to the centerline of the runway, and perform a rolling takeoff.
As lead begins his takeoff roll, the wingman will taxi to and line up on the centerline of
the runway and perform a rolling takeoff. Wingmen will ensure a minimum of 10
seconds spacing after the preceding aircraft. The remainder of the takeoff is the same as
the single ship static interval takeoff.
AFMAN11-251V1 17 MARCH 2008 67

6.8.2.3. Interval Takeoff Options. Interval takeoffs can be accomplished with a


combination of formation takeoffs and/or single ship takeoffs (i.e. #1 and #2 of a 4-ship
execute a formation takeoff, followed by interval takeoffs by #3 and #4, or vice-versa).
6.8.2.4. DELETED
6.8.2.5. DELETED
6.8.3. DELETED
6.9. Instrument Trail Departure:
6.9.1. When flying an instrument trail departure, the first priority is to follow basic
instrument flying procedures. Strictly adhere to the briefed climb speeds, power settings,
altitudes, headings, and turn points. All aircraft will use 30 degrees of bank for all turns.
Takeoff spacing will be no less than 20 seconds. Unless briefed otherwise, each aircraft or
element will climb at 300 KCAS with 600 degrees EGT and maintain briefed spacing until
all aircraft have reached VMC and are cleared to rejoin.
6.9.2. Until join-up, each pilot or element lead will call with altitude and heading when
passing multiples of 5,000 feet and when initiating any altitude or heading
change. Until visual contact, each pilot or element will maintain at least 1,000 feet of
vertical separation from the preceding aircraft or element except where departure
instructions specifically prohibit compliance. If 1,000 feet of separation prevents the
wingmen from complying with the minimum safe altitude, lead may reduce the vertical
separation to 500 feet.
6.9.3. If a visual join-up at level off is not possible, lead should request 1,000 feet of altitude
separation for each succeeding aircraft or element. Wingmen will call visual on preceding
aircraft and rejoin only after directed by flight lead. If local procedures allow, use the
TCAS to maintain positional awareness on all formation members. Do not allow this
additional SA tool to detract from precisely flying instrument trail departure procedures.
6.10. Area, MOA, or Route:
6.10.1. G-Awareness Exercise. Formation G-awareness exercises should be flown from
line-abreast tactical formation (in four-ship wall or box formations only) as described in
paragraph 6.28. Normally, perform two 180-degree turns for formation G-awareness
exercises. Lead is responsible for planning the exercise to ensure a minimum of 4,000 feet
lateral separation for all formation members. Emphasis should be on the AGSM, G-
awareness, and correct operation of equipment, not on perfect formation position.
6.10.1.1. 2-Ship Basic Formation G-Awareness Exercise. A pitchout setup can be
used for basic formation sorties where greater than 4Gs are anticipated. From route
formation, lead calls Vega, reference heading 360, push it up, standby G-Ex and
accelerates to 420 KCAS; #2 acknowledges the radio call. At 420 KCAS level flight, lead
will make a ready call and #2 will acknowledge, Vega 1 ready, Vega 2 ready.
Lead then commands and executes a 180-degree G-warm-up turn away from the
wingman with the radio call: Vega, G warmup, left/right. The wingman delays 4
seconds to ensure 4,000 feet of separation and accomplishes the same, rolling out in trail.
After the G warmup, flight members will maintain/regain 420 KCAS level flight and will
again acknowledge leads ready call. Lead then commands and executes the 180-degree
68 AFMAN11-251V1 17 MARCH 2008

G-awareness exercise turn in either direction with the call Vega, G awareness,
left/right. The wingman delays the turn until lead is in the 10 oclock or 2 oclock
position with 4,000 feet of separation and then accomplishes the same. After completion
of the exercise, lead will initiate an ops check and the flight will decelerate to 300 KCAS.
Use caution for leads jet wash and a potential blind situation.
6.10.2. Following Completion of G-Awareness Exercise. After completion of the G-
awareness exercise, wingmen will deconflict, select MIL power, attain 350 KCAS, and
regain tactical formation position.
6.11. Knock-It-Off (KIO) and Terminate Procedures. Use KIO or terminate procedures to
direct aircraft to cease maneuvering. A KIO or terminate applies to any phase of flight and all
types of missions. Refer to AFI 11-2T-38, Volume 3, as supplemented.
6.11.1. Any flight member can initiate a KIO or terminate. Make directive radio calls if
danger is imminent. Call KIO when safety of flight is a factor or where doubt or confusion
exists. Call terminate when safety of flight is not a factor.
6.11.2. Initiation of a KIO or terminate will start with flight call sign, followed by each
flight members transmitting his or her position numberin orderwith Knock-It-Off
or terminate. Aircraft with radio failure will signal KIO with a continuous wing rock.
6.11.3. If any flight member fails to respond correctly, the sequence should be initiated
again. For example, if anyone transmits, Iron 11, knock-it-off, all flight members will
respond as follows: Iron 1, knock-it-off; Iron 2, knock-it-off; Iron 3, knock-it-off;
Iron 4, knock-it-off. When hearing a KIO or terminate call, or observing a continuous wing
rock, all participating aircrew will clear the flightpath, cease current maneuvering, climb or
descend to a prebriefed safe altitude (1,000 feet AGL minimum), and acknowledge with call
sign or a wing rock. If able, the aircraft that initiated the KIO or terminate will give the
reason, if not obvious (for example, Iron 2 engine flameout). Lead will be directive before
resuming maneuvers.
6.12. Recovery:
6.12.1. Battle Damage (BD) Check:
6.12.1.1. Perform a BD check when directed by the lead aircraft from either fingertip or
route. The signal is either a radio call or a visual checkmark signal. To perform the
check, make a slight check turn away from lead (fingertip), and climb only as necessary
to visually inspect the top of the near side of the aircraft. Continue the inspection by
dropping down to inspect the lower side of the aircraft; perform a crossunder; and inspect
the lower and upper side of the opposite side of the aircraft. Upon completion, remain on
that side and assume the proper formation position. While inspecting the other aircraft,
look for any damage, leaks, missing panels, or any irregularities.
6.12.1.2. During the BD check, the aircraft fulfilling appropriate lead responsibilities
must navigate and clear for the formation (NAV lead) while the wingman maintains
deconfliction within the formation.
6.12.1.3. Use the intraflight radio to pass discrepancies; otherwise, pass a thumbs-up
after returning to the formation position (fingertip/route) from where the check started.
The lead aircraft then passes the lead to the wingman and performs a BD check.
AFMAN11-251V1 17 MARCH 2008 69

6.12.1.4. For a three- or four-ship BD check, lead will direct number 2 to check the
flight. All other aircraft will maintain position while number 2 checks the entire
formation and returns to the original position. When number 2 is in position, number 3
(three-ship) or number 4 (four-ship) is automatically cleared to check number 2.
6.12.2. Splitting the Flight. When splitting the flight becomes necessary, lead will verify
that wingmen have a positive fix from which to navigate and coordinate with ATC for
separate clearances.
6.12.3. Formation Approach and Landing. Normally, the best wingman consideration a
lead can offer is to fly the best single-ship approach and landing possible. Lead will position
the wingman on the upwind side of the runway if crosswinds are greater than 5 knots.
Gear and full flaps are normally lowered with one visual signal or radio call unless briefed
otherwise. Both pilots should check their own aircraft and the other aircraft then pass a
thumbs-up if all indications are normal.
6.12.3.1. Lead. After confirming a safe gear indication for both aircraft, transmit a gear
down call for the flight. After reaching VMC and when able to maintain visual contact
with the runway on short final, line up with the center of the appropriate side, and
establish an aimpoint that will allow a touchdown approximately 500 to 1,000 feet
beyond the threshold. Unless one aircraft will circle, fly the final approach airspeed for
the heaviest aircraft. If either aircraft will circle from the approach, configure with 60
percent flaps and final turn airspeed for the heaviest aircraft.
6.12.3.2. Wing:
6.12.3.2.1. Fly normal fingertip references until on glidepath. Assume the stack
level position when VMC or on glidepath (whichever occurs later), or as briefed.
The vertical reference for stacking level is to place the helmet of the front cockpit
pilot in the lead aircraft on the horizon. The visual reference for fore and aft is
slightly aft of that for a formation takeoff (leads gear doors lined up). Lateral spacing
ranging from 10-feet to 50-feet wingtip clearance should be adequate in all cases,
provided the lead aircraft lands near the center of his or her side of the runway.
Attempt to stabilize at a given spacing in the 10- to 50-foot range, as briefed or as
directed by other guidance (syllabus or unit standards). See Table 6.1 for front and
rear cockpit references for wingtip clearances of 10 feet, 25 feet, and 50 feet.

Table 6.1. Spacing References in the Stack Level Position.


I A B C
T
E
M Wingtip Clearance Front Cockpit Rear Cockpit
1 10 feet Head abeam the slab bolt. Position Abeam the aft edge of the burner
light aligned with the leading edge cans. Look straight down the wing
of the gear door. line.
2 25 feet Head abeam the slab bolt. Position Abeam the aft edge of the burner
light in the center of the gear door. cans. Position light slightly
forward of the leading edge of the
gear door.
70 AFMAN11-251V1 17 MARCH 2008

3 50 feet Head abeam the slab bolt. Position Abeam the aft edge of the burner
light aligned with the trailing edge cans. Position light in the center of
of the gear door. the gear door.
6.12.3.2.2. Lead is the primary reference for the wing landing. Cross-check the
runway on short final to ensure proper alignment, and then fly the proper position off
lead throughout the flare and touchdown. Once on the runway, maintain lateral
spacing, use normal braking techniques, and in no case allow your aircraft to drift
across the runway centerline.
6.12.3.2.3. After establishing nose-tail separation and under control, clear to the cold
side of the runway. If landing on the cold side of the runway, turn off the landing
light (at approximately taxi speed) to clear lead to the cold side.
6.12.3.2.4. If you overrun lead, accept the overrun and maintain the appropriate side
of the runway. The most important consideration is wingtip clearance. Lead may pass
the lead over the radio if conditions warrant.
6.12.4. Formation VMC Drag. These procedures may be used to achieve minimum
runway separation of 3,000 feet between aircraft in formation when conditions prevent
accomplishing a wing landing or visual flight rules (VFR) traffic pattern and landing. Prior to
directing the formation to drag under instrument flight rules (IFR), lead will slow to 250
KCAS and coordinate with the appropriate ATC agency for nonstandard formation during
the remainder of the approach. Lead will ensure that all aircraft will be able to maintain
VMC from the drag point to landing before directing the formation to drag.
6.12.4.1. The latest drag point will be 8 miles from the runway. On instrument final
approaches, the drag is normally accomplished so as to establish separation prior to the
final approach fix or glideslope intercept.
6.12.4.2. When lead directs the formation to drag, wing will select idle and extend speed
brakes until airspeed is below 240 KCAS, then select landing gear down, flaps 60 or 100
percent, and speed brakes up. Wing will set TCAS appropriately as task management
permits.
6.12.4.3. The wingman will maintain final approach airspeed (final turn airspeed
maximum until 3 miles from the runway, then final approach airspeed).
6.12.4.4. Lead will maintain 250 KCAS until 5 miles from the runway, then select idle
power and speed brakes down until below 240 KCAS. Below 240 KCAS, lead will select
landing gear down, and flaps 60 or 100 percent, and speed brakes up.
6.12.4.5. Lead will maintain a minimum of 180 KCAS until 3 miles from the runway,
and then slow to final approach speed.
6.12.4.6. Wingmen will not fly below final approach airspeed and s-turns will not be
used to gain or maintain separation while on final.
6.12.5. Traffic Pattern:
6.12.5.1. Once established in the VFR overhead traffic pattern, turns away from wing
will normally be in echelon. On or before turning initial, lead should place wingmen on
the side opposite the direction of the break. Initial is usually flown in fingertip formation;
AFMAN11-251V1 17 MARCH 2008 71

route formation is more prudent with reported bird activity or other hazards; tactical
initial may be flown IAW local guidance.
6.12.5.2. Lead should break at the beginning of the break zone. Wingmen will delay 5
seconds before initiating the break and rollout on downwind slightly outside of lead. This
normally provides a minimum of 3,000 feet spacing. If greater spacing is required, the
wingmen will delay the break (8 seconds normally provides 6,000 feet of spacing). When
approaching the perch point, wingmen will cross-check the runway and lead to ensure
proper spacing from both.
6.12.5.3. In a four-ship, lead and number 2 should avoid slowing so rapidly that trailing
wingmen cannot maintain sufficient spacing.

Section 6BBasic Formation

6.13. Fingertip:
6.13.1. Fingertip Formation. Fingertip formation (Figure 6.3) is used for weather
penetration, airfield arrivals and departures, and show formations. Wing will maintain
wingtip clearance while flying a position from which the front cockpit (FCP) pilot looks
down the leading edge of leads wing. An FCP pilot position abeam the slab bolt provides
approximately 3 feet of wingtip separation. (Note: Abeam the slab bolt implies visually
sighting along a line from the FCP to the front slab tip to the slab bolt as shown in Figure
6.3.) From the rear cockpit (RCP), lining up the position light with a point on the intake half
way between the wing root and the lower leading edge of the intake (with head abeam the
trailing edge of the burner cans) provides 3 feet of wingtip clearance.

Figure 6.3. Two-Ship Fingertip.


72 AFMAN11-251V1 17 MARCH 2008

6.13.2. Wingwork Exercise. When accomplishing the wingwork exercise, fly a series of
modified lazy eight maneuvers, using up to 3 Gs and 90 degrees of bank in an airspeed
range of approximately 200 to 400 KCAS. Lead will emphasize clearing, smoothness, and
providing a stable platform with consistent, predictable roll rates and no sudden changes in
backstick pressure. Wing will use small throttle or stick movements and trim to maintain
position, while avoiding the tendency to stare at any one spot. Practice using all of leads
aircraft as a reference.
6.13.3. Flying Fingertip in Three- or Four-ship Formation. When flying fingertip in a
three- or four-ship formation, there is no difference for numbers 2 and 3. Number 4 will fly
the normal fingertip position and strive to line up the helmets of numbers 1 and 3. When
number 3 is adjusting, number 4 should consider flying a stable position off number 1 while
monitoring and maintaining lateral separation from number 3.
6.14. Route Formation. A route formation (Figure 6.4) is flown to enhance clearing and visual
lookout, increase flight maneuverability, and ease the completion of inflight checks, radio
changes, and other cockpit tasks. Lead will send wingmen to route with a radio call or visual
signal. Route is flown from two-ship widths of spacing out to approximately 500 feet. Fly no
farther aft than the extended fingertip line, no farther forward than line abreast, and, when wings
level, maintain a level stack. On the inside of a turn, stack below leads POM only as necessary
to keep lead in sight. On the outside of a turn, maintain the same vertical references used in
echelon. In a three- or four-ship formation, number 2 sets lateral spacing for the formation.
Number 3 should fly line abreast with number 2, matching lateral spacing from number 1.
Number 4 should line up the helmets of numbers 3 and 1. Lead should limit bank angle to 60
degrees with wingmen in route.

Figure 6.4. Route Formation.

6.15. Chase. Chase is used for a variety of reasons, including performance assessment and
assistance during an emergency. Safety chase observers will maneuver in a 30- to 60-degree
aspect cone out to 1,000 feet. The chase pilot is primarily responsible for aircraft separation.
AFMAN11-251V1 17 MARCH 2008 73

6.16. Echelon:
6.16.1. Echelon is a multiship formation where all wingmen are on the same side of the
formation. Lead directs the flight into echelon by dipping a wing in the desired direction or
making a radio call (Sling, echelon left/right).
6.16.2. Unless prebriefed (like turns in the VFR overhead pattern), lead normally directs
echelon turns with a radio call or visual signal for two-ship formations. In a three- or four-
ship formation, an echelon turn is implied when the wingmen are on the same side. All
aircraft must be very aware of the importance of smooth corrections, positive backstick
pressure, and the need to avoid unloading while in the turn.
6.16.3. Echelon turns can be performed at a variety of airspeeds. A common technique as
lead is to initiate echelon turns between 300 to 350 KCAS and to minimize throttle
movements during the turn in order to give the wingmen a more stable platform to follow.
6.16.4. Except for very gentle turns into the echelon, always turn away from the echelon and
plan to limit bank to 60 degrees maximum. Number 2 should match leads roll rates. Once
established in a turn, the horizon should split leads lower intake (Figure 6.5). As in fingertip,
the FCP pilots helmet should be abeam the slab bolt. Use power to make fore/aft
corrections, backstick pressure to maintain horizontal spacing, and bank to make corrections
up or down.
6.16.5. When in the number 3 or 4 position, the basic references are the same as those for
number 2. However, you should add leads position in relation to the horizon to your cross-
check, so as not to over adjust for every correction number 2 or 3 makes.

Figure 6.5. Echelon Turn.

6.17. Crossunder:
6.17.1. Two-Ship Crossunder. Except for prebriefed events (like the BD check), lead
normally directs a crossunder with a radio call or visual signal. When using a wing dip
signal, the size of leads signal should be appropriate for the distance to the wingman. On
leads signal, the wingman reduces power as required until a small forward line-of-sight
(LOS) rate develops. The wingman will move back and slightly below leads POM and add
power to stop leads forward LOS. He or she will then move across and behind lead with a
minimum of nose-tail clearance, adding power as required so as not to fall any further
74 AFMAN11-251V1 17 MARCH 2008

behind. Once on the opposite side and with wingtip clearance, the wingman will add power
to move up and forward into fingertip (Figure 6.6).

Figure 6.6. Crossunder.

6.17.2. Four-Ship Fingertip Crossunder. In a four-ship fingertip or route formation, a


wing dip toward number 2 signals a crossunder for numbers 3 and 4, and a wing dip toward
number 3 signals a crossunder for number 2. If number 2 is crossing to the side that numbers
3 and 4 are on, number 3 should smoothly move out to create room for number 2. Number 2
begins a normal crossunder, but must ensure adequate spacing before crossing leads 6
oclock. As number 2 attains position, number 3 begins flying off number 2 while
referencing lead. If numbers 3 and 4 are crossing simultaneously, number 3 begins smoothly
dropping down and aft in a normal crossunder and establishes nose-tail clearance off number
2 before crossing. As number 3 begins the crossunder, number 4 performs a crossunder on
number 3, normally crossing number 3's 6 oclock as number 3 crosses behind lead. Number
4 must anticipate LOS rates and power changes to avoid falling aft.
6.17.3. Four-Ship Echelon Crossunder. In a four-ship echelon formation, lead's radio call
or wing dip (always away from the echelon) directs the entire formation to change sides.
Ideally, as number 2 begins the crossunder, all the wingmen move together. The entire
formation is in a straight line as the wingmen cross lead's 6 o'clock. Then all the wingmen
assume their position on the other side of lead. A wing dip toward the echelon is
meaningless. Any other formation change, like returning to fingertip, requires a radio call.
6.18. Pitchout:
6.18.1. The purpose of a pitchout is to provide spacing for a rejoin or follow-on
maneuvering. After the signal or radio call, lead clears and then turns away from the
wingman, using G forces to attain 300 KCAS unless briefed or directed otherwise. Lead will
normally fly a level turn of about 180 degrees. However, he or she may climb, descend, and
(or) adjust the degrees of turn as necessary for weather, area orientation, or energy
management. Lead will allow enough time for the wingmen to complete the pitchout, and
then direct the rejoin with a radio call or visual signal.
6.18.2. Wingmen keep lead or the leading aircraft in sight, delay 5 seconds (or as briefed),
and then turn to follow, using about the same bank angle and G loading. A 5-second delay
AFMAN11-251V1 17 MARCH 2008 75

provides approximately 1 nm spacing. After turning approximately 90 degrees, the wingman


will vary bank angle and backstick pressure as necessary to attain desired spacing. He or she
will rollout behind and slightly below lead or the preceding aircraft, maintaining 300 KCAS
until directed to rejoin.
6.19. Take Spacing:
6.19.1. Take spacing is normally used to increase range when reversing the direction of the
flight is not practical (for example, practice rejoins). When these procedures are not specified
in unit standards, they must be thoroughly prebriefed. These are VMC-only maneuvers.
6.19.2. Lead will direct the wingman to take spacing with a prebriefed visual signal or radio
call. The wingman will acknowledge with a radio call or by maneuvering away from lead to
take spacing. Spacing can be achieved with a combination of wingman maneuvers, wingman
deceleration, and lead acceleration.
6.19.3. One technique is to accelerate to 325 KCAS and direct the wingman to take spacing.
Lead then selects MIL power and accelerates to 350 KCAS. The wingman selects idle and
speed brakes, slows to 300 KCAS, and then calls Buzz 2s ready at the prebriefed range.
Lead then selects idle and speed brakes, slows to 300 KCAS, and directs a rejoin as
applicable.
6.19.4. Another technique, usually done at 300 KCAS, is to direct the wingman to take
spacing, which he or she does by performing a series of S turns behind and below leads
jetwash. When the desired spacing is achieved, the wingman calls ready. If the plan is for a
three- or four-ship to take spacing, procedures for each aircraft should be thoroughly briefed.
6.20. Practice Lost Wingman Exercise. This exercise exposes new pilots to procedures that
are critical during lost wingman scenarios in actual instrument meteorological conditions (IMC).
(Practice this exercise in two-ship formation, in day VMC, using the procedures in AFI 11-2T-
38, Volume 3.) Lead will initiate a practice lost wingman exercise with a radio call. Lead will
acknowledge the wingmans practice lost wingman radio call by transmitting altitude, heading,
airspeed, and other parameters as appropriate. The wingman will execute the appropriate
procedures, to include a radio call. The wingman may signify completion of the exercise (as
determined and briefed by the flight lead) by calling visual. Note: The IP or safety observer in
the wing aircraft will monitor lead to ensure separation throughout the exercise.
6.21. Rejoins:
6.21.1. Overview:
6.21.1.1. The purpose of a rejoin is to get the flight back together safely and efficiently.
Lead will initiate rejoins with a radio call or a visual signal (wing rock) and, when
necessary for energy management or area orientation, may use slight climbs or descents
during the rejoin. Lead should consider initiating the rejoin via a radio call, especially
when lead cannot see wingmen.
6.21.1.2. Lead should monitor wingmen closely during all rejoins. Airspeeds and bank
angles are normally prebriefed or unit standard. Lead should consider making a radio call
if flying a different airspeed or bank angle. Wingmen should always use LOS cues and
airspeed awareness when rejoining.
76 AFMAN11-251V1 17 MARCH 2008

6.21.1.3. For standard rejoins from basic formation positions (other than tactical), lead
will maintain 300 KCAS, and 30 degrees of bank, if turning. For standard rejoins from
tactical, lead will maintain 350 KCAS, and 45 degrees of bank, if turning. The rejoin
discussions in paragraphs 6.21.2 and 6.21.3 apply to rejoins from all formation positions,
including the terminal phases of tactical rejoins. (The initial phase of tactical rejoins is
discussed in Section 6C.)
6.21.2. Straight-Ahead Rejoin:
6.21.2.1. Straight-ahead rejoins can be accomplished from a variety of situations,
including pitchouts, take spacing, and instrument trail. A standard straight-ahead rejoin is
to the left wing for number 2 and the right wing for numbers 3 and 4.
6.21.2.2. When initiated from a position behind lead (from a maneuver that places
wingmen in trail at leads 6 oclock), fly to a position slightly below and at approximately
0 degree aspect angle (AA) from lead, avoiding leads and preceding wingmens jetwash.
Using power for closure (50 knots of overtake is usually adequate when starting from 1
nm.), maintain 0 AA until approximately 2,000 feet behind lead. Approaching 2,000
feet, modulate power to arrive at 2,000 feet with approximately 20 to 30 knots of
overtake. At 2,000 feet leads wingspan is approximately 13 mils (the width of the HUD
boresight/gun cross or slightly less than half the width of the aircraft waterline (MIL-STD
HUD). See Attachment 2. At approximately 1,500 feet behind lead, the figure-eight
design of the two tailpipes is visible, but two separate engines are not distinguishable. At
this point, bid away from leads 6 oclock position to a route position, on the side to be
rejoined to, and continue to reduce overtake. A technique to reduce overtake at this point
is to retard your throttles at a rate equal to the aft LOS rate of lead on the canopy, such
that leads LOS freezes as you arrive in the route position. Use speed brakes as required
to assist in slowing the LOS rate. Then, with your overtake under control, close from
route to fingertip.
6.21.2.3. During a rejoin in a climb, the aircraft is more responsive to throttle reductions
when decreasing overtake and slowing leads aft LOS rate on the canopy compared to
during a level-flight rejoin. A common error is for wing to stagnate during a climbing
rejoin prior to reaching the fore/aft references for the route position. To prevent this, you
should begin to reduce overtake later and the throttle movement should be slower and
less than what is required during a level-flight rejoin. During a descending rejoin, the
opposite is true. The aircraft is less responsive to throttle reductions when decreasing
overtake and slowing leads aft LOS rate on the canopy compared to a level-flight rejoin.
A common error during the descending rejoin is for wing to overshoot the fore/aft
references for the route position. Therefore, you should begin to reduce overtake sooner,
and the throttle movement should be faster and more than what is required during a level
flight rejoin.
6.21.2.4. For three-ship and four-ship formations, aircraft will rejoin in the proper
numerical sequence. Maintain a minimum of 500 feet spacing from the preceding
aircraft until that aircraft has stabilized in route. Each aircrew will monitor the
preceding aircrafts rejoin for excessive closure and anticipate overshoot and breakout
situations from preceding aircraft.
6.21.3. Turning Rejoins:
AFMAN11-251V1 17 MARCH 2008 77

6.21.3.1. Rejoins to Number 2 (Inside the Turn):


6.21.3.1.1. The visual signal for a turning rejoin is also a wing rock with the first
wing dip in the direction of the rejoin. Because turning rejoins can be accomplished
from many different positions, wingmen must initially assess the combinations of
range, aspect, energy state, and heading crossing angle (HCA) to establish appropriate
AA, pursuit curves, and overtake airspeeds.
6.21.3.1.2. After the rejoin signal and leads turn, the wingman begins a turn in the
same direction to create lead pursuit. Simultaneously establish vertical separation,
establish approximately 30 knots of overtake, and adjust lead and lag pursuit to
maintain moderate aspect angle.
6.21.3.1.3. Use the airspeed indicator and visual cues to judge closure on lead.
Control closure by adjusting the pursuit curve and the power. Use the speed brakes as
needed, but plan the rejoin so that speed brakes are not required to complete the
rejoin. Complete the rejoin to fingertip similar to reforming from the route position.
6.21.3.1.4. During a turning rejoin, wingmen should establish and maintain about 50
feet of vertical separation below leads POM until stabilized in route formation. Other
airspeed aspect combinations may be used if needed to complete the rejoins.
Regardless of the rejoin combinations, airspeeds should be less than 50 knots
overtake for low aspect rejoins, 30 knots for medium aspect rejoins, and 10 knots for
high aspect rejoins when within 3,000 feet of lead. Avoid the tendency to reduce
closure by increasing G inside the turn.
6.21.3.2. Rejoins to Number 3 or Number 4 (Outside the Turn). For three-ship and
four-ship formations, aircraft will rejoin in the proper numerical sequence. Number 2
rejoins to the inside of the turn, and numbers 3 and 4 rejoin to the outside. When the
flight lead uses a visual signal to initiate the rejoin, each wingman will repeat the signal
for aircraft in trail. Maintain a minimum of 500 feet spacing from the preceding aircraft
until that aircraft has stabilized in route. Rejoining aircraft will cross below the
preceding aircrafts jetwash with a minimum of nose-tail clearance. Each aircrew will
monitor the preceding aircrafts rejoin for excessive closure and anticipate overshoot and
breakout situations from preceding aircraft.
6.21.3.3. Figure 6.7 shows three different visual references for various AA rejoins. View
B (approximately 45 degree AA) is the preferred picture to maintain throughout the
rejoin. This AA optimizes the use of airspeed and geometry while allowing flight lead the
flexibility to maneuver the formation as necessary. View C (approximately 60 degrees
AA) should be avoided because it demands too much flight lead monitoring, and view A
(approximately 30 degrees AA) does not maximize the benefit of geometry or lead
pursuit and potentially wastes fuel in a tail chase.
78 AFMAN11-251V1 17 MARCH 2008

Figure 6.7. Various Aspect Views.

6.22. Overshoots:
6.22.1. Overview. The purpose of an overshoot is to safely dissipate excessive airspeed or
decrease excessive angular overtake during a rejoin. Wingmen must not delay the overshoot
in an unusually aggressive attempt to save a rejoin. Keep lead and the preceding aircraft in
sight at all times during any overshoot.
6.22.2. Straight-Ahead Rejoin Overshoot. A properly executed straight-ahead rejoin with
excessive closure (VC) will result in a pure airspeed overshoot several ship-widths out, with a
slight diverging vector. Select idle and speed brakes (if required) as soon as excess overtake
is recognized. Guard against turning back into lead while looking over your shoulder. A
small, controllable 3/9 line overshoot is easily managed and can still result in an efficient
rejoin. Retract the speed brakes and increase power just prior to achieving co-airspeed
(stagnant LOS) to prevent falling aft.
6.22.3. Turning Rejoin Overshoot:
6.22.3.1. A properly executed turning rejoin with excessive VC will result in a
combination airspeed-aspect overshoot in a POM about 50 feet below lead. The decision
to overshoot should be made early so the wingman crosses leads low 6 oclock with a
minimum of approximately two ship lengths spacing. In all cases, ensure nose-tail
separation can be maintained. Select idle and speed brakes as required, depending on
excess airspeed.
6.22.3.2. Once outside the turn, use bank and backstick pressure as necessary to stabilize
in route echelon position. During the overshoot, fly no higher than route echelon. The
more airspeed and (or) angle-off, the more turn radius required to solve the problem. In
addition, a cospeed overshoot due to an angular problem only may not require flying
outside of leads turn circle. Instead, flying to leads low six oclock may allow enough
forward visibility to safely align fuselages and stop the overshoot. When range, LOS, and
angle-off are under control, return to the inside of leads turn, reestablish an appropriate
aspect angle, and complete the rejoin to fingertip.
6.22.4. Three- and Four-Ship Overshoot Deconfliction. As with a rejoin, maintain a
minimum of 500 feet spacing from the preceding aircraft until it has completed the
overshoot and is stabilized. If overshooting, preceding aircraft will inform the other
wingmen with a radio call.
AFMAN11-251V1 17 MARCH 2008 79

6.23. Breakout:
6.23.1. When in close proximity to another aircraft, break out when (1) directed by lead, (2)
unable to maintain sight of lead, (3) unable to rejoin or remain in formation without
crossing under or in front of lead, or (4) any time your presence constitutes a hazard to the
formation. In UFT and PIT, breakouts are also flown as training exercises.
6.23.2. For breakouts, predictability is critical for all players. Lead should continue the
current maneuver with the current power setting if possible. However, if the wingman is in
sight, maneuvering to obtain, increase, or guarantee separation may also be appropriate or
necessary. In all cases, lead should try to stay visual and be directive with the wingman as
appropriate (for example, Yarbs 2 rollout, visual is your right 2 oclock high, rejoinleft
turning, etc.).
6.23.3. Wingmen should clear in the direction of the breakout, maneuver to ensure safe
separation from other aircraft, and notify lead, if required, when conditions permit. Once safe
separation is assured, the wingman may rollout to attempt to regain the visual. After the
wingman calls visual, lead will direct him or her to the desired formation.
6.23.4. Control inputs can vary anywhere from maximum rate stick deflection to avoid
collision to a small check turnaway. If breaking out due to a lost-sight situation, the wingman
will break away from leads last known position or direction of turn, using power and speed
brakes as required.
6.23.5. A breakout exercise may be accomplished from a variety of positions and situations.
Lead will direct the breakout with a radio call, after which the wingman will simultaneously
execute an appropriate breakout maneuver and make a radio call (Pistol 2s breaking out).
The culmination of the exercise is the same as described in paragraph 6.23.3.
6.24. Close Trail:
6.24.1. Lead initiates close trail with a radio call from fingertip, echelon, or route. Lead will
wait for wings in call (Iron 2s in) before maneuvering and then use any combination of
turns, modified lazy eights, or barrel rolls.
6.24.2. Over-the-top maneuvering in close trail is not permitted. Be smooth and
predictable, avoid rapid or inconsistent roll rates, and maintain a minimum of 1 G at all
times. Use no more than 4 Gs for close trail.
6.24.3. Wing will acknowledge the call to go close trail (2), maneuver to the close trail
position, and call in. Proper position is one to two aircraft lengths behind lead and just below
leads jetwash.
6.24.4. In the correct vertical position, you should see space between the forward edge of
leads horizontal stabilator and the trailing edge of leads wing. To prevent encountering
jetwash, never fly higher than a position where that space disappears.
6.24.5. For a fore/aft separation reference, use the relationship between the tips of leads
horizontal stabilator and the ailerons. At approximately one ship length, the stabilator tips are
lined up with the outer two-thirds of the ailerons. At approximately two ship lengths, the tips
are lined up with the mid-point of the ailerons. When aft of the proper position or when lead
is turning at higher G loadings, you may need to fly slightly inside the turn to gain or
maintain position.
80 AFMAN11-251V1 17 MARCH 2008

6.24.6. End the exercise by directing wing to the desired formation (Buddy 2, rejoin left
side). If returning to fingertip, lead must avoid any significant power changes until wing is
in position.
6.25. Fighting Wing. Fighting wing is flown as a maneuverable two-ship administrative
formation. Lead directs number 2 to the fighting wing position with a radio call (Iron 21, go
fighting wing). There is no requirement to call in position. The fighting wing position is a cone
30- to 45-degree AA from lead, 500 to 1,500 feet aft (Figure 6.8). As wing, you can approximate
the forward limit of the cone (45-degree AA) by aligning leads wingtip with the middle of the
aft canopy and the aft limit (30-degree AA) by aligning leads wingtip with the nose of the
aircraft. Another technique to estimate AA is to compare the apparent wingspan to the apparent
length of the T-38. At 30-degrees AA, the apparent length equals the apparent wingspan. At 45-
degrees AA, the apparent length is approximately 30percent longer than the apparent wingspan.
For estimating range, at 500 feet you should easily read leads tail number; at 1,000 feet, you
should easily see, but not be able to read, leads tail number; and you should be able to discern
two separate tail pipes. The wingman should strive to maintain a position inside leads turn circle
using lead and lag, resulting in lower power settings. Do not fly aerobatic maneuvers in fighting
wing.

Figure 6.8. Fighting Wing Cone.

6.26. ET Exercise:
6.26.1. Desired Learning Objectives (DLO). The ET exercise is an initial building block
that introduces some of the concepts and skills required in future short-range and medium-
range basic fighter maneuvers (BFM). The ET exercise allows pilots to practice the use of
pursuit curves and dynamic maneuvering in relation to another aircraft. The DLOs of ET are
as follows:
AFMAN11-251V1 17 MARCH 2008 81

6.26.1.1. To practice recognizing and solving problems of range, closure, AA, HCA,
angle-off and turning room from a short-range and medium-range, simulated offensive
position behind a cooperative aircraft flying a scripted training profile.
6.26.1.2. When initiated from the perch entry:
6.26.1.2.1. To practice maintaining briefed training parameters.
6.26.1.2.2. To introduce and practice the administrative setups, terminations and
resets for medium-range one-versus-one (1-v-1) advanced maneuvering.
6.26.1.2.3. To practice maneuvering to, entering, and maintaining the ET cone from a
position well outside the cone.
6.26.1.3. To introduce and practice the application of A/A training rules (TR).
6.26.2. The ET Cone. The cone for ET is defined as 30- 45 AA on lead and between
1,000 to 3,000 feet range. Wing evaluates position in the ET cone using visual references and
stadiametric range estimation.
6.26.2.1. Visual References. For wing, the reference for the 30 and 45 AA is the same
as for the fighting wing position. For visual ranging:
6.26.2.1.1. At 1,000 feet, you should easily see, but not be able to read, leads tail
number, and you should be able to discern two separate tailpipes.
6.26.2.1.2. At 3,000 feet, you can just start to make out detail on the airplane. You
should be able to recognize detail such as a clearly visible canopy and canopy bows,
distinct lines where the wings and tail meet the fuselage, a distinct horizontal
stabilizer, and clear lines where the colors on the paint scheme change.
6.26.2.1.3. At 4,000 feet, just outside the ET cone, is where the VHF antenna (shark
fin) disappears; however, this reference requires the belly of leads aircraft to be in
view.
6.26.2.2. Stadiametric Range Estimation. Stadiametric ranging (described in
Attachment 2) is another technique that can be used to determine ranges. The HUD
symbology provides known size references for stadiametric ranging. Mil-sizing lead
relative to HUD symbols does not require lead to be within the HUD field of view
(FOV). You should be able to visualize references to HUD symbols with lead outside the
HUD FOV. You must maintain a vigilant composite cross-check, especially outside of
the cockpit and with leads aircraft, in order to recognize cues that could result in a
potential deconfliction problem with lead.
6.26.3. Responsibilities. All pilots must fulfill the following common responsibilities
during ET:
6.26.3.1. Collision Avoidance. As with other formation maneuvering, each pilot has the
responsibility to take whatever action is necessary to avoid a collision. Because of the
dynamic nature of ET, the problems of collision avoidance are compounded and require
uncompromising flight discipline. All flight members must be vigilant with regard to
clearing their flightpath and recognizing and avoiding the prebriefed minimum range
limitation (often called the bubble).
82 AFMAN11-251V1 17 MARCH 2008

6.26.3.2. Fuel Awareness. Because ET generally involves higher power settings for
longer periods of time, all pilots must continually monitor their fuel state to prevent
overflying joker/bingo. Lead should call for an ops check prior to each engagement. Ops
checks accomplished between engagements or after the last engagement will include
Gs.
6.26.4. Exercise Setups. There are two ways to set up the ET exercisethe pre-proficiency
entry and the perch entry (which is accomplished from tactical line abreast).
6.26.4.1. Pre-proficiency Entry. Accomplish the pre-proficiency entry to the ET
exercise from any basic formation position. Lead initiates the entry with a radio call
(Colt 21, go extended trail) and wing acknowledges (2). Lead maneuvers by pulling
away from wing with a military power and moderate G turn. Wing maneuvers as required
to attain the ET position. Once wing calls in (Colt 2s in), lead begins the maneuvering
phase (as defined below).
6.26.4.2. Perch Entry. The purpose of the perch entry to ET is to introduce and practice
the administrative setups, terminations, and resets used in follow-on BFM. The need for
standardization of the setup is critical for reconstruction, debriefing, and assessment of
DLOs. Each exercise will be preceded by a descriptive preparatory radio call by lead
(Colt 21, next exercise is extended trail) followed by an acknowledgement from wing
(2). Each pilot must strive to be in the correct starting position and must not call ready
until the prebriefed starting parameters have been achieved.
6.26.4.2.1. Avionics. Lead and wing should select the A/A master mode after leads
descriptive preparatory radio call (Colt 21, next exercise is extended trail). The A/A
master mode will be selected prior to the respective ready call.
6.26.4.2.2. Lead. Starting parameters for lead are: 15,000 to 17,000 feet MSL (or as
briefed), 400 + 10 KCAS.
6.26.4.2.2.1. Once lead assesses both aircraft have achieved the correct starting
parameters, lead calls ready (Colt 1s ready).
6.26.4.2.2.2. After wings ready call, lead directs a check turn (Colt 21, check
45 left/right), and turns 45 degrees away from wing using a contract tactical turn.
6.26.4.2.2.3. As wing achieves pure pursuit, lead reverses the turn direction while
monitoring wing, sets power as required to hold 400 + 10 KCAS, and adjusts
bank angle and Gs to set the desired AA of 30 to 45 while maintaining altitude.
For a level flight, 40 AA reference, lead should look over his or her shoulder and
see wing slightly above the horizon (roughly a beer can on its side) and roughly a
beer can in front of the rear canopy bow. Wings lateral position can also be
visualized above the wingtip (in relation to the aircraft) or just outside the wingtip
(in relation to the horizon). See Figure 6.9. A common error during this phase is
not to maintain level flight while looking over your shoulder. Maintain a
composite cross-check.
6.26.4.2.2.4. Once wing calls fights on, lead begins the briefed exercise phase
(as defined in paragraph 6.26.5).
AFMAN11-251V1 17 MARCH 2008 83

Figure 6.9. 40-Degree AA Picture from Lead Aircraft Front Cockpit.

6.26.4.2.3. Wing. Starting parameters for wing are level with lead, 400 + 10 KCAS,
and 6,000 feet line abreast.
6.26.4.2.3.1. If starting parameters have been achieved, wing calls ready (Colt
2s ready) after leads ready call. If starting parameters have not been achieved,
wing responds with the appropriate alibi (for example, Colt 2, standby
airspeed), and then calls ready (Colt 2s ready) when within starting
parameters.
6.26.4.2.3.2. At the check 45 left/right call, wing executes a contract tactical turn
to pure pursuit (lead under the HUD gun cross) and then modulates power to
maintain 400 + 10 KCAS while maintaining pure pursuit.
6.26.4.2.3.3. As range decreases, wing calls down ranges until 3,000 feet
(6,0005,0004,000). Wing estimates ranges using visual references or using
the stadiametric ranging technique discussed in Attachment 2.
6.26.4.2.3.4. At 3,000 feet, wing initiates the briefed exercise phase with a fights
on call (Colt 21, fights on).
6.26.5. Exercise Phases. The ET exercise is broken into two phasesthe continuous
turning phase and the maneuvering phase. Each phase has specific DLOs for lead and wing.
6.26.5.1. Continuous Turning Phase. The purpose of the continuous turning phase is
to allow wing to explore the ET cone against a stable platform. Always enter the
continuous turning phase from a perch entry. At wings fights on call, lead will set 550
degrees EGT and establish a controlled, descending turn to a prebriefed transition altitude
(TA), typically 2,000 feet below the starting altitude. Wing will set power as required
(idle to MIL) and will use lead, lag, and pure pursuit to explore the ET cone. Both lead
and wing will remain above the TA during the continuous turn phase. (Note: Flying
through the prebriefed TA during the continuous turning phase does not necessitate a
KIO/terminate unless the TA equates to another restriction (i.e., MOA floor or required
84 AFMAN11-251V1 17 MARCH 2008

cloud clearance) but should be addressed during debrief of DLOs.) The TA is no longer
applicable once the maneuvering phase is initiated.
6.26.5.1.1. Lead. Leads specific DLOs are to maintain visual and to level off at 0 -
500 feet above the TA. The execution entails a continuous turn by adjusting lift
vector and Gs to maintain 300 to 400 KCAS, 2 to 4 Gs, and a smooth level off at 0 to
500 feet above the TA. Lead will maintain SA on wings position, even when wing
temporarily transits leads six oclock. Lead should develop a cross-check that allows
him or her to maintain visual, maintain awareness of ownship energy state, and
smoothly transition to level flight above the TA.
6.26.5.1.2. Wing. Wings specific DLOs are to position the aircraft at the inside of
leads turn circle and on the forward edge of the ET cone, execute a controlled
reposition to the outside of leads turn circle on the aft edge of the ET cone, and then
continue to maneuver as required to maintain the ET cone while remaining above the
TA. Wing must constantly assess dynamic visual cues to assess and control range,
AA, HCA, and closure. Based on these cues, wing must select the appropriate pursuit
curve to reposition the aircraft as required.
6.26.5.2. Maneuvering Phase. The purpose of the maneuvering phase is to allow wing
to explore the ET cone against a dynamic platform. From the pre-proficiency entry or
after the continuous turning phase DLOs have been achieved from the perch entry, wing
will initiate the maneuvering phase with an in call (Colt 2s in). Flight lead may brief to
omit the continuous turning phase described above from the perch entry. In this case, lead
begins the maneuvering phase after wings fights on call. Unless briefed otherwise,
leads power setting will be 550 degrees EGT and wings power setting will be 600
degrees EGT for the maneuvering phase. The flight lead may brief different power
settings for lead and wing to achieve a DLO. As wing gains proficiency, the flight lead
may brief to allow wing the ability to modulate power, which will positively transfer to
follow-on training.
6.26.5.2.1. Lead. Leads specific DLOs are to challenge wing with aerobatic
maneuvering while maintaining visual or SA on wings position, maintaining area
orientation, and properly managing energy. Lead is not required to perform
maneuvers to the precise parameters used in contact flying and should vary the
attitudes and airspeeds as necessary for effective training, area orientation, visual
lookout, and smoothness.
6.26.5.2.1.1. Consider wings skill level while maneuvering to prevent exceeding
his or her capabilities, but continue to challenge wing with ET position problems
to solve. High-G maneuvers are of little value if wing is unable to maintain the
proper position. Remain constantly aware of G forces because wing is often
exceeding leads G level to maintain or regain position.
6.26.5.2.1.2. Limit ET maneuvering to turns, lazy eights, barrel rolls, cloverleafs,
loops, and Cuban eights. Do not perform abrupt turn reversals; that is, turns in one
direction followed by a rapid, unanticipated roll into a turn in the opposite
direction. Lead will not maneuver in an attempt to force wing to overshoot.
6.26.5.2.1.3. Lead should attempt to keep wing in sight but shouldnt sacrifice
AFMAN11-251V1 17 MARCH 2008 85

flightpath deconfliction to do so. Lead must, however, keep SA of wings position


at all times.
6.26.5.2.2. Wing. Wings specific DLOs are to maintain the ET cone without
stabilizing on leads turn circle. The correct ET position is rarely static in relation to
lead. Wing should strive to maintain a position from which lead can stay visual.
Avoid leads jetwash by avoiding leads POM when crossing leads turn circle. If you
determine you will pass through leads jetwash, unload the aircraft to approximately 1
G to prevent an asymmetric over-G.
6.26.6. Terminate. Terminate the ET exercise according to AFI 11-2T-38, Volume 3.
Flight lead or the instructor can terminate for the attainment of DLOs. Lead can terminate
IAW the brief or to continue with his or her mission profile. If wing terminates the ET
exercise because of being outside the ET cone and unable to get back in the cone in a timely
manner, then lead will smoothly transition to a turn and either direct wing to continue (Colt
21, continue) once wing calls in (Colt 2s in), rejoin, or maneuver to another formation
position.
6.26.6.1. Post-terminate Maneuvering:
6.26.6.1.1. Flight Rejoins. The post-terminate maneuvering following the pre-
proficiency entry will normally be to a flight rejoin. However, lead can also direct
wing to another formation position (except close trail). Until lead directs a rejoin or
another formation position, wing will attain and maintain the fighting wing position.
If lead directs a rejoin, lead will establish 300 KCAS and either a 30-degree bank
turning or a straight-ahead rejoin platform unless briefed or called otherwise. Lead
will not change power settings below what was set during the maneuvering phase of
the ET exercise until visual with wing, or wing acknowledges the rejoin.
6.26.6.1.2. Reset to Tactical. From a perch entry, the normal post-terminate
maneuver is a reset to tactical with a climb back to the starting altitude block. The
reset to tactical is dynamic due to the likely differences in airspeed between lead and
wing. Minimal time should be spent heads down in the cockpit for both lead and wing
while the formation resets to tactical. Lead must maintain a vigilant lookout for wing
as wing solves tactical formation problems.
6.26.6.1.2.1. After the terminate call, wing will lag lead, roll wings level, and set
military power. Lead will reverse the direction of turn, set military power and
achieve and maintain 350 KCAS in the most energy efficient manner (airspace
permitting).
6.26.6.1.2.2. The timing of leads turn reversal will be relative to wings position
at the terminate call and will put wing line abreast. Once line abreast, wing will
set pitch and airspeed as required to remain line abreast and attain 4,000 to 6,000
feet spacing.
6.26.6.1.2.3. The only communications required is during the termination drill.
After the termination drill, a reference heading by lead may be used to increase
wings SA, but is optional. Wing must continuously assess lead and maneuver to
stay in position.
86 AFMAN11-251V1 17 MARCH 2008

6.26.6.1.2.4. Once the formation is reset to line abreast, wing must rely on visual
cues from leads aircraft to maintain tactical position and continue an efficient
climb to the starting altitude block. During the climb, it is essential both aircraft
maintain 350 KCAS without bleeding off airspeed in the turns. Lead may elect to
turn at less angle of attack than a level tactical turn. Wing must evaluate leads
turn rate, and adjust turn timing and turn rate to stay in position. Typically these
turns are referred to as easy turns.
6.26.6.1.3. Avionics. Lead and wing will return to the NAV master mode after the
terminate drill and no later than completion of the post-terminate ops check.
6.26.7. Energy Conservation. Energy conservation is very important for wing. Buffet in a
high-performance airplane signifies a loss of energy. When encountering buffet, wing must
decide what is more important, nose track or energy. If nose track is more important, wing
may have to sacrifice airspeed by pulling in the buffet.
6.26.8. Training Rules. AFI 11-2T-38, Volume 3, provides training rules, including KIO,
terminate, and minimum weather requirements. In addition:
6.26.8.1. Extended trail is limited to two-ship formations.
6.26.8.2. When one or more flight members lose visual contact, follow the loss of visual
contact procedures in AFI 11-2T-38, Volume 3.

Section 6CTactical Formation

6.27. Types and Principles:


6.27.1. Tactical is an umbrella term covering several formations characterized by
increased separation between the members of the flight. Tactical is the primary formation
flown when employing fighter aircraft. It is designed to optimize weapons and radar
employment while improving visual lookout and increased maneuverability.
6.27.2. A variety of tactical formations may be flown depending on the number of aircraft in
the formation and the type of employment desired. For two-ships, tactical formations include
line abreast and wedge. Both may be referred to on the radio by their separate names;
however, if the lead refers to tactical, this is understood to mean line abreast. For four
ships, tactical formations include fluid four, wall, and box or offset box. Regardless of the
variety of tactical formation being flown, some basic principles apply:
6.27.2.1. The lead aircraft is primarily responsible for maneuvering the formation, and
the wingman is primarily responsible for maintaining formation position and
deconfliction.
6.27.2.2. The wingmans primary reference for heading and airspeed is lead. The lead
must cross-check the wingmen to monitor their positions, and the wingmen must back
lead up by monitoring area orientation, navigation, etc.
6.27.2.3. Both aircraft share equal responsibility with visual lookoutone of the primary
reasons for flying tactical line abreast. Line abreast provides excellent lookout capability.
Scan patterns should include the extremes above and below the horizon.
AFMAN11-251V1 17 MARCH 2008 87

6.27.2.4. Tactical formations are normally flown at airspeeds near corner velocity (350
to 400 KCAS), but other airspeeds may be flown. Unless otherwise briefed, the standard
airspeed for tactical formation is 350 KCAS at or above 10,000 feet MSL, and 300
KCAS below 10,000 feet MSL.
6.28. Line Abreast (LAB). The parameters of this tactical formation are 4,000- to 6,000-foot
spacing, LAB to 10 degrees aft, and a vertical separation (stack) of up to +2,000 feet (Figure
6.10).

Figure 6.10. Tactical Line Abreast.

6.28.1. To enter tactical formation, lead may use a radio call (e.g., Rocky 51, tactical left
side) or a visual signal by porpoising the aircraft. The wingman then moves out into the
tactical position (see paragraph 6.28.6), clearing the flightpath while moving out. In order,
the priorities for correcting formation position are fore and aft positioning, lateral separation,
and vertical stack. Strive to fly line abreastno further aft than 10 degreesby varying
power and trading altitude for airspeed (or vice versa) to make fore or aft corrections.
6.28.2. Visual references for lateral spacing include the following:
6.28.2.1. At 4,000 feet, the VHF antenna (shark fin) disappears, the underside rotating
beacon disappears, and (or) the canopy bow disappears, and both canopies blend into one.
6.28.2.2. At 6,000 feet, the L formed by the aft edge of the vertical stabilizer and the
burner cans starts to disappear (depending on environmental visibility). Also, depending
on the environmentals, the canopy disappears or blends into the aircraft.
88 AFMAN11-251V1 17 MARCH 2008

6.28.2.3. Outside 6,000 feet, most details disappear, and the aircraft loses most of its
definition.
6.28.3. If local procedures allow, TCAS symbology on a 2.5 nm EHSI can be used to help
calibrate your eyes. Six thousand feet is approximately at the outer CDI dot, and 4,000 feet is
midway between the two dots. The A/A TACAN is also a useful tool to calibrate your eyes.
6.28.4. Strive for a vertical stack of up to 2000 feet, but remember that stack is a tertiary
priority and should only be increased as proficiency allows. Some situations may warrant a
stack in excess of 2,000 feet such as using altitude to correct fore or aft positioning. When
restricted by airspace or weather, wingmen may be required to fly co-altitude with lead.
6.28.5. Accomplish small course corrections through check turns. Accomplish turns of more
than 30 degrees by means of a delayed turn (45 through 90 degrees), in-place turn, or fluid
turn. For reversing the flightpath 180 degrees, use a hook turn or cross turn.
6.28.6. When given the signal to go to tactical LAB, the wingman will:
6.28.6.1. Clear the flightpath in the direction of the turn away from lead.
6.28.6.2. Turn away from lead to achieve 4,000 to 6,000 feet of lateral spacing. One
technique for achieving the appropriate spacing is to roll into approximately 60 to 70
degrees of bank and pull for approximately 2 seconds (approximately a 20-degree check
away from lead) while increasing power to gain airspeed (usually about 20 knots). Let the
aircraft drift away from lead, while striving to maintain line abreast and stack level. Dont
stare at any one thing (lead, avionics, etc.).
6.28.6.3. Roll back to leads approximate heading when approaching 4,000 to 6,000 feet
of lateral spacing, and set power and airspeed to match leads current parameters.
6.28.6.4. Assess LOS and adjust power, airspeed, and heading as required to zero out
LOS and HCA.
6.29. Tactical Turns:
6.29.1. Radio Calls and Visual Signals. Radio calls or visual signals may be used to signal
tactical turns. For example, the radio call for a delayed 90-degree turn would be Buzz 21, 90
left/right. No radio response is required from the wingmen. All tactical turns except a cross
turn or hook turn into the wingman may be signaled with a wing flash in the direction of the
turn. Lead should show the wingman the full planform (approximately 90 degrees of bank)
when signaling a tactical turn to avoid confusion with minor course corrections (usually use
30 degrees of bank or less). If needed to attract the wingmans attention, a zipper (double-
click on the radio microphone switch) may be combined with the visual signal. Wingmen
should assume a delayed 90-degree turn until signaled otherwise.
6.29.2. Turn Contract. As turns are executed, all aircraft need to adhere to a contract
during the turn to help ensure turn rate and radii are similar. Use the following parameters for
contract turns: MIL power, G to hold altitude and airspeed (at medium altitude,
approximately 0.35 AOA or just short of the light tickle). The second aircraft to turn (the
aircraft getting turned into) may vary power, altitude, and G as necessary to finish the turn in
position on the appropriate side of the formation. At lower altitudes, all aircraft must remain
aware of terrain elevation, descent rate, and bank angle.
AFMAN11-251V1 17 MARCH 2008 89

6.29.3. Deconfliction. The wingman takes the initiative to deconflict from lead. If the
wingman is stacked high or low, he or she should maintain that stack when commencing the
turn especially if he or she is the first to turn. The wingman should attempt to stack high
throughout the mission (unless inflight visibility or other environmental factors dictate
otherwise) to maintain a potential energy advantage. If there was no stack at turn initiation,
the wingman should telegraph his or her intentions for vertical deconfliction by positively
maneuvering the jet. Bottom line, both lead and wing are ultimately responsible for flightpath
deconfliction and must clear during turns and take appropriate evasive action if required. If
the formation is assigned a hard altitude (no altitude block), the wingman should climb or
descend slightly for deconflictionboth aircraft must adhere to the cleared altitude.
6.30. Delayed 90-Degree Turns (Figure 6. 11):
6.30.1. Turns Into the Wingman:
6.30.1.1. If the turn is called over the radio, lead begins the contract turn immediately
after the call. Otherwise, leads contract turn into the wingman signals the turn. As lead
begins the turn, the wingman continues straight ahead and deconflicts the turn by
maintaining or obtaining sufficient vertical clearance. The wingman should use this
opportunity to clear leads new 6 oclock position.
6.30.1.2. The wingman initiates a 90-degree contract turn to rollout in tactical on the
other side of lead. The timing for starting this turn occurs just prior to observing a rapid
increase in leads LOS. If the wingman is in position, the increase in LOS will occur after
lead has turned approximately 45 degrees or just prior to looking down leads intakes.
This reference does not work if wing is out of position, If out of position, the wingman
must vary the timing and G loading of the turn, based on leads LOS, to finish the turn in
position. Generally, when inside 6,000 feet or aft of LAB, the wingman should begin the
turn earlier than looking down leads intakes. When outside 6,000 feet or forward of
LAB, the wingman should begin the turn after looking down the intakes. Also, when in
proper position, at lower altitudes, the wingman should begin the turn later. The opposite
is true at higher altitudes.
90 AFMAN11-251V1 17 MARCH 2008

Figure 6.11. Delayed 90-Degree Turn.

6.30.2. Turns Away From the Wingman. This is a mirror image of the 90-degree turn into
the wingman. When directed, the wingman begins a contract turn into lead and uses all
available references to rollout after approximately 90 degrees of turn. Lead delays and then
performs a contract turn to rollout on the desired heading. During leads turn and rollout, the
wingman maneuvers to the correct position.
6.31. Delayed 45-Degree Turns (Figure 6. 12):
6.31.1. Turns Into the Wingman. If the turn is called over the radio, lead begins the turn
immediately after the call. Otherwise leads turn into the wingman signals the turn. As lead
begins the turn, the wingman continues straight ahead and deconflicts by maintaining or
obtaining sufficient vertical clearance. The wingman should use this opportunity to clear
leads new 6 oclock position. When lead rolls out, the wingman maneuvers as required to
achieve a tactical position on the other side of leads aircraft by either delaying the turn until
lead crosses the 6 oclock position or by immediately maneuvering to the other side of lead.
Either way, the aircraft being turned into should pass in front of (not over top or underneath)
the other aircraft for the geometry to work out. During communication (comm) out turns,
lead must ensure the rollout occurs before the wingman begins a delayed 90-degree turn. If
AFMAN11-251V1 17 MARCH 2008 91

the wingman begins a 90-degree turn, lead should use the radio to achieve the desired turn
(Vega 2, rollout).

Figure 6.12. Delayed 45-Degree Turn.

6.31.2. Turns Away From the Wingman. This is a mirror image of the 45 turn into the
wingman. The wingman begins a contract turn into lead when directed. Lead signals the
wingmans rollout by beginning a contract turn into the wingman. Lead will maneuver to the
opposite side of the wingman in LAB position. After lead rolls out, the wingman is
responsible for obtaining the correct spacing and position.
6.32. Other Tactical Turn Variations. For turns greater than approximately 60 degrees, lead
will generally direct a delayed 90-degree turn. For turns between approximately 30 to 60
degrees, lead will generally direct a delayed 45-degree turn. For turns approximately 30 degrees
or less, lead will call a check turn and turn to the desired heading. In all cases, the wingmans
responsibility is to maintain or regain position.
6.32.1. Check Turns. The check turn is usually no more than 30 degrees of turn. Initiate the
turn by transmitting Frisco 31, check (degrees to turn) left/right. Normally, both aircraft
execute simultaneous contract turns, and the wingman remains on the same side.
6.32.2. In-Place 90-Degree Turns (Figure 6. 13). Use an in-place turn when you want the
formation to maneuver in one direction at the same time. To initiate, lead transmits Frisco
31, in-place 90 left/right. Both aircraft turn at the same timein the same directionusing
contract turns. If executed from line abreast tactical, a 90-degree turn will put the formation
in trail at whatever lateral spacing existed prior to the turn.
92 AFMAN11-251V1 17 MARCH 2008

Figure 6.13. In-Place 90-Degree Turn.

6.33. Shackle:
6.33.1. Use a shackle (Figure 6.14) to put the wingman on the opposite side or to allow him
or her to regain the correct position. Initiate the shackle by transmitting, Mega 21, shackle.
Both aircraft turn toward each other, with the wingman ensuring vertical deconfliction.
Generally, the wingman rolls out with lead to minimize fore-aft LOS. Both aircraft reverse
the turn after crossing flightpaths. Lead rolls out on the original or desired heading, and the
wingman assumes proper tactical position.
6.33.2. If not starting out line abreast, aircraft will maneuver during the shackle as
appropriate for the situation. If the shackle is to allow the wingman to correct a forward
position, the correct lead maneuver may be to continue straight ahead. If the wingman is
behind at the start of a shackle, he or she may use less bank angle and (or) angle-off to regain
the proper position. If the wingman is ahead at the start of a shackle, he or she may use more
bank angle or angle-off to regain the proper position.
AFMAN11-251V1 17 MARCH 2008 93

Figure 6.14. Shackle.

6.34. Hook Turns. During a hook turn (Figure 6.15), the formation turns 180 degrees with both
aircraft performing a contract turn at the same time in the same direction.

Figure 6.15. Hook Turn.

6.34.1. Hook Turns Into the Wingman. A hook turn into the wingman must be called over
the radio (Bam 41, hook right/left). During the first half of the turn, lead is responsible for
keeping the wingman in sight. Shortly after halfway through the turn, the wingman should
acquire, maintain sight of, and fly off of lead. If the turn is flown properly, the wingman will
rollout in the correct position. If not, he or she must maneuver to obtain the proper spacing
and position.
6.34.2. Turns Away From the Wingman. Hook turns away from the wingman may be
signaled visually by a wing flash or called over the radio. If initiated with a wing flash, lead
will begin turning when the wingman begins his or her turn. Leads immediate turn tells the
wingman this is not a 90-degree turn. For the first half of the turn, the wingman should match
leads turn rate and be at 0 degrees AA at the 90-degree point of the turn. Use caution to
avoid leads jetwash. Shortly after halfway through the turn, lead should acquire and
94 AFMAN11-251V1 17 MARCH 2008

maintain sight of the wingman. If this turn is flown properly, the wingman will be in position
at the completion of the turn. If not, wing must maneuver to obtain the proper spacing and
position.
6.35. Cross Turns:
6.35.1. Cross turns (Figure 6.16) are another 180-degree reversal option. Both aircraft make
a contract turn into each other with altitude split for flightpath deconfliction. Two basic
challenges occur during the turn: (1) reacquiring visual contact with the other aircraft, and (2)
too much lateral spacing caused by the T-38s turn performance.

Figure 6.16. Cross Turn.

6.35.2. Cross turns will be executed on a verbal command from lead (Buzz 31, cross turn).
Immediately, both aircraft will commence a contract turn toward each other. Aircraft should
cross after 60 to 90 degrees of turn and continue their turn through 180 degrees. The flight is
now on a reciprocal heading, but, because of the large turn radius, the lateral separation will
be wide (2 to 3 nm) if the original spacing was correct. Conversely, if the wingmans spacing
was initially wide, a cross turn should result in reduced lateral separation.
6.35.3. As quickly as possible after turning through 90 degrees, each pilot must reacquire
and maintain visual with the other aircraft. If the other aircraft is not reacquired during the
second half of the turn, call blind immediately upon rollout.
6.35.4. Following completion of the turn, unless briefed otherwise, wing will begin to
correct back to the tactical LAB position. To correct lateral spacing, lead may direct a cross
turn with shackle (Figure 6.17). If the wingman is blind but lead is visual, lead may direct a
shackle while maintaining altitude separation and attempting to talk the wingmans eyes back
onto lead. Due to the distance between aircraft, it is possible for neither pilot to regain sight
after the cross turn. If this happens, both will maintain the reciprocal heading until directed
otherwise by lead. Lead will ensure altitude separation.
AFMAN11-251V1 17 MARCH 2008 95

Figure 6.17. Cross Turn with Shackle.

6.36. Fluid Turns. These turns are used to maneuver a formation when there is very little G or
excess thrust available (heavy weight and (or) higher altitudes). Lead will normally make
heading changes in 90-degree increments, using approximately 45 degrees of bank and
maintaining airspeed and altitude. Also, fluid turns are almost purely geometry turns with
power settings normally constant. If a 180-degree turn is required, combine the techniques for
two 90-degree turns (Figure 6.18). The radio call for a fluid turn is Snake 21, fluid left/right.
No acknowledgement is required.
96 AFMAN11-251V1 17 MARCH 2008

Figure 6.18. Fluid Turn.

6.36.1. Turns Into the Wingman. As a wingman, start a turn in the same direction as lead
(Figure 6.19). Whatever bank angle technique is used, you must continuously monitor leads
position. You should normally have 20 to 30 degrees of turn completed as lead passes your 6
oclock position, depending on leads position at the start of the turn. For example, if you
were behind when the turn started, you may want to delay the cross. If you were ahead, you
may want to cross earlier. Once you have crossed leads flightpath, adjust the turn to assume
proper spacing and lower the nose to pick up airspeed, if necessary.
6.36.2. Turns Away From the Wingman. As depicted in Figure 6.19, the wingman is
immediately behind at the onset of the turn. He or she will roll into more bank than lead and
lower the nose slightly to gain airspeed in order to move to the inside of the turn behind lead.
As the turn progresses, the wingman will reduce the bank to attain proper lateral spacing and
trade excess airspeed for altitude as he or she approaches the LAB position.
AFMAN11-251V1 17 MARCH 2008 97

Figure 6.19. Fluid Turns Into and Away from the Wingman.

6.37. High Altitude Tactical. When flying tactical formation above FL 250, the following
techniques are useful:
6.37.1. Normally, 0.85 to 0.9 IMN is a good airspeed range because it provides both
maneuverability and good fuel flow at the higher altitudes. These speeds also provide excess
power and, except with extremely cold outside air temperatures, will maintain operations
within the engine envelope.
98 AFMAN11-251V1 17 MARCH 2008

6.37.2. Do not plan formation flights above FL 350. However, if you must operate above FL
350, use 0.9 IMN or slightly higher as the base airspeed.
6.37.3. Energy conservation is a priority at the higher altitudes because less thrust is
available. Additionally, throttle movements must be small to avoid compressor stalls. The
basic maneuvering remains the same, but due to the increased emphasis on energy
conservation, buffet should be avoided as much as possible. To accomplish this and to
compensate for the higher true airspeed, use earlier lead turns than at lower altitudes. For
example, during a delayed 90-degree turn into, start the turn as the other aircraft turns
through approximately 30 degrees of turn (rather than 45 degrees). This should be apparent
with the LOS concept discussed in paragraph 6.30.1.2.
6.38. Wedge. Lead might direct the wingman to wedge formation (Figure 6.20) when terrain,
tactics, etc., require an increased degree of flight maneuverability. The wedge position is
primarily used in the low altitude environment. Turns do not need to be called. The wingman
will maneuver as required to maintain position. Wedge is defined as a position 30 to 45 degrees
off leads 6 oclock (30 to 45 degrees AA) at a range of 4,000 to 6,000 feet. The wingman will
not fly lower than lead in the low altitude environment and will fly no higher than approximately
500 feet above lead unless required to fly higher due to obstacle clearance during turns.
Maneuver as required to maintain position to include crossing leads 6 oclock if required.
AFMAN11-251V1 17 MARCH 2008 99

Figure 6.20. Wedge Formation.

6.39. Tactical Rejoins:


6.39.1. Overview. All rejoins will be initiated with a wing rock or radio call. Wingmen will
acknowledge all radio calls to rejoin. The standard platform for lead is 350 KCAS, 45
degrees of bank, and level flight. Different parameters may be briefed or called on the radio.
Proficient wingmen will not require a radio call when different parameters are used.
Wingmen should strive to maintain closure during the rejoin.
6.39.2. Straight-Ahead Tactical Rejoin. As the wingman, rejoin to the side occupied when
given the radio call or visual signal. Unlike a normal straight-ahead rejoin from a trail
position, a tactical straight-ahead rejoin begins from a lateral spread. The mechanics of flying
this maneuver will vary based on position when initiating the rejoin. If necessary, maneuver
vertically or laterally to gain turning room. The following should provide a systematic
approach on which to build from a LAB starting position:
6.39.2.1. If there is excessive stack (greater than 500 feet), attempt to work toward a
stack-level position.
6.39.2.2. Roll and pull the aircraft to put lead slightly forward of the LAB picture on the
canopy.
100 AFMAN11-251V1 17 MARCH 2008

6.39.2.3. Use power as required to remain slightly aft of LAB (90 degree AA off of
lead). The aimpoint should be toward the close trail position (slightly aft/low).
6.39.2.4. As range closes, lead will begin to move further forward on the canopy if
nothing is done with HCA. As this begins to occur, start taking out some of the HCA
(align fuselages) to maintain lead in a slightly forward of LAB position on the canopy.
6.39.2.5. Once in a route position, finish the rejoin to fingertip.
6.39.3. Turning Rejoin into the Wingman. Even before lead turns, wing has excessive AA
and must use lag pursuit. Maneuvering to lag helps solve the initial AA problem but
introduces excessive HCA as the wing approaches leads turn circle. An initial move in the
vertical is therefore required to build maneuvering room (turning room) to solve HCA. As
wing approaches leads turn circle, available turning room must be used to zero out HCA or to
align fuselages. With wing slightly outside leads turn circle, wing should see a slight
forward LOS rate across the canopy out of lead. At this point, wing should modulate power
to stabilize leads LOS on the canopy to cross leads six oclock at the desired range while
remaining clear of his or her jetwash. Wing establishes himself or herself back inside the turn
at the desired airspeed and AA. From here, wing follows the turning rejoin procedures
described in paragraph 6.21.3 to the briefed or directed position. As proficiency increases,
wing can work to cross leads six oclock at closer ranges to a point to where wing performs
a maneuver similar to the second half of a crossunder to the inside of leads turn.
6.39.4. Turning Rejoin Away From the Wingman. As soon as lead turns, wing is outside
the turn and needs to maneuver to the inside of the turn with lead pursuit. Use caution
because an excessive amount of lead pursuit may result in excessive AA, HCA, and (or)
closure. Cross leads six oclock while remaining clear of the jetwash and assess your energy
(airspeed, altitude differential and, angular closure). Once inside leads turn, wing follows the
turning rejoin procedures described in paragraph 6.21.3 to the briefed or directed position.
6.40. Four-Ship Tactical. A four-ship formation combines the basic elements of two-ship
tactical formation into a formation of four aircraft. The three four-ship tactical formations
include fluid four, wall, and box or offset box. With the increased number of aircraft in the
formation, all flight members must maintain visual awareness or SA on the other aircraft to
ensure deconfliction. Strictly adhering to the contract turns and aggressively maintaining proper
formation position will greatly reduce the risk of a midair collision. Although each pilot
maintains an obligation to maintain visual on all aircraft, there are situations that may prevent
this. The priority for wingmen is to maintain visual with, and maneuver in relation to, their
element lead. Number 3s priority is to maintain visual with number 1, while fulfilling element
lead responsibilities for number 4. Any time these priorities cannot be fulfilled, the flight must be
informed with a timely blind call. It is imperative for all flight members to fly the aircraft
efficiently and to try to anticipate what lead may do next.
6.41. Fluid Four. This is a simple and efficient formation for medium and high altitudes.
6.41.1. Element leads (numbers 1 and 3) fly two-ship tactical LAB. Numbers 2 and 4 fly a
fighting wing position off their respective element lead, striving to maintain a position on the
outside of the formation when not maneuvering (Figure 6.21). Tactical turns (Figure 6.22)
are made between number 1 and number 3, the same as in two-ship tactical. Element leads
can make it easier for their respective wingmen to stay in position by pausing momentarily
AFMAN11-251V1 17 MARCH 2008 101

between banking up and beginning to pull during turns, allowing the wingman to begin to
maneuver for the turn.

Figure 6.21. Fluid Four Formation.

Figure 6.22. Fluid Four Turns.


102 AFMAN11-251V1 17 MARCH 2008

6.41.2. The highest potential for conflict occurs during the turns as the elements cross during
the turn. If the element leads are LAB at the start of the turn, this conflict is minimized but
still exists if the wingman in the element being turned into has fallen back. If the element
being turned into is aft of LAB at the start of the turn, there is a much higher opportunity for
conflict, and all players must use extreme caution. Vertical stack between the element leads
minimizes the opportunity for conflicts. However, the primary means of deconfliction is
visual lookout. If the wingman of the high element is below his or her element lead, use extra
caution to ensure deconfliction between wingmen during turns.
6.42. Four-Ship Wall Formation. The four-ship wall formation (Figure 6.23) is four aircraft in
LAB tactical formation. To establish the formation, all flight members fly LAB tactical
formation as described in paragraph 6.28. The wingmen (numbers 2 and 4) fly LAB off their
respective element leads. The flight lead should brief specific stack guidance for all wingmen.

Figure 6.23. Four-Ship Wall Formation.

6.42.1. Four-Ship Wall Delayed Turns. Delayed turns (Figure 6.24) are executed similar
to a two-ship tactical. Turns are directed by a radio call or visual signal. If lead gives the
signal requiring number 4 to be the first to turn, number 3 should repeat the signal down to
number 4. The wingman on the outside of the turn (the first aircraft to turn) flies a contract
90-degree turn, and each pilot in succession uses two-ship tactical references and adjustments
to execute a contract 90-degree turn. As number 1 completes the turn, wingmen maneuver to
regain position. As in fluid four, conflicts are minimized if all aircraft are relatively LAB at
the start of the turn. If aircraft have fallen back, the potential for conflicts is increased.
AFMAN11-251V1 17 MARCH 2008 103

Figure 6.24. Four-Ship Wall Delayed Turn.

6.42.2. Four-Ship Wall Hook Turns. Hook turns are tactical turns executed by all
members of the formation simultaneously, resulting in LAB formation heading
approximately 180 degrees from the original heading (Figure 6.25). Potential for conflicts
during hook turns increases if flight members do not fly the contract turn causing the turn
radii to be different. Ensuring 0 degrees AA off of the flight member nearest to you in the
direction of the turn at the 90-degree point of the turn and flying the contract for the
remainder of the turn should result in LAB formation at the completion of the hook turn.
104 AFMAN11-251V1 17 MARCH 2008

Figure 6.25. Four-Ship Wall Hook Turn.

6.43. Four-Ship Box or Offset Box Formations:


6.43.1. Overview. Four-ship box formation is essentially two elements flying LAB tactical,
separated in trail by 6,000 to 9,000 feet (Figure 6.26). Unless specifically briefed by the
flight lead or directed by their respective element lead, number 2 and number 4 can be on
either side of their element lead, and the side number 2 and number 4 are on is irrelevant to
one another. The rear element can fly directly in trail of the lead element (box) or offset the
lead element (offset box) at leads discretion. Generally, by flying offset box, it is easier for
all flight members to maintain visual contact with one another. In offset box formation,
number 3 may elect to place number 4 in the slot. The rear element should normally stack
either high or low from the lead element, based on the brief or environmental conditions,
unless required to maintain level because of weather or airspace restrictions. Cockpit
visibility from the lead aircraft and the small size of the T-38 can make visibility between the
front and rear elements a challenge because of environmental conditions and range. This may
result in the rear element padlocking on the lead element to maintain visual.
AFMAN11-251V1 17 MARCH 2008 105

Figure 6.26. Box and Offset Box Formation.

6.43.2. Box Formation Turns:


106 AFMAN11-251V1 17 MARCH 2008

6.43.2.1. Lead directs delayed 45- and 90-degree turns with a radio call or visual signal.
Each element performs a standard delayed turn (Figure 6.27), with number 3 turning the
trailing element to finish in the correct position relative to the leading element.

Figure 6.27. Offset Box Formation Delayed Turn.

6.43.2.2. For turns in box formation, the rear element must delay for several seconds
prior to initiating its turn. One technique is for the trailing element to attempt to turn over
the same geographical point or the same point in the sky. For turns in offset box
formation, the timing for the trailing elements turn could vary from 3 to 4 seconds (when
turning away from the rear outrigger) to 7 to 10 seconds (when turning into the rear
outrigger).
6.43.2.3. For hook turns in box or offset box formation, lead directs the turn with a radio
call (Card 21, hook left/right). The standard hook turn while in box formation is for the
second element to delay, so as to remain in trail (delayed turn) (Figure 6.28). Each
element performs a contract hook turn, with all four pilots turning in the same direction.
Number 3 delays momentarily prior to turning the second element to complete the turn in
AFMAN11-251V1 17 MARCH 2008 107

trail of the lead element. (Generally, the trailing element must start its turn before the lead
element passes). If starting level with the lead element, the trailing element must
immediately climb or descend to establish vertical deconfliction.

Figure 6.28. Offset Box Formation Hook Turn.

6.43.2.4. If lead intends all aircraft to simultaneously hook, thereby placing the trailing
element in front, he or she will call for an in-place hook turn (Colt 21, in-place hook
left/right) (Figure 6.29). This will put the trailing element out in front of the lead
element. A second in-place hook turn in either direction will put the four-ship back in
standard box formation. One possible application of an in-place hook turn is while
accomplishing a G-awareness exercise.
108 AFMAN11-251V1 17 MARCH 2008

Figure 6.29. Offset Box In-Place Hook Turn.

6.44. Three- and Four-Ship Tactical Rejoins. The basic two-ship tactical rejoin concepts also
apply to three- and four-ship formations. All three- and four-ship tactical rejoins will be called
on the radio and acknowledged.
6.44.1. Straight-Ahead Rejoins. Wingmen will join on lead as described in paragraph
6.39.2 (straight-ahead tactical rejoin). Wingmen will not cross leads 6 oclock during a
straight-ahead tactical rejoin. They will join in sequence and fly no closer than 500 feet to
the preceding aircraft until the preceding aircraft are in position.
6.44.2. Turning Rejoins. In a four-ship tactical formation, number 2 rejoins to the inside
of leads turn, number 3 rejoins to the outside of leads turn, and number 4 rejoins to the
outside of number 3. Wingmen will rejoin in sequence and fly no closer than 500 feet to
the preceding aircraft until the preceding aircraft are in position. Number 4 may use
reasonable pursuit on number 3 during the rejoin. Each wingman is responsible for keeping
the preceding aircraft in sight and should avoid becoming a conflict or hazard to formation
aircraft ahead or behind.
AFMAN11-251V1 17 MARCH 2008 109

6.45. Three-Ship Options. Maintenance problems will occasionally cause one aircraft to fall
out, leaving a three-ship. Specific detailsdeputy lead, call sign changes, positions to fly,
planned position changes, etc.should be briefed by lead for each mission.

Section 6DFluid Maneuvering (FM)

6.46. Objectives. FM is an advanced building block that introduces the concepts and skills
required in future pre-BFM exercises such as guns tracking and heat to guns (Attachment 3) as
well as medium-range BFM. The objectives of FM are to:
6.46.1. Introduce and practice the administrative setups, terminations, and resets for
medium-range BFM.
6.46.2. Introduce and practice the application of air-to-air ROE.
6.46.3. Practice recognizing and solving problems of range, closure, aspect, angle-off, and
turning room from a medium-range, simulated offensive position behind a cooperative
aircraft flying a scripted training profile.
6.46.4. Practice setting and controlling AA and maintaining briefed training parameters for
the training aircraft.
6.46.5. Practice maneuvering to, recognizing, and stabilizing in the ET cone from a position
well outside that cone, simulating the recognition of a weapons employment zone (WEZ).
6.47. Responsibilities:
6.47.1. Collision Avoidance. Flight members must be vigilant with regard to clearing their
flightpath and recognizing and avoiding the prebriefed minimum range limitation (the
bubble).
6.47.2. Fuel Awareness. Because FM generally involves higher power settings for longer
periods of time, pilots must continually monitor their fuel state to prevent overflying joker or
bingo. Leads will call for an ops check before and between engagements.
6.47.3. Setup Standardization. During FM training, the need for setup standardization is
critical to the reconstruction, debriefing, and assessment of desired learning objectives. It
follows, therefore, that the training aircraft must not deviate from the prebriefed profile
(contract). Leads are primarily responsible for accurately briefing and aggressively
controlling these aspects of FM. The pilot in the maneuvering aircraft must strive to be in the
correct starting position and must not call ready until the prebriefed starting parameters can
be achieved.
6.48. FM Exercise. In addition to fulfilling the common responsibilities in paragraphs 6.47, the
two pilots in an FM exercise have distinctly different roles. (See paragraphs 6.49 through 6.61
for details of these roles.)
6.49. Training Aircraft. Although the primary training objectives are for the maneuvering
aircraft pilot, there are significant training opportunities for the training aircraft. These include
over-the-shoulder SA, POM assessment, lift vector control, floor awareness, G awareness, and
energy management. The responsibilities of the pilot in the training aircraft include adjusting
bank or backstick pressure to set the aspect, monitoring the maneuvering aircraft, and, most
importantly, flying the prebriefed parameters (the contract).
110 AFMAN11-251V1 17 MARCH 2008

6.50. Maneuvering Aircraft. FMs primary objectives are for the pilot in the maneuvering
aircraft. The responsibilities of the pilot in the maneuvering aircraft include being in level, pure
pursuit to start, helping the training aircraft pilot adjust the starting aspect, and remaining vigilant
for high over-G potential situations. Between setups, the maneuvering aircraft should maintain or
regain the prebriefed position until directed otherwise by lead while climbing at MIL power or
350 KCAS back into the briefed starting block.
6.51. FM Exercise Levels. The building block approach is used in FM training by decreasing
the maneuvering limitations of the training aircraft as the wingmans proficiency increases
(Table 6.2).

Table 6.2. Fluid Maneuvering Exercise Levels (Training Aircraft).


I A B C D E
T
E FM
M Level Maneuver Gs Airspeed Power
1 1 Level to slightly descending 2 to 4 400 (note 1) 550 EGT
(note 1)
2 2 2 to 4 250 to 400
3 3 Slight climb/descent (MAX 120
degrees bank)
4 4 Slight climb/descent (MAX 120 2 to 5 Military
(note 2) degrees bank)
NOTES:
1. Maintain constant G and airspeed. Increase G as proficiency allows.
2. IP demo or continuation training only. The wingman is allowed use of power up to MAX
afterburner.
6.52. Special Instructions (SPINS), TRs, and ROE. These three terms intertwine in their
application to training scenarios. Violation of TRs has serious implications for flight safety.
Adherence to TRs is essential to becoming a disciplined combat aviator. Outside the UFT and
PIT environment, AFI 11-214, Air Operations Rules and Procedures, mandates numerous TRs,
which have been developed over years of combat aviation training and are designed to provide a
safe, effective training environment. Although AFI 11-214 does not apply in UFT or PIT, the
concept of TRs remains the same. The term ROE has real-world combat applications, but is
also commonly used in training. The following ROE apply:
6.52.1. The floor is 1,000 feet above the bottom of assigned airspace.
6.52.2. Power settingMIL power or less. See Table 6.2.
6.52.3. The bubble1,000 feet. (If a transition to ET is briefed, the 1,000-foot FM bubble
is no longer applicable after the in call.) When the maneuvering aircraft closes to
approximately 2,000 feet and approaches a stabilized position, the training aircraft will begin
a level to slightly descending turn, maintaining constant G and airspeed.
6.52.4. The training aircraft will not execute turn reversals after the call to begin
maneuvering.
AFMAN11-251V1 17 MARCH 2008 111

6.53. Starting Parameters. A T-38s 400 KCAS, 4 G turn radius at 15,000 feet MSL is
approximately 5,200 feet. Therefore, the FM exercise begins at or slightly outside the training
aircrafts turn circle as follows:
6.53.1. Altitude block15,000 to 17,000 feet MSL. (This may be adjusted.)
6.53.2. Airspeed400 ( 10) KCAS.
6.53.3. Maneuvering aircraft pursuitpure pursuit, stacked level.
6.53.4. Aspect angle30 to 45 degrees or as briefed. The maneuvering aircraft is just
forward of the training aircrafts wingtip. (This may be adjusted for training objectives.)
6.53.5. Range6,000 feet.
6.54. Setup Comm. Each setup should be preceded by an ops check, a descriptive preparatory
call (Hammer 31, push it up, standby FM level 2), and ready calls from both pilots. The call
to begin maneuvering may be a prebriefed responsibility of either the training aircraft pilot or the
maneuvering aircraft pilot.
6.55. FM Exercise Setups. There are three ways to set up the FM exercise; from directed
positions, from a pitchout, or from tactical formation. Flexibility will afford every opportunity to
maximize training despite area and (or) weather constraints.
6.55.1. From Directed Positions. This option is a little more comm-intensive, but is
especially efficient for dealing with weather-restricted airspace. Lead maneuvers or directs
the flight as necessary back into the block and back to clear airspace for the next setup. The
maneuvering aircraft simply maintains a directed position until directed to a different
position by the flight lead.
6.55.2. From a Pitchout. Lead can accelerate in a route position to starting airspeed before
the pitchout or direct acceleration afterward. The maneuvering aircraft delays to rollout 7,000
to 9,000 feet (about 5 to 6 seconds) behind lead. The training aircraft turns to acquire a visual
and set the desired aspect. When the range decreases to 6,000 feet, the call is made to begin
maneuvering.
6.55.3. From a Tactical Formation:
6.55.3.1. After maneuvering into the block, completing setup admin, and acknowledging
the descriptive call for the next exercise, the maneuvering aircraft slides out to 7,000 to
9,000 feet LAB. If transitioning from 400 KCAS tactical, no acceleration maneuver is
required. If transitioning from a 350 KCAS climb or tactical, an acceleration maneuver is
required.
6.55.3.2. After the ready calls, lead directs a check turn (for example, Sting 11, check
45 left). The training aircraft normally turns about 45 degrees away from the
maneuvering aircraft, but may adjust as necessary. The maneuvering aircraft continues
the turn as needed to attain pure pursuit. The training aircraft reverses the turn, acquires a
visual on the wingman, and adjusts bank or backstick pressure to set the desired aspect.
When range decreases to 6,000 feet, the call is made to begin maneuvering.
6.55.4. Avionics. Lead and wing should select the A/A master mode after leads descriptive
preparatory radio call (Hammer 31, push it up, standby FM level 2). The A/A master mode
will be selected prior to the respective ready call.
112 AFMAN11-251V1 17 MARCH 2008

6.56. Initial Moves:


6.56.1. Finding the Turn Circle. If the call to begin maneuvering comes right at 6,000 feet,
the opening move is normally a delay to preserve turning room. From 6,000 feet, just a small
delay will preserve the optimum turning room for the offensive break turn, which should be
executed onor close tothe training aircrafts turn circle. Use caution during this delay to
ensure the airspeed does not increase beyond that desired for the break turn. The aspect of the
training aircraft will increase during this delay. The delay may be accomplished in-plane or
out of plane. (Many pilots prefer to create some vertical turning room as well by adding a
slight climb to their delay.)
6.56.2. Break Turn. A break turn too earlyfrom inside the training aircrafts turn
circlewill cause a cut across training aircrafts turn circle, which quickly decreases range,
but also creates very high aspect. A break turn too late will waste turning room, cause a turn
circle overshoot, and result in excessive lag and range. To execute the first break turn, roll to
place the lift vector approximately on or slightly below the training aircraft and smoothly
apply backstick pressure in a symmetrical pull to stop the training aircrafts LOS across the
canopy. The goals of the first break turn are to realign fuselages as much as possible and
decrease range while preserving enough energy and turning room to solve subsequent
geometry problems. Heightened G awareness and careful reference to current G on the HUD
are required to prevent over-Gs during the first break turn.
6.57. Lag Reposition. The lag reposition (Figure 6.30) is used to generate turning room to
solve excessive closure and angle-off problems.

Figure 6.30. Lag Reposition.

6.57.1. Position your lift vector up and out of the training aircrafts POM. (The out-of-plane
angle required will vary. In cases where aspect is decreasing too slowly, a lift vector position
AFMAN11-251V1 17 MARCH 2008 113

of more than 90 degrees to the training aircrafts flightpath may be necessary). Add backstick
pressure as required to generate turning room.
6.57.2. Once sufficient turning room has been achieved, crisply roll back to place the lift
vector on or below the training aircraft and pull to attempt to align fuselages. Use the radial
G and out-of-plane turning room made available by the lag reposition to help establish lead
pursuit. Once established in the ET cone, call in. The entire lag reposition is normally
flown at the maximum allowable power setting (MIL for UFT or PIT).
6.58. Lead Reposition. The lead reposition (Figure 6.31) is used to generate closure to decrease
range while preserving or building energy.

Figure 6.31. Lead Reposition.

6.58.1. Place the nose and lift vector such that you pull lead pursuit in a POM below the
training aircraft. (How much lead and (or) descent will vary with range, closure, the training
aircrafts LOS, and your energy state.) This out-of-plane maneuver uses turning room below
lead. Analysis of the training aircrafts LOS will tell you whether you need more or less lead
pursuit. When desired range or closure is reached, a lag maneuver or reposition may be
required to preserve turning room for realigning fuselages. Once established in the ET cone,
call in.
6.58.2. Until the end-game, the lead reposition is normally flown at the maximum allowable
power setting (MIL for UFT or PIT). Note that the picture during a lead reposition may at
times look very similar to that of a turning rejoin.
114 AFMAN11-251V1 17 MARCH 2008

6.59. Quarter Plane. The quarter plane (Figure 6.32) is an exaggerated lag reposition used as a
last-ditch maneuver to control closure and prevent a 3/9 line overshoot (often referred to as
preserving 3-9 line) at close ranges and high LOS rates.

Figure 6.32. Quarter Plane.

6.59.1. Crisply rollout of plane and pull to the training aircrafts high 6 oclock. The pull
out-of-plane is at leastand often more than90 degrees from the training aircrafts POM,
but the amount depends on closure, range, and aspect. This pull to the training aircrafts
high six reduces closure and aspect to prevent the loss of 3/9 line advantage.
6.59.2. You will probably lose sight momentarily during a quarter plane. A momentary
power reduction may be required, but leaving the power back at high AOA with the nose up
can quickly result in an excessive loss of energy.
6.59.3. Following the pull, unload and crisply roll to regain a visual and analyze your new
position. Key on the training aircrafts LOS. If the training aircraft is still moving aft, the
closure problem is probably not yet solved. If the training aircraft is stopped or moving
forward, closure is under control. Once established in the ET cone, call in.
6.60. Transition to ET. If briefed, FM may culminate with a transition to the maneuvering
phase of the ET exercise. A radio call from the maneuvering aircraft (for example, Hammer 2s
in) usually marks the transition, after which both pilots will adhere to ET parameters and
restrictions.
AFMAN11-251V1 17 MARCH 2008 115

6.61. Resets. The normal post-terminate maneuver is a reset to tactical with a climb back to the
starting altitude block. The reset to tactical is dynamic due to the likely differences in airspeed
between lead and wing. Minimal time should be spent heads down in the cockpit for both lead
and wing while the formation resets to tactical. Lead must maintain a vigilant lookout for wing
as wing solves tactical formation problems.
6.61.1. After the terminate call, wing will lag lead, roll wings level, and set military power.
Lead will reverse the direction of turn, set military power and achieve and maintain 350
KCAS in the most energy efficient manner (airspace permitting).
6.61.2. The timing of leads turn reversal will be relative to wings position at the terminate
call and will put wing LAB. Once LAB, wing will set pitch and airspeed as required to
remain line abreast and attain 4,000 to 6,000 feet spacing.
6.61.3. The only communication required is during the termination drill. After the
termination drill, a reference heading by lead may increase wings SA but is optional. Wing
must continuously assess lead and maneuver to stay in position.
6.61.4. Once the formation is reset to LAB, wing must rely on visual cues from leads
aircraft to maintain tactical position and continue an efficient climb to the starting altitude
block. During the climb, it is essential both aircraft maintain 350 KCAS without bleeding off
airspeed in the turns. Lead may elect to turn at less AOA than a level tactical turn. Wing must
evaluate leads turn rate and adjust turn timing and turn rate to stay in position. Typically
these turns are referred to as easy turns.
6.61.5. Avionics. Lead and wing will return to the NAV master mode after the terminate
drill and no later than completion of the post-terminate ops check.

Section 6EHandling Abnormal Situations in Formation

6.62. Takeoff Aborts:


6.62.1. Formation Takeoff:
6.62.1.1. If an abort becomes necessary, maintain aircraft control, ensure separation from
the other aircraft by maintaining your side of the runway, and make a radio call as soon
as practical (Flank 2 is aborting, barrier, barrier, barrier.). However, do not sacrifice
aircraft control to make a radio call.
6.62.1.2. During a formation takeoff, there will normally be no sympathetic aborts within
the element after brake release. Sympathetic aborts can create situations where a good
aircraft is risking simultaneous barrier engagement, hot brakes, or blown tires.
6.62.1.3. During an abort situation, the aircraft continuing the takeoff will maintain
its side of the runway, select full afterburner, and execute a normal single-ship
takeoff. If lead determines both aircraft should abort, he or she will direct the wingman
to abort. For example, lead will transmit, Sting 21 flight, abort, abort, abort. Being in
minimum afterburner and still overrunning lead could be the first indication that lead is
aborting. If this occurs, accomplish a separate takeoff.
6.62.2. Interval Takeoff. If you abort as lead, make a radio call to your wingman. It is
difficult for the wingman to recognize an abort using only visual cues. If, as the wingman,
116 AFMAN11-251V1 17 MARCH 2008

you have not released brakes, reduce your power and hold your position until lead clears the
runway. If you have started the takeoff roll but are below 100 knots, consider aborting
because you may not have sufficient spacing to takeoff behind lead. If you are above 100
knots, you should continue the takeoff using MAX afterburner.
6.62.3. Element Abort. If an element abort is necessary, each aircraft must maintain its
respective side of the runway and make every effort to stop prior to the end of the runway.
Any aircraft requiring a barrier engagement should transmit its call sign and barrier,
barrier, barrier. If neither aircraft can stop prior to the end of the runway, the first aircraft
to the barrier will engage the barrier and the second aircraft will take any necessary action to
prevent barrier engagement, to include departing the runway surface.
6.63. Airborne Emergencies. As much as possible, maintain formation integrity for all
airborne emergencies. If any aircraft malfunction occurs while in close formation, ensure aircraft
separation before handling the emergency. The pilot of an aircraft experiencing an abnormal
situation will advise lead of the problem, his or her intentions, and assistance required.
6.63.1. Lead. As a minimum, offer the lead to a wingman as soon as you realize he or she
has an aircraft malfunction. Except in IMC, never fly closer than route formation after giving
up the lead. If the wingman refuses the lead, try to pass the lead on recovery and on final
with clearance to land or as the situation dictates. Except in unusual circumstances, do not
land in formation with a disabled aircraft. If the wingman is able to transmit and receive with
the radio, give him or her verbal assistance as necessary. Follow the preflight briefing
instructions for emergencies so the wingman knows what to expect.
6.63.2. Wingman. When an aircraft malfunction is discovered, call knock-it-off and then
inform lead of the problem. Normally, if you are able to communicate with outside agencies
and navigate, take the lead when offered. As much as possible, avoid flying the wing position
with an emergency. If you must fly the wing position with an emergency, fly no closer than
route spacing when weather allows.
6.63.3. Radio Failure. An aircraft experiencing radio failure will normally assume or retain
the wing position. If experiencing radio failure as lead, put the wingmen in route and give the
appropriate AFI 11-205 visual signal. Then pass the lead to either number 2 or number 3 as
appropriate. If experiencing radio failure as a wingman while in close or route formation,
maneuver within close or route parameters to attract the attention of another flight member,
and give the appropriate visual signals. In other positions, do not rejoin closer than 500 feet.
Rock your wings to gain leads attention, and wait for a rejoin signal from lead. When
signaled, rejoin as close as necessary to pass the appropriate visual signals.
6.63.4. Lost Wingman Procedures:
6.63.4.1. Lead. To minimize the possibility of a lost wingman situation, brief pertinent
IMC procedures during the preflight briefing. Bring all wingmen into fingertip spacing,
and reform any three- or four-ship formation into fingertip prior to entering IMC.
6.63.4.2. Wingman. If lead fails to coordinate for a separate clearance, contact the
controlling agency. Keep in mind that lost wingman procedures do not guarantee obstacle
clearance when close to the ground. Therefore, each pilot who is executing lost wingman
procedures is responsible for terrain and obstacle clearance.
AFMAN11-251V1 17 MARCH 2008 117

6.63.5. Bird Strike. If a bird strike appears imminent, do not hit the other aircraft in an
effort to miss the bird. The primary concern is still aircraft separation. If a bird strike does
occur, ensure aircraft separation before handling the emergency. Lead should consider the
option of a wing landing if the rear cockpit pilot must land the affected aircraft and forward
visibility is severely restricted.
6.63.6. Lost Sight. In some cases, losing sight of the other aircraft does not require a
breakout or lost wingman procedure because sufficient spacing already exists. If the other
aircraft is not in sight when anticipated, use the following procedures:
6.63.6.1. Notification. Notify the other aircraft of your situation (Sting 2s blind.). In
some cases, heading, altitude, or turn information may also be appropriate with this call.
If only lead is blind, the call Sting 2 posit? is posed as a question for the wingman, who
responds with his or her position ("Sting 2, visual, your right 3 o'clock, high").
6.63.6.2. One Aircraft Is Blind. If the other aircraft has not lost sight, transmit visual
with a relative position to the blind aircraft. If lead is the blind aircraft, but the wingman
has lead in sight, lead has the option to direct a rejoin or continue to search for the
wingman based on the response to a posit call.
6.63.6.3. Both Aircraft Are Blind. If both aircraft have lost sight, lead will
immediately ensure a minimum of 1,000 feet altitude separation. Once separation is
assured, TCAS may be used to affect the rejoin. By determining relative position and
heading, lead can determine a rejoin geometry that will allow both aircraft to close and
regain the visual. Depending on the situation, this may be as drastic as turning toward one
another to close the range or as simple as directing simultaneous 10-degree check turns
into each other. Both aircraft will maintain altitude separation until one aircraft regains a
visual. The aircraft that gains the visual may direct the other aircraft to rock its wings for
positive identification. The aircraft with the visual is responsible for maintaining
separation and may direct the other aircraft to maneuver to maintain the visual. Once
positive identification has been achieved, lead may direct a rejoin.
6.63.6.4. Three- or Four-Ship Formations. All members of a multiship formation
should strive to maintain visual on all other members of the formation. However, the
wingmans primary responsibility is to maintain visual on his or her element lead.
Number 3 is responsible to maintain visual on lead. If a member of the flight loses sight
of any other aircraft, call blind or visual with the number of aircraft seen (Snake 4,
blind or Snake 4, visual two aircraft). This call may be delayed if there is no doubt as
to the identification of the aircraft with which they are visual, and no conflict exists. For
instance, in wall or offset box, if a wingman loses sight of the opposite wingman but has
maintained visual on his or her element lead and lead, a blind call would not be
required. If any doubt exists, call blind.
6.63.7. Midair Collision. If a midair collision occurs between formation members, under
no circumstances will they act as chase ships for each other.
6.63.8. Ejection. If one aircraft in a formation must perform a controlled ejection, the chase
ship should fly abreast of the disabled aircraft and no closer than 1,000 feet.
6.63.9. Spatial Disorientation:
118 AFMAN11-251V1 17 MARCH 2008

6.63.9.1. Lead. If you experience spatial disorientation as lead, immediately advise the
wingmen, and if possible, transfer aircraft control to the other crewmember. If transfer of
aircraft control is not an option, confirm attitude with the other crewmember or wingmen.
If symptoms persist, terminate the mission and recover the flight by the simplest and
safest means possible.
6.63.9.2. Wingman. Wingmen experiencing spatial disorientation will advise their other
crewmember and (or) lead when disorientation makes it difficult to maintain position.
The crewmember not in control of the aircraft or lead will advise the wingman of aircraft
attitude, altitude, heading, and airspeed. If symptoms persist and conditions permit, lead
should establish straight-and-level flight for 30 to 60 seconds and consider passing the
lead to the disoriented wingman. If necessary, terminate the mission and recover by the
simplest and safest means possible.
6.63.9.3. Three- and Four-Ship. Lead should separate the flight into elements to more
effectively handle a wingman with persistent spatial disorientation symptoms. The
element with the disoriented pilot should remain straight-and-level while the other
element separates from the flight.
AFMAN11-251V1 17 MARCH 2008 119

Chapter 7

INSTRUMENTS

7.1. Introduction. Instrument flying procedures are described in detail in AFMAN 11-217,
Volume 1, Instrument Flight Procedures, and AFMAN 11-217, Volume 3, Supplemental Flight
Information. There will be circumstances when you must rely on your instrument flying ability
to operate safely. This section will familiarize you with a few of the instrument procedures
specific to the T-38.
7.2. Instrument Cross-Check. The control and performance concept is the foundation of good
instrument flying. The T-38 HUD is certified as a primary flight reference (PFR) and may be
used as a standalone reference for instrument flight. Note: Use the UFCP AUT/DAY/NIGHT
toggle switch and H BRT control to set the desired HUD brightness during changing visual
conditions. A solid instrument cross-check will use control instruments (attitude indicator, HUD
pitch/bank scales, and engine tachometers) and performance instruments (HUD or MFD
altimeter, airspeed indicator, vertical velocity, AOA, and horizontal situation indicator [HSI]) to:
7.2.1. Establish an attitude and power setting on the control instruments. Note: Setting
precise pitch settings is easiest on the HUD; however, it may increase potential for spatial
disorientation or complicate the cross-check during IMC.
7.2.2. Trim until control pressures are neutralized.
7.2.3. Cross-check performance instruments to determine if the established attitude and
power settings are providing the desired performance.
7.2.4. Adjust attitude and power setting using control instruments, and retrim as necessary.
7.3. Prior to Instrument Takeoff (ITO). Update weather conditions and TOLD; review the
instrument departure, radar routing, terminal approach NAVAIDs and radar approach capability
at the departure airfield, and review an emergency return plan based on single-engine climb
capability and obstacle features of the departure airfield. Set up your NAVAIDs accordingly.
7.4. Rear Cockpit Takeoffs with an Instrument Hood. As you start to close the rear canopy,
pull the instrument hood forward enough to ensure it will remain clear of the canopy rails and the
canopy piercer on top of the ejection seat. When the rear canopy is fully closed, pull the
instrument hood back out of the way.
7.5. ITO. The ITO is similar to the contact takeoff except you will transition to instruments as
outside visual references deteriorate. Once airborne, hold a wings-level, takeoff attitude by
setting 7 degrees nose-high on the boresight cross (F-16 HUD) or waterline (MIL-STD HUD)
and confirm a definite rate of climb. After verifying a positive climb on the altimeter and a
positive vertical velocity, retract the landing gear and flaps. As visual references deteriorate, the
decision to transition to either the HUD or EADI will be based on proficiency, experience, and
comfort level with interpreting the applicable display. During this critical phase of flight, a
composite cross-check is essential especially if using the HUD as the primary flight reference.
Note: Use extreme caution when transitioning to instruments during the takeoff. The pitch
changes associated with gear and flap retraction in the T-38 may cause momentary disorientation
at very low altitude. A proper instrument cross-check is essential to maintain SA during this
phase of flight.
120 AFMAN11-251V1 17 MARCH 2008

7.6. Instrument Departure. In most cases, you will use the restricted MIL power climb
schedule for instrument and navigation departures. You must maintain a constant cross-check in
order to divide attention between aircraft control, departure procedures, and checklist duties.
This can be accomplished by quickly completing one item at a time and returning to your
instrument cross-check in between, with primary emphasis on the EADI or HUD.
7.7. Level Off. The lead point for level off, from either a climb or descent, will vary depending
on the vertical velocity you are using. The following techniques will help you develop smooth
lead points:
7.7.1. With low or moderate climb or descent rates, begin the level off at 10 percent of the
vertical velocity reading. For example, with a vertical velocity of 2,500 fpm, begin the level
off 250 feet early.
7.7.2. With a vertical velocity greater than 6,000 fpm, reduce the pitch attitude by one-half at
2,000 feet prior to level off, and then use 10 percent of the vertical velocity.
7.8. Arc and Radial Intercepts:
7.8.1. Turn Radius:
7.8.1.1. Arc and radial intercept techniques are based on making a 90-degree turn, using
30 degrees of bank in no-wind conditions. Because these techniques are also based on
established turns, the slower you roll into 30 degrees of bank, the more you will need to
pad your lead point. Turn radius lead points for the T-38 in miles can be calculated
using the following techniques:
7.8.1.1.1. For higher airspeeds (greater than 300 KCAS), mach number - 2 =
approximate turn radius (in miles) using 30 degrees bank.
7.8.1.1.2. At all speeds, 1 percent of GS = approximate turn radius (in miles), using
30 degrees of bank.
7.8.1.2. To adjust for less than 90 degrees of turn, use the following techniques:
7.8.1.2.1. For a turn of 60 degrees, use one-half of the calculated lead point.
7.8.1.2.2. For a turn of 45 degrees, use one-third of the calculated lead point.
7.8.1.2.3. For a turn of 30 degrees, use one-sixth of the calculated lead point.
7.8.2. Arc-to-Radial Intercepts. After calculating your lead point, use the 60-to-1 rule to
translate the lead point in miles to the lead point in radials. For example:
7.8.2.1. Using the 1-percent technique, flying at 250 KCAS corresponds to a 2.5 nm turn
radius. By applying the 60 to 1 rule, on the 10 DME arc where there are 6 radials per
mile, use a lead point of 15 radials.
7.8.2.2. At .5 mach, using the mach-number-minus-2 technique, the turn radius is 3 nm.
On the 20 DME arc where there are three radials per mile, use a lead point of nine radials.
7.9. Basic Aircraft Control Maneuvers:
7.9.1. Vertical S Maneuvers. Fly Vertical S maneuvers as described in AFMAN 11-
217, Volume 1, at various airspeeds and configurations. Normally, use a vertical velocity of
AFMAN11-251V1 17 MARCH 2008 121

1,000 to 2,000 fpm and a 1,000-foot altitude block. The following techniques can be used to
anticipate the pitch and vertical velocity changes at different airspeeds:
7.9.1.1. IMN x 1,000 = vertical velocity change for a 1-degree pitch change. For
example, at .6 IMN, you will get about 600 fpm per degree of pitch change.
7.9.1.2. Miles per minute x 100 = vertical velocity change for a 1-degree pitch change.
For example, at 300 knots true airspeed (or about 5 miles per minute), you will get about
500 fpm per degree of pitch change.
7.9.2. Steep Turns. Practicing steep turns builds confidence and instrument skills that
sometimes become necessary when 30 degrees of bank is not sufficient for safety or other
reasons. Practice steep turns at various airspeeds using 45 to 60 degrees of bank. AFMAN
11-217, Volume 1, describes factors associated with flying steep turns. Either holding the
HUD FPM or CDM on the horizon line or making desired pitch changes on the EADI can be
used to maintain altitude. The HUD heading scale or EHSI can be used for rollouts. In the T-
38C, the EHSI makes lead points for rollout negligible, usually less than 5 degrees.
7.9.3. Instrument Aileron Roll. The instrument aileron roll is one of the confidence
maneuvers discussed in AFMAN 11-217, Volume 1. As the name implies, this maneuver
builds confidence and teaches aircraft control throughout wider ranges of pitch, bank, and
airspeed. It also helps develop skills required to recover from unusual attitudes, using the
EADI during extreme pitch and bank attitudes. Perform instrument aileron roll as described
in AFMAN 11-217, Volume 1, using a minimum of 300 KCAS and 85 percent rpm.
7.9.4. Unusual Attitudes. Refer to AFMAN 11-217, Volume 1, for procedures on
recovering from instrument unusual attitudes.
7.10. Fix-to-Fix with EGI. Proceeding direct to a radial/DME fix is not a basic requirement to
operate in the National Airspace System (NAS) nor does it comply with Federal Aviation
Administration (FAA) accepted practices and procedures. Therefore, T-38 pilots will normally
use EGI when accomplishing a fix-to-fix.
7.10.1. For pilot to file or accept a clearance to navigate direct to a radial/DME fix, either the
aircraft must be RNAV capable; the flight must be conducted where radar monitoring by
ATC is available; the locally defined arrival/departure procedures must have been authorized
by the FAA; or an operational necessity must dictate the requirement.
7.10.2. To proceed direct to a fix using the EGI, type the name of the fix into the UFCP and
select EGI as the PNS. Verify that the bearing and range to the steerpoint makes sense
relative to your current position. Mistakenly entering the wrong ICAO identifier, for example
Luke AFB (LUF) instead of the Lufkin very high frequency omni-directional receiver
(VORTAC) (LFK), will yield dramatically different results. Then follow the procedures for
proceeding direct to a station as described in AFMAN 11-217, Volume 1.
7.11. Fix-to-Fix without EGI. EGI is the primary means to navigate directly to a radial/DME
fix using the procedures in AFMAN 11-217, Volume 1. However, proceeding directly to a
VOR/DME or TACAN fix can be used to understand the basics of maintaining SA off of a
ground NAVAID or common reference point (e.g., determining your position relative to another
aircraft off of a bullseye point) and is a valued core competency skill for AF pilots.
122 AFMAN11-251V1 17 MARCH 2008

7.11.1. When accomplishing fix-to-fix training without EGI while airborne, accomplish the
first three steps of the fix-to-fix, and then proceed direct using EGI as the PNS. Continue
discussing updates using the radial/DME method, but use EGI as the primary means to
navigate directly to the fix.
7.11.2. A complete understanding of the fix-to-fix procedures in AFMAN 11-217, Volume
1, without the use of EGI can be instructed, practiced, and evaluated in a simulator.
7.12. Arrival Checks. AFMAN 11-217, Volume 1, describes how to prepare for an instrument
arrival or approach. One technique for accomplishing arrival checks is the WHOLDS check
(Figure 7.1). This check is meant to be a memory aid to ensure required items are accomplished
en route to an initial approach fix (IAF), a holding fix, or prior to beginning an en route descent.
It may also be used between approaches. If an item such as a descent check or obtaining the
weather has been accomplished, it does not need to be reaccomplished between approaches.
(Note: Items in bold and italics are mandatory checks required by AFMAN 11-217, Volume 1.)

Figure 7.1. WHOLDSA Memory Aid.

7.13. Holding:
7.13.1. AFMAN 11-217, Volume 1, provides guidance for holding. Most holding fixes are
defined by DME limits; however, there are still many holding patterns that require timing.
ATC expects you to slow to holding speed within 3 minutes of the holding fix.
7.13.2. As a technique, begin reducing speed 5 to 10 nm prior to the holding fix (1 to 2
minutes) to ensure entering holding at holding airspeeds (250 to 265 KCAS). Approximately
88 to 90 percent rpm will hold 250 to 265 KCAS in level flight.
7.13.3. When correcting for position and (or) winds, you may adjust the outbound
displacement on the holding side to intercept the holding course inbound. A technique for a
no-wind starting point follows: 360 divided by DME equals the number of radials
displacement desired at the outbound DME limit. For example, a 30 DME outer limit for
holding requires about 12 radials of displacement (360 30 = 12).
7.14. En Route Descents. En route descents usually provide the quickest and most efficient
way to get from the middle or high altitude structure to a landing. The goal of an en route descent
is to arrive at a point from which vectors to an instrument final can be followed. Continually
AFMAN11-251V1 17 MARCH 2008 123

update the progress of your en route descent. If in doubt, the conservative choice is to get down a
little early. The following techniques will help you determine an appropriate pitch gradient:
7.14.1. Mathematical Gradient. Divide your altitude to lose (in thousands of feet) by the
distance to travel (in nm) and then translate the result into degrees of pitch change. For
example, you are at a cruising altitude of FL 270, 60 nm from where you would like to be
when you reach the final approach fix (FAF) altitude of 2,000 feet MSL. So, with 25,000 feet
to lose in 60 nm, you will need a descent gradient of 417 feet per nm. Because each degree of
pitch change results in 100 feet per nm, a nose-low attitude of 4 to 5 degrees will work.
7.14.2. Visualizing the Gradient. Divide your altitude (in thousands of feet) by the
distance to travel (in nm), and then superimpose that ratio using the first 10 degrees of dive
gradients on the EADI. Designate the 10-degree nose-low line on the EADI as the distance to
travel. Then visually determine where the altitude-to-lose (in thousands of feet) falls between
the level flight line and the 10-degree dive line. For example, using the same scenario as in
paragraph 7.14.1, you need to lose 25,000 feet in 60 nm. Designate the 10-degree dive line to
be the 60 (nm) and superimpose the 25 (thousands of feet) on the EADI as a visual ratio of
altitude over distance. The 5-degree dive line would represent 30 (thousands of feet), so 25
(thousands of feet) would fall about 4 degrees nose-low.
7.14.3. Pitch/Power Techniques. During the initial portion of a high altitude descentor if
the potential for icing existsconsider power settings of at least 80 percent rpm. Also
consider engine-operating restrictions when changing power at high altitudes. Headwinds
and tailwinds can drastically affect the descent distances resulting from any pitch and power
setting combination. Table 7.1 lists pitch and power setting combinations for various 300
KCAS descent gradients.

Table 7.1. Techniques for Various 300 KCAS En Route Descent Gradients.
I A B C D
T
E
M Descent Gradient Pitch Change Power Setting Configuration
1 200 to 250 feet/nm 2 to 2.5 degrees 20 to25 percent nozzles clean
2 300 feet/nm 3 degrees 30 percent nozzles
3 500 feet/nm 5 degrees 80 percent rpm
4 700 feet/nm 7 degrees idle
5 1,000 feet/nm 10 degrees 80 percent rpm speed brake
6 1,300 feet/nm 13 degrees idle
7.15. VORTAC Penetration. The purpose of a VORTAC penetration is to descend from an en
route altitude to a position from which an approach and landing can be made using the VORTAC
as the primary NAVAID. If the VORTAC and EGI steerpoint are identical or close, use caution
not to confuse the bearing pointers. Select the correct PNS before passing the IAF. Penetrations
are normally flown at 300 KCAS. However, you may fly the penetration at a slower speedor
slow down earlyif factors like a relatively short penetration or a low-DME arc make it smarter
to do so. Remember, descent gradient is based strictly on pitch attitude (independent of
airspeed). Therefore, an idle descent at 7 degrees nose-low and 300 knots will get you lower in
less forward distance than an idle descent at 6 degrees nose-low and 240 knots. If holding is not
124 AFMAN11-251V1 17 MARCH 2008

accomplished, slow to 300 KCAS, and set the inbound course prior to the IAF. Consider
requesting maneuvering airspace if your inbound heading does not conveniently align you with
the initial inbound course. Remember to set the local altimeter setting IAW Flight Information
Handbook procedures.
7.16. Precision Approaches:
7.16.1. Instrument Landing System (ILS). The ILS is a precision approach that provides
the pilot with final approach course and glidepath information, as follows:
7.16.1.1. Intercepting Final:
7.16.1.1.1. If you are still up near 300 KCAS during the last segment of a penetration
(or as you turn onto the base leg), start slowing down. No later than dogleg to final or
approximately 10 to 15 nm from touchdown, you should be slowed to 240 to 260
KCAS. Note: From 85 to 87 percent rpm will hold these airspeeds.
7.16.1.1.2. If a VORTAC is located on or near the field, selecting TACAN or VOR
as the PNS can provide useful information for position orientation and can provide a
lead radial for starting the turn to intercept the final course. If the VORTAC is not
located on the field, consider setting the EGI steerpoint to the field or the FAF in
order to maintain orientation relative to the field or the FAF.
7.16.1.1.3. No later than after commencing the turn to final, select ILS as the PNS
and set the published front course either via UFCP or MFD rocker switch. If the
course was previously set and EGI was the PNS, doublecheck that the EGI did not
change the course while updating the navigation solution. Once ILS is selected, all
VOR steering disappears. Use all available references and SA for the turn to final
dont expect the bank steering bar to guide you perfectly onto final. If established on
a dogleg to final within 30 degrees of the final course, starting the turn to final as the
CDI begins to move should allow a comfortable intercept without overshooting final.
7.16.1.2. Prior to the FAF. Have the airspeed stabilized below 240 KCAS by about 5
nm prior to the FAF. Configure the aircraft approximately 2 to 5 nm prior to the FAF.
Trim and adjust the pitch attitude appropriately on the EADI as the aircraft decelerates.
Power settings between 93 and 95 percent rpm will hold final approach airspeed in level
flight with gear and full flaps. Use 90 to 91 percent rpm for configurations with 60
percent flaps.
7.16.1.3. Course and Glidepath Control:
7.16.1.3.1. On final, make heading changes of 5 degrees or less for precise course
control. Bank angles of 5 degrees or less are sufficient for small, controlled heading
changes. To prevent overcorrecting while on the final approach course, make small
but positive corrections to centerline deviations. If configured on speed at glideslope
intercept, a pitch change corresponding with the glideslope (normally 2.5 to 3.0
degrees) should provide a good initial rate of descent.
7.16.1.3.2. At final approach speeds, you are traveling at approximately 2.5 to 3 nm
per minute so a 3-degree pitch change will produce a vertical velocity of about 750 to
900 fpm. Adjust descent rate using pitch changes of 2 degrees or less to start. Then
use changes of about 1 degree for precise glidepath control. Course and glideslope
AFMAN11-251V1 17 MARCH 2008 125

sensitivity increases as you approach decision height (DH); therefore, smaller


corrections are required to regain or maintain on course, on glidepath.
7.16.1.3.3. Cross-check raw data (glideslope indicator, CDI) to ensure proper
performance of the flight director steering. Precise pitch inputs can be made if using
the HUD. However, because of the precision available, you must avoid the tendency
to chase the flight director. Constantly monitor your altitude in relation to appropriate
weather minimums and (or) DH. Monitor your altitude in relation to localizer
minimums in case glideslope information becomes unreliable.
7.16.2. Precision Approach Radar (PAR). The PAR is a precision approach for which a
final approach controller provides verbal course and glidepath information.
7.16.2.1. Intercepting Final. The precision final approach starts when the aircraft is
within range of the precision radar, and contact is established with the final controller.
Normally, this occurs approximately 8 miles from touchdown. Prepare and configure the
aircraft the same as for an ILS.
7.16.2.2. Course and Glidepath Control. The same basic techniques for flying an ILS
(paragraph 7.16.1) can be used to fly a PAR. Follow controller instructions for heading
control. Bank angles of 5 degrees or less are sufficient for small, controlled heading
changes. If called below or above glidepath, use pitch corrections of l degree on the
EADI with corresponding 1 percent rpm changes. If called well below or well above
glidepath, use pitch corrections up to 2 degrees with corresponding 2 to 3 percent rpm
changes. As with the ILS, course and glideslope sensitivity increases as you approach
DH.
7.16.3. Transition to Landing. When approaching the DH, start glancing outside to pick up
the runway or approach lighting. You will need to look through the HUD symbology to see
the runway environment which may necessitate adjusting the HUD brightness down. Do not
fixate on the HUD while attempting to acquire sufficient visual cues to continue the
approach. Transition to a composite cross-check as you gain adequate visual references, but
be ready to transition back to instruments if weather conditions deteriorate. After the runway
is sighted, cross-check visual cues, glidepath lighting, and instruments to ensure that a safe
landing is possible. If you follow the glidepath of a precision approach down through
minimums to a landing, your touchdown will be approximately 2,000 feet down the runway.
7.16.4. Precision Approach Backup. Whenever you are flying a precision approach, be
ready to transition to a backup approach. This could be a transition from a PAR to an ILS (or
vice versa), or to a nonprecision approach. To make this transition easier, have the approach
page and or approach minimums readily available.
7.17. Nonprecision Approaches:
7.17.1. Intercepting Final. If intercepting a localizer final, use the same techniques as
described for precision approaches (paragraph 7.16.1.1). If intercepting a VORTAC final
from an arc 12 to 15 nm from the field, normally a 10-degree lead point provides a
comfortable intercept to final. This is indicated by the CDI coming off the wall. Once
established on a dogleg to a VORTAC final, approximately 3 to 4 degrees of CDI deflection
should provide a good point to turn to intercept final.
126 AFMAN11-251V1 17 MARCH 2008

7.17.2. Prior to the FAF. Prepare and configure the aircraft the same as for a precision
approach (paragraph 7.16).
7.17.3. Non-precision Final Descent:
7.17.3.1. The goal of a nonprecision final is to descend to an altitudebelow the
weatherfrom which you can make a safe transition to landing. Therefore, it is
imperative that you plan and fly the descent so as to reach the minimum descent altitude
(MDA) prior to the visual descent point (VDP).
7.17.3.2. One method for planning the pitch change at the FAF is to calculate the
required descent angle. To do this, determine the difference in altitude between the FAF
and the MDA, and divide by 100. Then divide this number by the distance from the FAF
to the VDP in miles to get the number of degrees nose-low required to reach the MDA by
the VDP. For example, your FAF altitude is 5,000 feet; your MDA is 3,000 feet; and the
distance from the FAF to the VDP is 4 nm. Therefore, you have 2,000 feet to lose
(dividing by 100 gives you 20). Finally, dividing 20 by 4 nm equals 5. Your optimum
descent will be about 5 degrees below the level flight reference.
7.17.3.3. At the FAF, or when directed by the controller to descend to your minimum
descent altitude, lower the nose about 4 to 5 degrees on the EADI. Reduce power by
approximately 10 percent rpm to maintain final approach airspeed in the descent.
Normally, a descent rate of 1,200 to 1,500 fpm will ensure you arrive at the MDA prior to
the VDP. Use caution for intermediate stepdown restrictions prior to the MDA. As a
technique, reduce your descent rate 200 to 300 fpm prior to the MDA. Level off above
the MDA by an amount appropriate to your proficiency level and readjust power (93 to
95 percent rpm will hold final approach airspeed).
7.17.4. Calculating a VDP. If published on an approach plate, the VDP is based on the
nonprecision approach with the lowest MDA and is normally identified by DME. If the VDP
is not published, you must compute your own. The following is a technique for a 3-degree
glidepath: height above touchdown (HAT) divided by 300 equals the descent point from the
threshold in nm. Calculate the threshold DME off the profile view. Then convert the distance
in nm to DME by adding or subtracting the threshold DME. If you are going toward the
VORTAC, add the distance. If you are going away from the VORTAC, subtract the distance.
For example, from a HAT of 450 feet, 450 divided by 300 equals 1.5. Therefore, your
descent point from the threshold would be 1.5 nm. If the threshold DME is calculated to be
0.3 DME for a VORTAC on the field, the VDP would be 1.8 DME (1.5 nm plus 0.3 DME).
7.17.5. Transition to Landing. If the runway environment is in sight at the VDP and you
are in a safe position to land, a 3-degree nose-down pitch change along with a slight power
reduction should set up a transition to landing for the normal landing zone. If you begin the
transition late or if the runway is sighted after the VDP, you can either accept a slightly
longer landing (if runway length and condition allows) or, if weather and conditions permit,
use a momentarily steeper glidepath to re-intercept a 3-degree glidepath.
WARNING: Use extreme caution to avoid excessive sink rates during transition to landing. If
not in a position to execute a safe landing, execute a low approach, missed approach, or
climbout.
AFMAN11-251V1 17 MARCH 2008 127

7.18. Circling. Circling is accomplished at final turn airspeed with 60 percent flaps. During
the instrument final approach, descend no lower than circling MDA for the runway to which
the instrument approach is flown. Maintain circling airspeed and 60 percent flaps throughout
the entire circling maneuver until aligned with the landing runway. Do not descend below
MDA until in a position to place the aircraft on a normal glidepath to the landing runway.
Once aligned with the landing runway in a safe position to land, slow to final approach airspeed
and select full flaps, if desired.
7.18.1. Downwind Displacement:
7.18.1.1. For circling maneuvers requiring a downwind leg, proper displacement from
the runway is critical (approximately 1.5 nm). A low circling altitude will make you feel
much wider than you are. Attempting to use sight pictures for the normal overhead
pattern may cause an overshooting, high-bank angle situation during the turn to final. Do
not hesitate to go around if you will need to overbank to prevent an overshoot.
7.18.1.2. Unlike the normal overhead pattern in which a good part of your turn radius is
consumed in the vertical, the circling final turn radius is almost entirely absorbed
horizontally. The amount of spacing required to complete the turn to final will vary with
airspeed (fuel weight), bank angle, and winds. Poor visibility may require you to stay
closer to the runway, but do not use a displacement that requires more than 45 degrees of
bank to complete the final turn. As a technique, you should plan to practice circling to
remain within published visibility minimums.
7.18.2. Downwind Spacing Techniques. The following techniques assist the transition
from the instrument approach portion to arrive at a perch with sufficient spacing to complete
the final turn. (Note: When using any of these techniques, you must correct for winds.)
7.18.2.1. To Circle 180 Degrees or the Opposite Direction:
7.18.2.1.1. Turn 45 degrees away from the runway until you have flown down the
runway about the same distance as your desired displacement. Then turn to parallel
the runway prior to the turn to final. For example, for a 10,000-foot runway, hold the
45-degree offset until approaching the end of the runway in forward runway distance
covered. This will build about 10,000 feet of spacing.
7.18.2.1.2. A second option is to perform two 90-degree turns using the desired final
turn bank anglethe first to turn perpendicular to the runway, and the second to turn
to parallel. Keeping the runway in sight will be more challenging using this
technique.
7.18.2.2. To Circle 270 Degrees. Fly past the runway 15 seconds. Then use the desired
final turn bank angle to turn downwind. After passing the landing runway, a second
option is to turn downwind, using a bank angle with twice the turn radius of your desired
final turn bank angle.
7.18.2.3. To Circle 360 Degrees. Consider delaying the initial turn so you can more
easily keep most of the runway environment in sight over your shoulder. If you begin a
360-degree circle at the approach end of the landing runway, you will be belly-up to the
runway environment and you could lose sight.
128 AFMAN11-251V1 17 MARCH 2008

7.18.3. Circling Considerations. You must remain vigilant for stall indications and have
the discipline to execute a go-around or stall recovery when required. The circling approach
presents a potential sink rate problem in the T-38 that may not be accompanied by a stall
warning. An overbank during a circling approach creates an insidious descent, which adds to
the potential danger.
7.18.4. Unplanned Circling. There may be occasions when you must begin circling from
final approach airspeed. For instance, if the runway becomes wet during a formation
approach, one aircraft may have to circle to land while the other full stops. In these instances,
remember to check and reset the flaps to 60 percent and accelerate to final turn airspeed
before starting the circle.
7.19. Sidestep:
7.19.1. A sidestep maneuver is a small visual groundtrack adjustment at the end of a
straight-in approach to allow an approach to one runway and a landing on a parallel runway.
Where this maneuver is authorized, there may or may not be sidestep procedures or MDAs
published on the approach plate. If you are cleared to sidestep where there are no published
sidestep MDAs, use circling minimums. Clearance to sidestep will be issued by the tower.
7.19.2. Although sidesteps are not circling maneuvers, one technique is to configure with
gear and 60 percent flaps and maintain a minimum of final turn airspeed. In any case,
maintain no less than final approach airspeed during the sidestep. You may begin the sidestep
maneuver anytime after the landing runway is in sight and inside the FAF. Lower full flaps
and slow to final approach speed when aligned with the landing runway in a safe position to
land.
7.20. Missed Approach:
7.20.1. Perform a missed approach IAW AFMAN 11-217, Volume 1, and the flight
manual. Advance power to MIL, close the speed brake if open, and raise the nose to 5
degrees nose-high on the EADI (approximately 7 degrees nose high on the boresight cross
and waterline). With a positive vertical velocity and positive climb established on the
altimeter, retract the gear and flaps. Accelerate to and maintain 240 to 300 KCAS in a
positive climb until reaching missed approach altitude. After attaining 240 KCAS, power can
be reduced as necessary to slow the rate of climb.
7.20.2. If a single-engine missed approach is necessary, apply single-engine go-around
boldface. The pitch change required to achieve 5 degrees above the last known level-flight
pitch attitude will be about 8 degrees when going missed approach from DH. The pitch
change will be about 5 degrees when going missed approach from MDA.
7.20.3. For circling approaches, if the runway environment is not in sight at the missed
approach point, execute the verbally issued climbout instructions or published missed
approach. If the circling maneuver has been started and the airport environment is visually
lost, perform a missed approach for the runway to which the approach was flown IAW
AFMAN 11-217, Volume 1.
AFMAN11-251V1 17 MARCH 2008 129

Chapter 8

NAVIGATION

8.1. Introduction. The purpose of navigation is to get from point A to point B. Whether
accomplished on a cross-country mission or used to find a target, navigation requires significant
preflight planning. Planning a navigation sortie requires you to consider many factorsrunway
length, barriers, servicing availability, airfield operating hours, etc.taken for granted at the
home field.
8.2. Preflight Planning. Prior to departing on any off-station mission, familiarize yourself with
the strange-field procedures located in applicable FLIP guidance and Section II of the flight
manual. Throughout all your planning, be very careful to use accurate local or Zulu time, as
appropriate. Before starting detailed mission planning, verify the following basic requirements:
8.2.1. Ensure your arrival and departure fall inside operating hours for the airfield and the
transient alert or servicing fixed base operator (FBO).
8.2.2. Make a preliminary check of the weather, winds, notices to airmen (NOTAM), and
airfield suitability and restriction report for showstoppers, like runway closures, winds out of
limits, or forecasts below minimums. For RNAV operations, check GPS NOTAMs and
receiver autonomous integrity monitoring (RAIM) availability before flight. Note: There is
an approved FAA website for RAIM checks at http://www.raimprediction.net/ac90-100/.
8.2.3. Call your destination to ensure you can go there, get proper servicing, have a place to
stay (if applicable), and depart on schedule. If necessary, obtain a prior permission required
number. While you have the destination station on the phone, ask about the landing runway,
multiple approach availability, serviceability of the start cart (has it been started and used
recently?), and any unusual procedures or facility changes that are not in the NOTAMs.
Variations in off-station pressure altitude, temperature, and runway length could result in
TOLD numbers significantly different from typical home field computations. Where the
combination of pressure altitude and temperature might be a factor, ensure the TOLD at the
outbase will not prohibit your departure.
8.3. Single-Engine Planning. Due to the performance limitations of the T-38 during single-
engine situations, departures require detailed planning IAW current MAJCOM and subordinate
guidance to meet AFI 11-202, Volume 3, requirements.
8.4. Planning an IFR Navigation Mission:
8.4.1. Weather and Winds. The weather and winds determine if you can takeoff; where,
how far, and (perhaps) how high you can fly en route; whether you can land at your
destination; and if an alternate is required. Prior to the detailed planning, check the following:
8.4.1.1. Departure, en route, destination, and drop-in weatherobservation and forecast.
8.4.1.2. Climb and cruise winds, Delta-T, and temperature at altitude for each leg.
8.4.1.3. Surface winds at each base.
8.4.1.4. Possible hazardsicing, thunderstorms, etc.
130 AFMAN11-251V1 17 MARCH 2008

8.4.2. Routing. Look at the high or low charts to determine the most suitable route of flight.
Consider any hazards, no-fly areas, MOAs, standard terminal arrival routes (STAR), and
preferred routing. Failure to consider these can cause lengthy delays or changes to your
planned flight route.
8.4.3. Distance. Make sure your planned leg lengths provide you with enough fuel to
complete training objectives and land with a buffer above minimum fuel. Planning to arrive
at your destination with minimum fuel will greatly reduce your options if you experience any
delays orworst caseif you need to divert. Headwinds and tailwinds are often significant
factors. If your plan requires the use of reduced visual separation measures (RVSM) airspace,
you will need a suitable alternate that does not require access to RVSM airspace (reference
AFI 11-202, Volume 2). Some techniques for leg-length decisionmaking are as follows:
8.4.3.1. High altitude, no wind, no drop-in, no pod, one approach to full stop
approximately 700 nm max.
8.4.3.2. High altitude, some wind, no drop-in, pod or clean, one approach
approximately 500 nm.
8.4.3.3. Drop-ins with various approach combinations, pod or cleanapproximately 300
nm.
8.4.4. Adjustments for the Weapon System Support Pod (WSSP):
8.4.4.1. Flying with the WSSP will cause higher fuel flows due to increased drag. The
faster and farther you travel, the greater the fuel effect from a pod.
8.4.4.2. Based on the flight manuals high altitude cruise charts and 11,000 to 12,000
pounds gross weight:
8.4.4.2.1. The WSSP will increase fuel consumption by about 125 pph per engine at
FL 250 and 0.75 mach. Depending on climb, descent, approach, and distance
requirements, a reasonable technique would be to plan for using an additional 150 to
200 pounds for these scenarios.
8.4.4.2.2. The WSSP will increase fuel consumption by about 220 pph per engine at
FL 350 and 0.9 mach. Depending on climb, descent, approach, and distance
requirements, a reasonable technique would be to plan for using an additional 250 to
300 pounds for these scenarios.
8.4.5. Cruising Altitude. Select cruising altitudes and airspeeds consistent with mission
requirements, applicable directives, and safety. RVSM restrict your ability to fly above FL
280. The optimum cruise-climb altitude chart in the flight manual provides the best altitude
for initial level off based on fuel weight. The best altitude for fuel economy will increase as
gross weight decreases. However, due to the need to fly at higher mach, the susceptibility of
the J-85 engines to flameouts and compressor stalls and the inefficiency of the PMP modified
engines at higher altitudes virtually negate any fuel consumption advantage at higher
altitudes.
8.4.6. AF IMT 70, Pilots Flight Plan and Flight Log. Although it can be very useful in
many ways, the AF IMT 70 is primarily a fuel-planning template. You must do enough fuel
planning to ensure mission safety. Beyond that, filling out an AF IMT 70 is left entirely to
pilot technique.
AFMAN11-251V1 17 MARCH 2008 131

8.4.7. DD Form 175, Military Flight Plan. Air Force pilots are required to file a flight
plan (FPL) for all flights. After completing the AF IMT 70, fill out the DD Form 175
according to FLIP General Planning. Designate the T-38C as /I (slant I) transponder DME
(TD) code on RNAV FPLs. When RNAV operations are not conducted, designate the T-38C
as /A (slant A) TD code on the DD Form 175. Use the en route charts when filling in the
route of flight portion to avoid errors. On UFT student solo navigation missions, add the
letter Z as a suffix to the aircraft call sign (Do not use the Z in air or ground
communications).
8.4.8. Destination Review. Note obstacles, airfield layout, barriers, approach lighting, type
of visual glidepath guidance, field elevation, runway data, important frequencies, for your
destination and any possible en route or destination divert options.
8.5. Planning a VFR Navigation Mission. Maintaining SA will be different on a VFR mission
because, although you have fewer distractions from ATC, you also receive less information. This
affects the way you plan the mission and the tasks you perform while airborne.
8.5.1. Weather and Winds. VFR conditions do not necessarily mean the absence of clouds.
The pilot is responsible for determining that VFR conditions and cloud clearances can be
maintained for the entire proposed route of flight.
8.5.2. Map Selection. Choose an operational navigation chart (ONC) or tactical pilotage
chart (TPC) based on the desired level of detail. As a technique, use an ONC when flying
above 6,000 feet AGL and a TPC when flying below. A joint operations graphic (JOG) chart
may be used for detailed route study and preflight planning. World aeronautical charts
(WAC) and sectional charts are the same scale as ONC and TPC respectively and include
airspace boundaries and frequencies.
8.5.3. Map Preparation. There is a wealth of information you may choose to put on your
VFR map. You may want to highlight emergency airfields, VORTAC stations, tower
frequencies, etc. Additionally, you need to mark turn points, courses, headings, checkpoints,
obstacle elevations, etc., for your route. You will need to plan for a specific GS and make
tick marks for timing. You may run either a continuous clock or individual leg times. Other
handy information would include Class B, C, and D airspace boundaries and frequencies,
conflicting airways, air route traffic control center (ARTCC) sector frequencies, and planned
fuels. Flight planning software specified by your MAJCOM provides excellent tools for
preparing and printing VFR maps. Once you receive appropriate training in the use of the
planning software, the time spent preparing your VFR map will be significantly less than if
you did it manually.
8.5.4. Routing. You must do enough research on special use airspace, victor airways, and
Class B, C, and D airspace to avoid them. Dont forget to consult the temporary flight
restrictions (TFR) NOTAMs to identify any temporary airspace restrictions along your route
of flight. Use very prominent features that you could still navigate by despite potential low
scattered clouds when selecting turn points.
8.5.5. Distance. When determining the length of a VFR leg, consider the altitude you plan
to fly and the winds at altitude. VFR legs between 250 and 350 nm work well, with or
without a travel pod. This will allow you fuel for several overhead patterns or the option of
132 AFMAN11-251V1 17 MARCH 2008

coordinating for practice instrument approaches after your VFR arrival. As a guide, do not
plan a VFR leg greater than 400 nm.
8.5.6. AF IMT 70 for VFR Missions. If all pertinent informationincluding fuel
requirementsis on your VFR map, an AF IMT 70 is not required for the portion of the VFR
mission covered by the map. Measure headings and distances directly from the VFR map.
Compute your GS by using the forecast winds, and use it to determine the total time en route
and fuel required. As a technique, include all information youll need for the VFR arrival
(frequencies, pattern altitudes, etc.) on your map.
8.5.7. DD Form 175 for VFR Missions. The Route of Flight block on the DD Form 175
should include enough information to allow search and rescue operations to trace your
flightpath. You may use any of the following: names of cities and towns, prominent
landmarks or bodies of water, VORTAC radial and DME, latitude and longitude, or VFR
reporting points.
8.6. Preflight Ground Operations:
8.6.1. Logistics. As many pilots have discovered over the years, being without necessary
equipment, paperwork, or supplies can seriously degrade your cross-country experience.
Maintenance should help you launch with tires and aircraft inspections that will last for the
duration of the cross-country flight. In addition to personal baggage, before launching from
any home station or outbase, consider including the following dont leave without it items:
(Note: These are not all-inclusive.)
8.6.1.1. Required low and high en route charts.
8.6.1.2. Required approach plates and STARs.
8.6.1.3. Low-level and VFR maps.
8.6.1.4. Instrument hood.
8.6.1.5. Aircraft forms (AFTO Form 781-series).
8.6.1.6. Civilian and military fuel cards.
8.6.1.7. Fuel receipts.
8.6.1.8. Intake, exhaust, and HUD covers.
8.6.1.9. AOA vane lock.
8.6.1.10. Grounding wire.
8.6.1.11. Flashlights and clear visors.
8.6.1.12. Data transfer cartridge and VTR tape(s).
8.6.2. Transient Alert or FBO Ground Crews. Ensure transient alert FBO personnel are
familiar with starting and post-start procedures. Become familiar with how to operate the
manual diverter valve in case you need to explain its operation.
8.6.3. Getting Clearance. Prior to engine start, determine the status of your clearance with
clearance delivery or ground control. If you anticipate any delay, consider postponing engine
start until receiving your clearance. Be sure you can comply with any differences between
AFMAN11-251V1 17 MARCH 2008 133

your received clearance and your planned route of flight. For VFR flights, local directives
and good sense may require you to ask for a squawk for flight following.
8.6.4. Cockpit Organization. Cockpit organization is very important. Arrange your
publications so you can get to everything without cluttering up the cockpit. Arrange
publications in the map case in the order you will likely use them. More than for other types
of missions, you will need a place to write on short notice, so put your cards, AF IMT 70,
and kneeboard near your writing hand. Do not have any publications loose with the canopy
open.
8.7. Departure:
8.7.1. Departing from a Nonmilitary Airfield. When departing from a nonmilitary field,
you must contact the nearest flight service station (FSS) or coordinate through tower with
your actual departure time so you do not arrive unannounced at your destination.
8.7.2. Departing VFR. After you are cleared for takeoff, squawk 1200 and remain on
tower frequency until you depart their airspace. If departing an airfield that lies within
Class B or C airspace, you must contact departure control after takeoff. Until you exit ATC
airspace, comply with any instructions (headings, altitudes, squawks, etc.) issued by ATC. If
you depart from a civilian field, you will need to contact the nearest FSS on 255.4 or 122.2
to activate your FPL. You are responsible for maintaining VFR cloud clearances. Once
you leave tower frequency, you have two options:
8.7.2.1. VFR Option Number 1. Contact ATC for flight following. Squawk the
assigned code (if other than 1200), and fly requested altitudes if weather allows. ATC
will provide you with traffic advisories as time permits, but you must aggressively clear
at all times. You will be passed from controller to controller as you proceed along your
route.
8.7.2.2. VFR Option Number 2. You may remain on 255.4 or 122.2 (the FSS
frequency) for the entire route of flight. If you choose this option, contact subsequent
FSSs as your sortie progresses. Remember to set the local altimeter at least every 100 nm.
8.8. En Route IFR and VFR:
8.8.1. Airspeed. When flying at high altitude, maintain an IMN appropriate for the engine
envelope. The flight manual checklists Engine Compressor Stall/Flameout Susceptibility
chart specifies a minimum IMN for a given altitude and temperature. Anything that induces
turbulence or interrupts airflow, such as bank, yaw, or abrupt throttle movement, can increase
susceptibility to flameout or compressor stall.
8.8.2. Groundspeed (GS) Check. Once stabilized at your planned cruise airspeed, compare
your actual GS to the planned GS to determine the effect of the actual winds and how they
might impact fuel planning.
8.8.3. Waypoint Checks. As you pass your planned waypoints, compare your actual fuel
and flight time to those you planned.
8.8.4. Flight Plan and Route of Flight Adjustments. Unusual ground delays, low altitude
stepup restrictions, and (or) unforecast headwind velocity could place you in a potentially
fuel-deficient situation. Apply any significant differences between planned GS and (or) fuel
remaining to the remaining route of flight and modify your FPL, if necessary. In a worst-case
134 AFMAN11-251V1 17 MARCH 2008

situation, you may have to divert to a suitable airfield short of your destination. The
emergency divert mode of the EGI can be helpful in determining fuel remaining at the
destination.
8.8.5. Lead Points:
8.8.5.1. When flying on published jet routes or airways, remaining within the protected
airspace requires the use of good lead points during turns to new courses. The most
mathematically unusual situation occurs when making a significant turn over a VORTAC
waypoint because the cone of confusion will begin at a rather large slant-range DME.
The technique (mach minus 2) will give you the correct lead point in nm, but triangle
hypotenuse math is required to turn it into a useable, close-to-the-station DME.
8.8.5.2. The following is an easier technique to calculate no-wind DME lead points for
30-degree bank turns at normal cruising airspeeds or altitudes: lead point equals 1 nm for
each 30 degrees of turn plus altitude in nm above the station. For example, approaching a
VORTAC at FL 360, you would be turning from a 270-degree inbound course to a 330-
degree outbound course. For this 60-degree turn, you would take 2 nm (1 nm for every 30
degree of turn) and add 6 (your altitude in nm). Your lead point would be approximately
8 DME.
8.8.5.3. When conducting RNAV operations using waypoints in an activated FPL,
ensure the waypoints are set as flyby points (FBY). FBY points will ensure that the FD
commands proper lead turns appropriate for en route navigation. FBY can be confirmed
and selected via UL-4 on the UFCP FPL submenu display or viewed on the MFD FPL
display page.
8.8.6. Radio Frequencies. Maintain a record of assigned frequencies in case you are sent to
a bad frequency and must recontact the last controller.
8.8.7. Positional Awareness. Because a radio or NAVAID failure can occur at anytime,
maintain constant positional awareness through the use of NAVAIDs, map reading, and dead
reckoning (DR).
8.8.8. Weather and Winds. Check the weather far enough out (80 to 120 nm) so you can
be thoroughly prepared for your arrival as well as any unexpected changes or diverts. In
addition to checking destination or drop-in weather, you may want to check the weather at
your planned alternate. If you have time and (or) are queried by a pilot to metro service
(PMSV) forecaster, make a pilot report (PIREP). (The format is in the Flight Information
Handbook [FIH].) To obtain destination, drop-in, or alternate weather and winds en route,
there are several options:
8.8.8.1. Automated Terminal Information Service (ATIS). This is the easiest and
quickest option but not always a reliable one. Some ATIS messages are less complete and
less frequently updated than others, especially on weekends. Listen for the time group to
see how old the information is and make decisions accordingly. Note the letter identifier
for your check-in with approach control.
8.8.8.2. PMSV. If the weather is poor, PMSV is usually a better source of updated
information if it is available. The information provided should be current; you can talk to
AFMAN11-251V1 17 MARCH 2008 135

a forecaster if needed; and you can ask real-time questions about trends, actual
thunderstorm activity, divert options, etc.
8.8.8.3. Approach or Tower. Consider this option if: (1) you are unable to receive
ATIS or contact PMSV, or (2) you are arriving at a civilian field with no ATIS. Use
discretion on what could be a busy frequency. A quick request for the landing runway
and current observation will give you enough information to make initial decisions.
8.8.8.4. SOF. At military fields, the SOF on duty can be an excellent option in lieu of
ATIS or PMSV. In fact, in certain circumstances (timing of exercises, ceremonial events,
FBYs, etc.), talking to the SOF may be highly preferred.
8.8.8.5. FSS. Contact an FSS on frequency 255.4 or 122.2, using the call sign radio
(for example: Greenwood radio). FSSs contain reliable, full-service teams, complete
with PIREP information, when its been provided.
8.8.8.6. Automated Weather Observation System (AWOS). Many civilian fields are
modernizing their weather service by installing automated weather equipment to provide
timely and accurate surface weather conditions to pilots, ATCs, other aviation users, and
the national weather data network. AWOS provides an automated and continuous real-
time weather reporting system that transmits weather data to both airport personnel and
aircraft via VHF radio. AWOS collects and transmits data on wind direction and speed,
altitude, density altitude, temperature, dewpoint, and relative humidity. It may also report
cloud heights and thunderstorm activity.
8.8.9. VFR Altitudes En Route. Fly appropriate VFR altitudes according to FLIP.
Assuming you have the weather and have cleared carefully, you may change your altitude at
any time during the flight. You do not need permission to alter your altitude, but you should
inform the controlling agency of your intentions if you are getting flight following service. In
formation, all flight members should be at an appropriate VFR altitude.
8.8.10. Encountering Unexpected Weather While VFR En Route. If you encounter
unexpected weather, you have the following three options:
8.8.10.1. Alter Route of Flight and Continue. You may alter your route and (or)
altitude to avoid unexpected weather, but you must continue to maintain the required
VFR cloud clearance and visibility requirements. Ensure your fuel allows any deviations
from the plan. Inform FSS personnel of any major route changes and pass them a PIREP
describing the unexpected weather.
8.8.10.2. Return to Base of Origin or Divert. If you have not proceeded far from your
departure field, turning around and returning there may be the best option. If you are
significantly down track on the route, proceeding to an alternate airfield may be
preferred. In either case, maintain VFR conditions and ensure sufficient fuel exists.
Inform FSS personnel of route or destination changes; give them a PIREP; and obtain the
NOTAMs for your new destination.
8.8.10.3. Pick Up an IFR Clearance. Contact an FSS or controlling agency to file an
IFR clearance. (ARTCC frequencies can be found on FLIP low altitude en route charts).
Until your IFR clearance is activated, you must maintain VFR conditions. Picking up an
IFR clearance while airborne is really quite simple but requires some preparation. You
136 AFMAN11-251V1 17 MARCH 2008

will be required to provide the same type information that you would use on a DD Form
175. Use the sequence on the back cover of the IFR en route supplement to help you
organize and provide the right information.
8.9. VFR Lost Procedures. First, use every possible resource to regain positional awareness.
Use EGI steering to determine the course to a known point. Use your lat/long present position on
the MFD EGI display page or radial/DME from a known NAVAID to plot your position onto
your VFR map. If the DME is inoperative, attempt to identify your location by cross-tuning
radials from two different NAVAIDs. If, after using every possible resource for positional
awareness you still cannot determine your position, follow this habit pattern:
8.9.1. ClimbConserveConfess:
8.9.1.1. Climb. For fuel conservation, climb to the highest possible altitude below FL
180 where you can maintain VFR.
8.9.1.2. Conserve. Establish the maximum endurance airspeed for your fuel weight (230
KCAS + total fuel). Another technique is to use the Endurance (ENDR) profile in the
emergency divert mode and fly the commanded CAS/IMN for your current altitude.
BNGO in the emergency divert mode display block on the MFD also provides you with
time to reach your selected Bingo fuel under current conditions when operating in the
ENDR profile.
8.9.1.3. Confess:
8.9.1.3.1. Call for help. Admitting you are lost and getting help is far better than
delaying until you are low on fuel. Start with appropriate ARTCC and approach
frequencies (try several if necessary), but do not hesitate to use guard frequency. For
guard calls, preface the call with mayday, mayday, mayday, give your call sign, and
request help from any agency hearing the transmission.
8.9.1.3.2. A number of controlling agencies will probably answer your distress call.
Select one and direct the rest to remain silent. Select Emergency on the identification,
friend or foe/selective identification feature (IFF/SIF) using the UFCP or set code
7700 in Mode 3/A. When the Emergency function is selected, the IFF/SIF IDENT
feature will not be available, so consider entering 7700 into the Mode 3/A instead.
The controlling agency can give you heading and distance information to the nearest
suitable airfield, your home field, or your destination.
8.9.1.4. Check the Compass. Ensure your EHSI is operating properly and compare it to
the standby magnetic compass.
8.9.1.5. Without Radio Contact. Attempt to pick out a prominent landmark on the
grounda body of water, a town, a large airport, or a railroad crossing are all good
landmarks. Try to orient your map with the selected landmark. If you cannot locate the
landmark on your map, do not wander aimlessly. Fly a definite heading until you can
identify a good landmark.
8.10. IFR Arrival:
8.10.1. Descent from High Altitude. Consider preheating the canopies with the canopy
defog because descents into warmer, humid air may cause the canopies to fog up.
AFMAN11-251V1 17 MARCH 2008 137

8.10.2. Clearances. There are at least three clearances requiring careful attention during any
arrival:
8.10.2.1. IAF or Beginning En Route Descent. Before arriving at an IAF or holding
fix, or before beginning an en route descent, know your clearances and any restrictions.
These often include holding instructions, approach clearance, clearance to use
maneuvering airspace, expect further clearance times, en route descent instructions, etc.
This is especially important when on an en route descent in the event of radio failure.
8.10.2.2. Missed Approach or Climbout. Before the FAF, coordinate climbout, missed
approach, alternate missed approach, and (or) departure instructions, as appropriate.
Write them down!
8.10.2.3. Landing. Passing the FAF, ensure you know your clearances and restrictions;
for example, proper runway, low approach, land, touch-and-go, option, sidestep, circling,
restricted low approach, etc.
8.11. VFR Arrival on an IFR Flight Plan. If flying in Class A airspace or in IMC, coordinate
with the en route ARTCC for a descent to VFR conditions below the Class A airspace. Cancel
IFR when able to maintain VFR, and navigate to the airfield using a VFR map and NAVAIDs.
Clear visually and over the radios. Coordinate with ATC to proceed VFR-to-initial or to a visual
straight-in. When practical, remain on ATC frequency for traffic advisories.
8.12. VFR Arrival at an Unfamiliar Field:
8.12.1. Coordination. Know the classes of airspace affecting your VFR arrival. These may
be obtained from FLIP AP/1 or the IFR en route supplement. You must abide by these
airspace rules even when VFR. Approximately 40 nm out, you should check the weather and
current runway (ATIS, if available). Approximately 30 nm out, contact ATC and request the
VFR arrival.
8.12.2. VFR to Initial. You should plan on a 3- to 5-mile initial. To maintain positional
awareness approaching airports with several offset or crossing runways, keep SA on your
inbound bearing to the field and your current heading comparing them to an airport diagram.
Setting the runway heading for the heading set marker or the course window on the MFD is a
familiar way to visualize the pattern for the correct runway. The IFR en route supplement
normally indicates the pattern altitude and direction of break, but listen carefully for modified
instructions and other guidance like wake turbulence, runways, type landing, etc. Clear for
other aircraft or helicopters, stay aware of wake turbulence separation, and be vigilant for
degraded aircraft performance at high density altitudes.
8.12.3. Visual Illusions. Use caution when landing on unfamiliar runways. Start with a
careful study of the airport diagram and the IFR en route supplement so you know what to
expect. Plan for how you might adapt to a runway without an overrun or one with a displaced
threshold. Remember that a wider runway may contribute to a high flare and a long or
dropped-in landing, while a narrower runway may lead to an incomplete flare and early
landing. Usually a wider runway will have side stripe markings approximately 150 to 200
feet wide to help with depth perception. Use all available references to determine your height
above the runway.
8.13. Off-Station, Postflight Ground Operations:
138 AFMAN11-251V1 17 MARCH 2008

8.13.1. Canopy Management and FOD. With so many items potentially cluttering the
cockpit during a cross-country mission, you may want to leave the canopies closed until
engine shutdown. In any case, double-check to ensure all loose items are accounted for and
secure before opening the canopies.
8.13.2. Taxiing on a Strange Field. Although you can request progressive taxi from the
ground or tower controller, you can maintain higher SA by referencing the airport diagram
and signs posted along your taxi route. With a little prior study, you can often anticipate your
taxi route and parking area. Many civilian and military transient operations use a follow-
me vehicle as well. If desired to expedite your next leg, accomplishing a stored heading
alignment once in parking and prior to engine shutdown can reduce your alignment time to
1.5 minutes or less.
8.13.3. Closing Flight Plans. Normally, there is no need to close an IFR FPL with the FSS.
The tower should do this for you at a military or civilian field. However, because some
civilian fields are not as reliable as others in always closing your IFR FPL, it is usually wise
to verify with the FSS or tower that it has been closed. Remember, IAW AFI 11-202,
Volume 3, you are responsible for closing a VFR FPL with FSS.
8.13.4. After Engine Shutdown. Refer to the checklist and other appropriate items in your
inflight guide. Conduct a thorough postflight inspection of the aircraft, and ensure transient
alert personnel are familiar with the T-38s servicing requirements. Also, ensure they
properly secure, pin, and ground the aircraft. Ensure you are familiar with alternate fuel
procedures, if applicable. Complete all required paperwork. When possible, give transient
alert a phone number where you can be reached, even if it is the billeting number. You are
ultimately responsible for your aircraft until it returns to the home station.
8.13.5. Stopovers. As a technique, the following acronymWANTSwill help you
remember what to accomplish at a stopover location:
8.13.5.1. Weather, winds, temperatures, bird status.
8.13.5.2. Activate flight plan or Alternates and emergency fields.
8.13.5.3. NOTAMs.
8.13.5.4. TOLD.
8.13.5.5. SID or departure instructions. Call the SUP, SOF, or command post.
AFMAN11-251V1 17 MARCH 2008 139

Chapter 9

LOW-LEVEL NAVIGATION

Section 9APurpose

9.1. Introduction. The purpose of low-level navigation is to fly a preplanned groundtrack to a


designated target so as to arrive at a designated time over target (TOT). Flying high-performance
jet aircraft on low-level missions puts you close to the ground at high speed. Your close
proximity to the ground increases the risk. In addition to the ground, other threats include
aircraft, birds, and obstacles. Therefore, your margin for error and your time to react are
significantly reduced. The intent of low-level training in the T-38 is to provide the basic
foundation from which to build as you transition into the Combat Air Force (CAF). Each low-
level will be broken down into mission planning, briefing, and flying phases.

Section 9BMission Planning

9.2. Overview. The first step in preparing for the mission is becoming completely familiar with
the route requirements and any associated restrictions. Consider referencing a sectional chart to
determine national airspace restrictions. Applicable publications include FLIP General Planning
(GP), AP/1B manuals, the chart update manual (CHUM), and command and local guidance. A
very useful, condensed reference of information is AETC handout, Navigation for Pilot
Training, which is available at the AETC Flying Training Syllabus Community of Practice
(located at
https://wwwd.my.af.mil/afknprod/ASPs/docman/DOCMain.asp?Tab=0&FolderID=AE-
ED-00-55-2-236&Filter=AE-ED-00-55). Low-level routes and corridors can be loaded in the
DTC during mission planning for use in flight if desired and IAW training requirements.
9.3. Military Training Route (MTR) Selection:
9.3.1. In the United States, military low-level training is conducted in designated airspace as
outlined in Federal Aviation Administration (FAA) publication 7610.4, Special Military
Operations. Use FLIP AP/1B as the primary reference for MTR selection. The slow routes
(SR) are not used by T-38s due to airspeed restrictions.
9.3.2. When selecting a route, identify your departure and recovery bases and find a route
nearby. In many cases, the instrument routes (IR) and visual routes (VR) described in FLIP
AP/1B are too long to successfully fly from the primary entry to the primary exit. Therefore,
alternate entry or exit (or both) may have to be used. Route selection should be made so
navigation to the desired entry, flying the route, and recovery to the desired destination can
be completed within the T-38s fuel limitations.
9.3.3. For initial fuel planning, approximately 45 pounds per minute at 360 knots GS (6 nm
per minute) works while on the low-level. (For example, in 40 minutes, 240 nm of low-level
will use approximately 1,800 pounds of fuel.) The longer the planned low-level, the less fuel
remaining for navigation to and from the route, and therefore, the closer the route needs to be
to the planned departure or recovery base. Additionally, ensure the en route and on-route
weather will allow you to fly the selected low-level. Refer to AP/1B for the VR route weather
minimums and AFI 11-2T-38, Volume 3, for the IR route weather minimums.
140 AFMAN11-251V1 17 MARCH 2008

9.4. Map Preparation. On low-level missions, each pilot must carry a current map of the
route. Refer to map preparation requirements in AFI 11-2T-38, Volume 3, and any command or
local supplements. Note: The AETC handout referenced in paragraph 9.2 is a useful guide for
map preparation.
9.4.1. Map Selection. For sufficient detail and quality of terrain features, a published TPC
(1:500,000 scale) or a chart generated from flight planning software should be used. With
greater detail, JOGs can be excellent for low-level missions. However, they can be
cumbersome because of their size. For low-level routes flown with TPCs, you may want to
carry JOG sections of the turn points and the target areas. You may also find JOGs especially
useful for detailed route study during preflight planning.
9.4.2. MTR Corridor:
9.4.2.1. Draw the MTR corridor from the planned entry point to the planned exit point,
using the latitude-longitude of the published waypoints and designated route corridor
lateral displacements. Additionally, make annotations for the vertical limits of the route
segments. Update the chart with the latest information from the CHUM (hard copy or
electronic) to include all the area within the route corridor and any significant
obstacles outside the route corridor that could be a hazard to the flight. This step is
imperative for flight safety and may be completed using approved flight planning
software.
9.4.2.2. Study the route enough to gain an initial feel for all obstacles and terrain features
at or above planned flight altitude. Highlight any obstacles or high-terrain features that
may be a factor along your route of flight using appropriate thin-line bubbles. One
technique is to use 2- to 3-mile bubbles to mark decisionmaking points for those
obstacles not acquired visually.
9.4.2.3. Lastly, use the appropriate sectional chart to determine all crossing MTRs. Note:
Sectional charts do not show SR.
9.4.3. Route Abort Planning. Compute the route abort altitude (RAA) for the entire route
or area at a minimum of 1,000 feet separation from the highest obstacle or terrain feature
(rounded to the next highest 100 feet) within the lateral limits of the route or training area,
but in no case less than 5 nm either side of planned course (black line). Route abort
frequencies can be obtained from the postage stamps on FLIP low charts. Highlight the
map with emergency or alternate airfield locations and information such as VORTAC
channels and tower and approach frequencies.
9.5. Route Development. As a minimum, you will need a route entry point, a high-confidence
hack point for your clock or timer, recognizable turn points, a clearly discernible initial point
(IP), and an appropriate target. The best features for turn points are usually natural because these
features change very little over time. You may also use manmade features such as bridges, road
intersections, and towers. Choose points for their uniqueness, vertical development, funneling
features, and surrounding terrain. Avoid using features that may be hidden by high terrain or
trees.
9.5.1. Route Entry and Hack Point. Note that your route entry point must be within the
route corridor and should correspond with a published entry point (or alternate). An EGI
steerpoint is an excellent confirmation of the entry point; however, a VORTAC radial and
AFMAN11-251V1 17 MARCH 2008 141

DME also works well. The hack point can either be the FLIP-designated route entry point or
down track following an acceleration corridor or route entry corridor. Choose an easily
discernible hack point because the first key to good DR is to start from a known point. Do
not plan a hack point that requires an immediate turn to remain on course. The hack point is a
high-task portion of the sortie. Therefore, minimize maneuvering to ensure a safe and
effective route entry.
9.5.2. Turn Points:
9.5.2.1. Draw thin-line circles around turn points to prevent obscuring the surrounding
details. When choosing turn points, consider the turn radius of the T-38 at your planned
GS and the type of turn you will be using. Avoid choosing points so close to the corridor
edge that your planned turn radius will not allow you to stay within the corridor. Use a
tactical plotter or planning software to plot the turn radius based on starting turns right
over the turn points.
9.5.2.2. There are two common choices for low-level turns. One choice is a hard (4 G)
turn, similar to the kind used in tactical formation. Use approximately 1 nm for a turn
radius for these hard turns. A second choice is a 55- to 60-degree bank, 2 G turn. This
turn matches the 55-degree bank turn radius circle on most tactical plotters.
9.5.2.3. If planning a route using flight planning software, ensure the programmed
profile reflects the method you will use to fly the route; otherwise, timing errors will be
induced on the low-level. For example, if the flight plan reflects 45-degree bank turns and
you use 4 G hard turns, you will find yourself ahead of time on each leg, and anticipated
headings will be off by a factor related to the length of the next leg.
9.5.3. IP and Target. Choose an IP located about 1 to 3 minutes prior to the target. An IP
should be an easily identifiable point used to fine-tune navigation and increase the
probability of target acquisition. Choosing an easily identifiable IP in an advantageous
position relative to your target is a good technique since you may not be able to choose your
target in follow-on real-world scenarios. Minimize the heading change (up to 30 degrees) at
the IP in order to increase the accuracy of the IP-to-target leg. If using a running time, you
will normally continue the running time at the IP to the target. If your running time to the
target is off, rehacking at the IP may help you identify the target.
9.5.4. Course Lines, Timing Marks and Mileage Ticks. When drawing course lines
between the turn points, use thin lines and be sure to account for the turn radius
corresponding to your planned GS and bank angle. Select a GS that easily converts to miles-
per-minute, but still allows room for required airspeed corrections. A GS of 360 knots works
well at relatively low MSL altitudes to allow an easy conversion to 6 miles per minute. It also
permits enough airspeed correction capability to maintain above a minimum of 300 KCAS
and below a maximum of 420 KCAS (450 KCAS for IFF). Place timing tic marks along one
side of the route to represent the timing intervals counting up from the hack point. A 1- or 2-
minute interval is sufficient. Account for the fact that the IP-to-target run may be planned at a
different airspeed. Mileage tics placed along the other side of the route can greatly enhance
SA if EGI is used. Using 10 nm intervals for each route leg working back from each turn
point is a common technique.
142 AFMAN11-251V1 17 MARCH 2008

9.5.5. Headings and Drift Corrections. Plot the no-wind headings for each segment of
your route and ensure proper application of the magnetic variation. Low-level winds are
generally light, not exceeding 15 to 20 knots. However, they can be quite significant under
certain weather conditions, such as wind shears, frontal passage, or thunderstorms. Wind
direction and speed is available on the MFD on the wind direction and speed display below
the right side of the EADI. The arrow indicates the magnetic wind direction. The drift angle
and airspeed will change on each leg of the route, depending on the aircrafts heading in
relation to the relative wind. You must apply drift correction to maintain course, and you
must also adjust airspeed to keep GS constant. Compute and post wind-corrected headings
(or correction factor) for each leg of your route. If your planned GS is 6 miles per minute, a
simple technique is to apply l degree of drift correction for every 6 knots of crosswind.
9.5.6. Calibrated Airspeed. Use the forecast temperature, pressure altitude, and low-level
winds to compute wind-corrected calibrated airspeeds for each leg at the planned GS. To
keep GS constant, KCAS should be decreased for a tailwind and increased for a headwind.
To simplify airspeed computations, assume there is a one-to-one relationship for increases
and decreases in airspeed between calibrated airspeed and GS.
9.5.7. Course Arrow Blocks. The course arrow block is a symbol used to efficiently
present the information needed to help you fly the low-level. The course arrow block should
include the information pertinent to navigation along the applicable leg of the route which, as
a minimum, would include heading, airspeed, and leg time. This emphasizes the core
requirements for good DR of time, distance, and heading. Additional information can be
added per individual desires, but too much information could become distracting and divert
your attention inside the cockpit when it needs to be outside.
9.5.8. Fuel Planning. Compute a planned fuel at designated points along the route. Refer
to the flight manual charts for the required fuel flow. As a technique, a fuel flow of 1,350
pph/engine will normally maintain 350 KCAS. Additionally, compute a continuation fuel
for the designated points along the route. Continuation fuel is the minimum required to
complete the route at planned speeds and altitudes and RTB with the minimum required fuel
reserves. Finally, compute and annotate the bingo fuel for RTB by the most practical
means from the most distant point on the route. Consider factors such as cloud ceilings,
winds, freezing level, MOAs, VFR hemispheric altitudes, forecast icing, and minimum
required fuel reserves.
9.5.9. Restrictions. Highlight and plan to remain clear of any noise-sensitive areas or
airfields specifically listed in FLIP AP/1B or local directives.
9.6. Routing To and From the Low-Level Route. Good route study includes more than the
low-level route between the entry point and exit point. Pilots must have a solid understanding of
how to get to and return from the MTR. According to FLIP AP/1B, flight to and from IR or VR
routes should normally be conducted on an IFR FPL. You should normally include the planned
route of flight to and from the MTR on your map to include headings, airspeeds, and times.
Ensure your planning includes both no-earlier-than and no-later-than takeoff times, which will
allow you to enter your low-level on time and also permit completion with the amount of fuel on
board.
9.7. Scheduling. Schedule the low-level route for your desired entry time with the scheduling
activity as designated in FLIP AP/1B. In instances where there is no published entry timing
AFMAN11-251V1 17 MARCH 2008 143

tolerance window or standard command or local guidance, coordinate an acceptable entry


window with the scheduling activity. This becomes important in helping deconflict the route
especially with multiple users of dissimilar aircraft. It becomes most important on VR routes
where ATC is not responsible for the separation of aircraft. Note: On routes with which you are
not familiar or do not routinely fly, it may be beneficial to accomplish this scheduling step early
in the planning process to verify there is no unpublished or short-term restriction which would
prevent you from flying the route.
9.8. Filing. File for your low-level sortie on a DD Form 175, following the procedures outlined
in FLIP GP. Annotate your low-level entry and exit times in the Remarks section of the DD
Form 175. If flying a local low-level route, the operations personnel at the duty desk typically
file your requested local stereo FPL, like for other local mission profiles.
9.9. Map Study:
9.9.1. A detailed study of your map is essential after planning the route. You must prepare so
as to minimize your heads-down time during the low-level. Noting the general shape of the
land and its most significant features is a good starting point. A JOG (1:250,000 scale) may
initially help you interpret data on the TPC (1:500,000 scale).
9.9.2. Try to visualize the key points along the route and general features around them.
Funneling features, such as converging ridgelines, rivers, and roads, are especially helpful in
locating selected turn points. Use large, prominent features to funnel your eyes to the smaller
features leading to your points. (Navigate from large to small.) To make course adjustments
significantly more obvious on the route, note the distance you expect to be left or right of
features, such as towers, bridges, dams, river bends, etc.
9.9.3. For mid-leg reference points, it is also critical to note the expected time along the
route that point becomes significant. This chronological understanding of key navigation
points will help reinforce clock-to-map-to-ground pilotage and minimize unnecessary
deviations from basic DR. It is also a good technique to memorize the sequence of events,
features, and actions required during the IP-to-target run. Thorough map study will
significantly aid in a smooth, efficient brief of the sortie. Much of your map study will be
accomplished by preparing your map and drawing your route. This step becomes especially
important if you are planning to fly a low-level with a map you did not prepare.

Section 9CBriefing

9.10. Overview. The overall effectiveness of the sortie can be dramatically affected by how
thoroughly and completely the sortie is briefed. Reference the Avian Hazard Advisory System
(AHAS) Web site (http://www.usahas.com/) prior to the brief and address any significant bird
threats.
9.11. Route Briefing:
9.11.1. A commonly accepted technique is to structure your brief so the last thing you cover
is the low-level routing itself. This will emphasize the important points and keep them fresh
in everyones mind.
9.11.2. The briefing should include how you plan to identify and enter the route. As you
progress down the route, highlight the critical action pointswhere you expect to see good
144 AFMAN11-251V1 17 MARCH 2008

track or timing correction points, when to climb or laterally avoid unseen towers or airfields,
how high to climb and remain in the route structure, where potential aircraft threats or
crossing routes are expected, your specific exit procedures, and what altitude, heading, and
frequency you can use in IMC.
9.11.3. Emphasizing specific action points along the route will set the groundwork for good
DR (clock-to-map-to-ground). A thorough understanding of what to look for (and when) will
also help minimize the airborne tendency to spend too much time map-reading or trying to
make what you see on the ground fit what you see on the map.
9.12. Emergency or Contingency Briefing. Emergency or contingency options pose their own
unique challenges in the low-level environment. Diverting your attention into the cockpit for too
long may have catastrophic consequences. In all abnormal situations on the low-level, your first
reaction should be climb-to-cope. You can cover emergency or contingency by leg as you brief
or you can cover it as a separate topic from the route brief. Remember, not all emergencies can
be covered, but the more thoroughly you brief initial actions, how high (top of the block or
RAA), which way (left or right), which recovery field (primary or emergency), who to talk to,
what frequency, the more likely you are to successfully recover the aircraft during a contingency
situation. Many aircraft systems are available to assist in building SA in an emergency. Consider
briefing incorporation of all EGI and HSD capabilities, even if the capabilities will not be used
for the training portion of the sortie.

Section 9DFlying the Route

9.13. Departure and Route Entry:


9.13.1. Before departing for the jet, referencing AHAS one more time may provide real-time
radar tracking of bird activity.
9.13.2. During ground operations, if using an activated FPL for the low-level route, you
should ensure:
9.13.2.1. Automatic (AUT) waypoint switching is selected on the UFCP NAV submenu
display via Window 3L/UL-3. Automatic waypoint switching continues even when EGI
is not the PNS.
9.13.2.2. The TOT calculation method is set to either TOD or CRN, as appropriate. This
is set via Window 1R/UR-1 on the UFCP CLK key display. Selecting the incorrect clock
could result in confusing or erroneous data presentation throughout the sortie.
9.13.2.3. Each FPL low-level waypoint is set as a flyover (OVR) point. For OVR
waypoints, switching occurs when the aircraft passes within 2 nm of the waypoint, and
the EGI bearing pointer swings through the 3 or 9 oclock position relative to the nose of
the aircraft. The waypoint types are available on the MFD FPL display page by selecting
the desired FPL. If necessary, change the waypoint type via Window 4L/UL-4 on the
UFCP FPL submenu display. Designating en route FPL waypoints as FBY waypoints
could make departure and return navigation easier.
9.13.2.4. TOTs are programmed. The FPL waypoints with an associated TOT are
designated in the FPL. Waypoint TOTs are visible on the MFD FPL display page by
selecting the desired FPL, or may be set on the UFCP FPL key display.
AFMAN11-251V1 17 MARCH 2008 145

9.13.2.5. The flight plan waypoints are loaded correctly in the MDP. This can prevent
loss of situational awareness once airborne due to a system malfunction, error made
during mission planning, or mistakes in other avionics setup. The flight plan waypoints
can be quickly verified by:
9.13.2.5.1. Displaying the flight plan track lines on the HSD. This may require you to
increase the scale on the HSD to see the entire flight plan. Verify the flight plan route
(white line) displays correctly within the displayed route corridor, if available.
9.13.2.5.2. Performing a swing check. During mission planning, determine a bearing
and range to each point along the route from a predefined position, typically the EOR.
Flight planning software usually has a function that can do this automatically. Manual
calculation can be done using your low-level map; however, it may not be as
accurate. Once in the aircraft, activate the FPL. Then, when near the position from
which the bearing and range were calculated, cycle through each route waypoint as
your EGI steerpoint to check the EGI bearing and range against what you calculated
during mission planning.
9.13.3. Maintain positional awareness en route to the entry point, using all available visual
references and NAVAIDs, to include EGI. If you are unable to make your originally
scheduled entry time, coordinate for a new time or fly an alternate mission.
9.13.4. Make an entry call with the appropriate controlling agency or FSS, and perform a
FENCE check into the low-level. Once inside the route structure, accelerate to the planned
airspeed. Identify the entry or hack point as early as possible, and maneuver the aircraft to
overfly the entry point on the correct heading and at the correct airspeed.
9.13.5. Being at the correct airspeed and heading is more important than immediately
descending to your planned route altitude. Start your clock as you pass over the hack point.
The aircraft clock can be used via the UFCP; however, you should back it up with an
additional hack, either on a watch or the EED clock. Positive identification of your hack
point is of utmost importance.
9.13.6. Plan an alternate hack point for the case when the original cannot be found or you do
not get a good hack over the point. Occasionally, pilots fail to hack at the correct location and
may need a rehack at a point further down the low-level. In this case, the hack time (1 minute
later or the next turn point) can be input in window 3 (UL-3) of the clock submenu and then
started via UR-3. If the UFCP witness (WIT) function key is used for the hack, it will zero
out the input time and restart at zero.
9.14. Route Basics:
9.14.1. Priorities. Avoiding the terrain and anything attached to it is the most critical task
during low-level flying. Your first priority will never changekeep your aircraft under
positive control and at an appropriate altitude. Keep your primary attention out of the
cockpit, and do not become fixated on the map, HUD, MFD presentation, or anything else
inside the cockpit. Ensure the HUD brightness is at a low enough setting that it doesnt
prevent you from effectively clearing for hazards along your flightpath (e.g., birds, other
aircraft, changing terrain, and towers). Comply with command-prescribed minimum
altitudes, but do not exceed any crewmembers comfort level in an attempt to fly at that
146 AFMAN11-251V1 17 MARCH 2008

altitude. An unfamiliar route, poor visibility, mountainous terrain, or other factors may
require a higher altitude to maintain a reasonable level of comfort.
9.14.2. Map Reading and Pilotage:
9.14.2.1. Map reading is the determination of aircraft position by matching symbols on a
map with corresponding terrain features or manmade objects on the ground. Aircraft
position should be determined and navigational errors detected or corrected by using a
clock-to-map-to-ground cross-check. Thorough route preparation, study, and briefing will
have already determined the best clock points to make track or time verifications and
adjustments. While flying the route, you must first stay aware of the time elapsed,
remembering to consider any timing error from the last leg and how it might affect your
current position. Then reference the map for where that should put you (interpolating
between tic marks, as necessary) and match the map with what you see outside.
9.14.2.2. When using the full system capabilities of the T-38C, including EGI and HSD,
pilots must be extremely vigilant not to become complacent. Avionics systems can
provide information to enhance your SA, but failing to integrate the information available
with basic low-level flying skills can be catastrophic.
9.14.2.3. Basic pilotage requires pilots to maintain SA above and beyond the aircraft
systems capabilities. The aircraft systems can reduce the workload immensely; however,
system errors, data input errors, and poor systems knowledge can negate any benefit
gained from the added technology. Unchecked erroneous data may lead you out of the
route structure or into unforeseen obstacles. Positional awareness is the only way to
ensure terrain and obstacle clearance is maintained.
9.14.3. Flying the Plan. Flying well-planned, accurate headings and airspeeds on each leg
will get you close to your selected points. Trust your plan and rely on good DR. Arriving
over checkpoints at anticipated times confirms the accuracy of DR and indicates reliability of
preplanned headings, winds, and GSs. If a prominent landmark is not available as a reference
at a turn point, rely on DR and turn-on time. Conditions such as a cloud cover or extensive
areas of featureless land or water may make map-reading extremely difficult. By learning to
apply the basic principles of DR (time, distance, and heading), you will minimize the loss of
SA.
9.15. Altitude:
9.15.1. Judging Altitude. Assessing your height above the ground can be done using
several techniques. Obviously, the most accurate method is to use the radar altimeter
(RALT). You should cross-check the altimeter, against known elevations of towers, lakes,
airfields, or peaks, and use those snapshots outside to calibrate your eyes and refine your
ability to judge height visually. Set the RALT warning to activate at or above 90 percent of
your planned low-level altitude (for example, 500 feet AGL = 450 feet RALT setting).
9.15.2. Terrain and the Horizon. Altitude awareness and the ability to maintain a desired
altitude are relatively easy over terrain where large ground objects are present. However,
most pilots have a tendency to descend lower than desired over flat, even terrain. This is
especially true if there are few significant manmade or natural objects to reference for
altitude, such as in high desert plateau country. Very flat terrain, snow, or calm water are
exceedingly and insidiously dangerous due to the lack of reliable depth perception. Flat,
AFMAN11-251V1 17 MARCH 2008 147

upsloping terrain is even more dangerous because of the insidious change in elevation as you
fly into the gentle upslope. Flying across sloping terrain may provide a false horizon that can
slowly draw you off course as you dip a wing to maintain level flight.
9.15.3. Terrain and Ridge Crossings. Flying low-level in an environment with rapidly
changing terrain is demanding and requires constant positional awareness and SA. Realize
that terrain can easily hide checkpoints or turn points. Fly upwind of ridges when possible
and be alert for areas of turbulence on the downwind side of large terrain features. When
planning to cross steep peaks or ridges, consider calculating a start-climb point. Begin the
climb early enough to arrive at your minimum AGL altitude prior to the terrain feature or
obstacle. To maintain your desired terrain clearance when crossing ridges, either bunt or roll,
but do not exceed the limits established in AFI 11-2T-38, Volume 3.
9.15.4. Obstacle Avoidance. If lead is unable to visually acquire or ensure lateral
separation from known vertical obstructions that are a factor to the route of flight, he or
she will direct a climb no later than 3 nm prior to the obstacle to ensure vertical separation
by 2 nm from the obstacle. If you visually acquire the vertical obstruction, avoid it
vertically by 500 feet or laterally by 0.5 nm.
9.16. Heading Control. Make every attempt to cross your chosen route start pointusually the
hack pointon the precomputed, wind-corrected heading. While on the route, fly the plan. If
using pure DR, consider using the heading set function of the EGI to help maintain the proper
heading. When using EGI steering, selecting the flight director or placing the flightpath marker
directly over the steerpoint symbol in the HUD will provide wind-corrected heading information.
When it is clear that a heading correction is required, consider the following techniques:
9.16.1. Drift Analysis in Flight. In flight, use pilotage to compare your plan against what is
actually happening. If the forecast winds were accurate, little or no change should be required
to maintain the proper ground track. However, if the winds are inaccurate, adjustments will
be required. Look for cues (for example, blowing smoke or an unexpected crab to maintain a
known groundtrack) to verify actual wind direction and adjust accordingly.
9.16.2. Heading Errors. Heading errors can be caused by extracting the wrong heading
from the map during preflight planning, applying the magnetic variation incorrectly, or not
maintaining the appropriate preplanned magnetic heading in flight. Flying your planned
heading is essential. At 360 GS, a 10-degree heading error will take you 2 miles off your
course in just 2 minutes.
9.16.3. Visual Track Correction. The simplest and most reassuring way to make a low-
level track correction is to positively identify a ground reference and visually reposition your
aircraft in proper relation to it. As soon as you determine you are off course, immediately
attempt to position yourself back on or near track and assume the correct heading again. Be
aware that this technique can add to your leg time. With EGI steering available, you can
generally point at the next turn point and concern yourself primarily with timing corrections.
9.16.4. Heading Correction. If you have passed the reference point used to determine your
position and you know the distance displaced from the correct groundtrack, you can correct
your error by using the 60-to-1 rule to correct groundtrack. At 360 knots GS, a 10-degree
heading correction held for 1 minute will correct you back toward course 1 mile.
148 AFMAN11-251V1 17 MARCH 2008

9.16.5. Take Advantage of Unmistakable References. Continue to adjust groundtrack and


airspeed until aircraft position and elapsed time position coincide (especially at
predetermined, unmistakable points). When you identify a landmark that shows you are off
track, make small corrections immediately to avoid having to make large heading changes
later as you get closer to the landmark.
9.17. Timing:
9.17.1. General:
9.17.1.1. The TOT can be based off a CRN hack or a real TOD TOT. If you are using a
real-time TOT, back your times up to takeoff so you know the latest possible takeoff time
to meet your TOT without modifying preplanned flight parameters. If planning to use
aircraft-generated speed cues, ensure the UFCP CLK key display (UR-1) reflects the
correct TOT calculation option (TOD or CRN). Allow for the possibilities of being
delayed or getting to the start point early. An early arrival may necessitate holding at the
entry point, if allowed.
9.17.1.2. When using a CRN running time hack, the system clock provides several
unique options. Leg times can be used since the WIT function key on the UFCP will
immediately zero out the clock and restart it. This can be accomplished quickly and
easily at each turn point or at the IP. If you fail to hack at the correct entry-point location,
the hack time (1 minute later or the next turn point) can be input in window 3 (UL-3) of
the clock submenu and then started via UR-3. If the WIT function key is used, it will zero
out the input time and restart at zero.
9.17.2. Timing and Airspeed Errors:
9.17.2.1. Low-level route timing is dependent upon flying a precise GS for a precise
amount of time. Inaccurately planned airspeed (not corrected for temperature, pressure
altitude, or wind) or poor throttle control will almost certainly result in timing errors.
Timing errors are further complicated by poor airspeed control when climbing,
descending, and turning. For example, if your airspeed and (or) bank angles during turns
are not as planned, the turn radius (and thus the timing) will be different. Additionally,
timing errors are further complicated by incorrect map-reading and (or) the use of poorly
defined landmarks for timing references.
9.17.2.2. If EGI steering is available and a TOT is set, the commanded airspeed will
correct for timing errors. There are, however, no limits to the commanded airspeed, and
the system could potentially place the aircraft outside the flight envelope and direct you
to exceed airspeed training rules. As you get close to the target, the TOT calculations
may become less reliable. Disregard large commanded airspeed changes as you approach
the steerpoint with the TOT and be careful not to exceed command-directed minimum or
maximum airspeeds.
9.17.3. Timing Corrections. There are two basic methods of correcting elapsed time errors
on a low-level missionchanging the airspeed and changing the route of flight. The
following subparagraphs indicate several methods of airspeed correction:
9.17.3.1. Airspeed Correction10-Percent Method. This method is based on the
approximation that a 10 percent increase or decrease of GS, held for 10 minutes, will gain
AFMAN11-251V1 17 MARCH 2008 149

or lose 1 minute. However, it is not necessary to wait until a 1-minute error exists
because the time error (in fractions of a minute) is directly proportional to the duration of
the speed change. The calculations for the 10-percent method are as follows:

10 percent of GS = GS factor.
GS GS factor = corrected GS.
Maintain corrected GS for [number of seconds early or late x 10] seconds.

9.17.3.2. Airspeed CorrectionIncremental Method. In the incremental method of


time control, airspeed in miles per minute is used to determine the speed change. To
obtain nm per minute, divide your planned GS by a factor of 60. At 360 knots GS, you
are traveling at 6 nm per minute; at 420 KCAS, you are traveling at 7 nm per minute. To
determine the speed change increment, multiply the nm per minute by a factor of 10 (for
example: 6 nm per minute x 10 = 60 knots). Maintain corrected GS (GS the speed
change increment) for 1 minute for every 10 seconds early or late.
9.17.3.3. Airspeed CorrectionProportional Method. This method is simple and
closely resembles the incremental method. For each second early or late, increase or
decrease airspeed by 1 knot for the number of minutes equal to the GS in nms per minute.
For example, if you are on a 360 knots GS route (6 nm per minute) and 10 seconds early,
decrease airspeed by 10 knots and hold that correction for 6 minutes.
9.17.3.4. Airspeed CorrectionNext-Leg Method. This method of timing correction
is simple and particularly useful to single-seat pilots. Airspeed (in nm per minute) is used
to determine the speed change increment (in GS). First, determine the number of seconds
early or late. Divide this by the time (in minutes) for the next leg of the low-level route.
Multiply the dividend by the nm per minute. The result is the GS correction. Add or
subtract the GS correction to the original cruise airspeed. Fly the corrected GS for the
entire next leg. For example, if you are on a 360 knot GS route and 20 seconds late at the
IP, the IP to target is 2 minutes and 40 seconds. Increase airspeed by 45 knots and hold
the correction for the entire IP-to-target leg.
9.17.3.5. Airspeed CorrectionLeg Correction Method:
9.17.3.5.1. Derived from the proportional and next-leg methods, the leg correction
method uses a time or distance increment and the next-leg time or distance (either one
works) to establish a correction factor for each leg. The time/distance increment is
that time or distance at which the proportional method would result in a one-to-one
relationship between speed change and seconds early or late. (For example, at 360
knots planned GS, the time or distance increment is 6 min/36 nm. This is because
using the proportional method when you are 10 seconds early or late would result in a
10-knot correction held for 6 min/36 nm. At 420 knots planned GS, the time/distance
increment is 7 min/49 nm).
9.17.3.5.2. When planning to use this technique, it is best to calculate the correction
factor during the planning stage and annotate it on the low-level map. To calculate the
correction factor, take the time/distance increment and divide it by the next-leg
150 AFMAN11-251V1 17 MARCH 2008

time/distance. For example, dividing the time/distance increment (6 min/36 nm) by


the next-leg time/distance (4 min/24 nm), 6 min/4 min or 36 nm/24 nm yields a leg
correction factor of 1.5. Write that correction factor on the low-level map next to that
leg. When airborne, determine your timing deviation in seconds and multiply it times
your leg correction factor. Apply that correction for the entire next leg. For example,
10 seconds late times the correction factor of 1.5 yields a correction of 15 knots, so
fly 15 knots faster for the entire leg.
9.17.3.6. Airspeed CorrectionGroundtrack Method. This method is viable only
when prominent ground features are used as turn points. If you are within 10 seconds
early or late, plan to make the next turn point prior to or just after the desired turn point.
Remember to add an additional groundtrack correction to return to the planned routing
and consider the time required for route correction. This technique is heavily based on
TLAR (That Looks About Right), but can be used effectively to adjust timing and
minimize task saturation.
9.18. Turn Point Techniques:
9.18.1. Approaching the Turn Point. Accomplish administrative tasks early to avoid
multiple cockpit tasks when performing high bank turns at low altitude. Determine the
direction of turn and the desired new heading. Many pilots like to put the heading marker on
the next heading. If you approach the turn point from a different groundtrack than the one on
the map, realize that your preplanned turn to the next leg must be altered to put you back on
track. Check outside references to visualize the approximate amount of turn required.
9.18.2. At the Turn Point. Cross-check time at (or abeam, if not directly overflying) the
turn point to confirm overall elapsed time or the real-world time. Make necessary
adjustments after rolling out of the turn. If rehacking at each turn point for DR, rehack just
prior to starting the turn.
9.18.3. Making the Turn:
9.18.3.1. Low altitude turns make up 5 percent of low-level flying but account for 52
percent of all low-level accidents. Turn to the next leg when directly over the turn point,
using the bank angle and G loading your planned groundtrack and timing are based on. If
you do not visually acquire the turn point, turn on time. Note: Use caution when making
turns at low altitude because sink rates can quickly develop if you overbank, and there
will be little time or altitude with which to recover.
9.18.3.2. In the turn, 100 percent of your attention should be focused on making the turn
until you have rolled out, wings level. Make the turn, maximizing outside references.
Place the HUD FPM on the horizon, roll and pull to maintain a level turn. In rising
terrain, a level turn using the FPM or CDM may not provide sufficient ground clearance.
If you detect a descent, immediately rollout of the turn and climb back to a minimum of
the altitude you had at the beginning of the turn. If you detect a climb, control the bank to
arrest the climb, but do not attempt to descend back to 500 feet during the turn. If you
have misjudged the turn, make corrections after rolling wings level and referencing the
HSI and HSD.
9.18.3.3. It is critical that you clear throughout the maneuver. Clearing for where the
aircraft is going will require you to cross-check the FPM not focus on it. While in a turn,
AFMAN11-251V1 17 MARCH 2008 151

clear from the top of the canopy to the pitot tube, until you approach the outside reference
point for rolling out on course.
9.18.4. Bank Angle and G loading. Table 9.1 shows the Gs required to maintain
coordinated level flight at higher bank angles and your time to impact from 500 feet AGL at
various overbank or G conditions at any airspeed.

Table 9.1. Time to Impact (OverbankFrom 500 Feet AGL).


I A B C D
T
E
M Bank Angle Gs Required Undetected Overbank Time to Impact
1 60 degrees 2G 70 degrees/2 G 9.9 seconds
2 70 degrees approximately 3 G 80 degrees/3 G 8.1 seconds
3 75 degrees approximately 4 G 85 degrees/4 G 6.9 seconds
4 80 degrees approximately 6 G 90 degrees/6 G 5.6 seconds
9.18.5. Effect of Undetected DescentTime to Impact. Table 9.2 shows your time to
impact from 500 feet AGL at various dive angles and a speed of 360 KCAS. Note: Any bank
angles greatly shorten the time to impact.

Table 9.2. Time to Impact (AttitudeFrom 500 Feet AGL).


I A B
T
E
M Attitude Time to Impact
1 - 2 degrees approximately 25 seconds
2 - 5 degrees approximately 10 seconds
3 - 10 degrees approximately 5 seconds
9.18.6. After the Turn. After completing the turn, ensure NAVAIDs are set with the new
heading, fuels are checked, and EGI steerpoint has updated to the next segment.
9.19. Approaching the IP or Target Area. Strive to fly over the IP as close as possible to your
planned time. Make any small corrections to timing early to prevent large airspeed corrections
later. Depart the IP on planned heading and airspeed. Deviate only as necessary to react to threats
(birds, aircraft, obstacles, etc.). Everything that takes place in the target area is critical. In fact,
you should have most of the IP-to-target run memorized so that you are not heads-down in the
cockpit trying to pick up references from the map.
9.20. Hands On Throttle and Stick (HOTAS) and Air-to-Air (A/A)/Air-to-Ground (A/G)
Master Modes. The T-38C provides avionics capabilities that are used in follow-on training and
are similar to follow-on weapon systems. Use of these capabilities during UFT missions for pilot
familiarization with HUD and MFD symbology, task management training, and as a HOTAS
exercise will help build sound habit patterns for follow-on training. In UFT, the purpose of
introducing these capabilities is not to understand weapons employment or how to achieve
weapons release parameters. As in follow-on training, pulling the trigger or pushing the weapons
release button is only done with the intent to release munitions. Since this objective is beyond the
152 AFMAN11-251V1 17 MARCH 2008

scope of UFT, intentionally pulling the trigger or pushing the weapons release button is not
authorized at any time for SUPT/ENJJPT/PIT IPs or students. The following is a description
of how the T-38C can be used in the UFT environment during low-level training once the student
pilot understands the basic principles of flying low-level and demonstrates the ability to safely
operate the T-38C in the low-level environment.
9.20.1. Pre-Mission Planning. Units will have a standard DTC load that will provide pilots
with mission parameters in the mission planning software for the MFD weapon (WPN)
display page that will be suitable for familiarizing pilots with A/G MFD and HUD weapons
symbology during low-level missions. The following is an example of parameters that will
accomplish this objective: RELEASE ALT: 0; RELEASE VELOCITY: 360; DIVE ANGLE:
0; CONFIGURATION: CLEAN; PROG: A; WPN: BDU-33; BREAK-X: 0; RIPPLE: 0FT.
Pilots will confirm these settings on the MFD WPN display page during the DTCData
LOAD/VERIFY step of the BEFORE TAXIING checklist.
9.20.2. HOTAS Low-Level Exercises. While flying the low-level, pilots can use the T-38C
HOTAS features (i.e., master mode switch [MMS], default display switch [DDS], weapon
mode switch) to change HUD and MFD symbology as part of a task management exercise.
9.20.2.1. Route Entry to IP. Fly the low-level route in either the air-to-air (A/A) (MMS
forward) or NAV (MMS down) master mode to familiarize yourself with the different
features each master mode provides on the HUD and MFD.
9.20.2.2. IP-to-Target Run. In follow-on training, the IP-to-target run will be the point
where tasking will shift to A/G weapons delivery. This is the point where the prior
navigating and A/A execution gameplan will have brought you to your primary objective
of bombs on target. At the IP, switch to the A/G master mode using the MMS and
overfly the target level straight through while familiarizing yourself with the A/G HUD
weapons symbology.
9.20.2.3. Target Egress. Return to the A/A or NAV master mode for the remainder of
the low-level route until the FENCE-out. At the FENCE-out, include returning to the
NAV master mode as part of your checks.
9.21. Route Exit:
9.21.1. Give the return route leg the same emphasis as the entry leg. If your target is not at
(or near) your route exit point, you may need to preplan an off-target point to start route
egress.
9.21.2. Once you are clear of the MTR, you are no longer in the low-level structure and are,
therefore, limited to 300 KCAS below 10,000 feet MSL. Consequently, a route exit almost
always calls for an immediate climb, during which you can trade airspeed for altitude.
FENCE out of the low-level.
9.21.3. Whether you are returning IFR or VFR, you will need to coordinate arrival with
ATC. When exiting a VR, maintain VFR conditions until you have an IFR clearance.
Continue on your IFR clearance when exiting an IR.
9.22. Abnormal Procedures:
9.22.1. Single-Ship, Low-Level Problems and Emergencies. Every low-level emergency,
including encountering IMC, requires a climb to a safe AGL altitude. Climb-to-cope is a
AFMAN11-251V1 17 MARCH 2008 153

common phrase to describe your initial action when faced with a problem at low altitude.
You must put the aircraft into a position where you can safely analyze the situation and
coordinate your recovery with outside agencies.
9.22.2. Unable to Make Radio Contact. If you cannot contact a controlling agency while
airborne, follow the local lost-communications procedures, specific route lost-
communications procedures (listed in FLIP AP/1B), or general lost-communications
procedures in the FLIP Flight Information Handbook. If you have maintained positional
awareness and are able, proceed to your home base or the nearest suitable airfield, as
appropriate, while handling the problem.
9.22.3. IMC Route Abort:
9.22.3.1. When it becomes obvious you cannot continue the route without going IMC,
abort the route. Pilots must exercise extreme caution in marginal weather conditions and
avoid the false sense of security the EGI provides. If possible, turn as necessary to remain
VFR. If you cannot avoid IMC while flying a low-level route, immediately abort the
route and climb on course to the RAA as a minimum. Make an expeditious climb, using
MIL power and a maximum of 300 KCAS. High terrain may require the use of
afterburner in some instances. In all cases, immediately establish a climb on course. Do
not, under any circumstances, attempt to reenter the low-level route after initiating an
abort. Route aborts are potentially disorienting and require an immediate transition to
instruments and close attention to aircraft control and flight parameters.
9.22.3.2. Once you are level at or above the RAA, squawk emergency as appropriate
and coordinate for an IFR clearance to your destination airfield. Because the RAA only
provides obstacle clearance within 5 nm of the route, the recovery to your destination
may require a higher altitude to ensure obstruction clearance.
9.22.4. Lost Procedures. If you miss consecutive checkpoints or turn points, do not
recognize any references from your map, or are unable to reorient yourself (using the EGI if
needed), abort the route and follow the VFR lost procedures in Chapter 8.

Section 9ELow-Level Formations

9.23. Two-Ship, Low-Level Navigation. A successful two-ship, low-level mission is the


culmination of all your navigation and formation training to this point, requiring a combination
of solid low-level practices, formation skills, and discipline.
9.24. Preflight Planning. Preflight planning for a two-ship, low-level mission is usually more
involved than either a single-ship, low-level mission or a standard two-ship formation mission.
The major addition in the planning process is you are effectively drawing two parallel blackline
routes one mile apart. This may require altering the choice of turn points to ensure the formation
stays in the corridor, avoids obstacles, and can adjust for significant terrain changes. It is possible
to use a preexisting low-level planned for a single-ship mission. However, extra time should be
spent during the route study and briefing phases to ensure all formation members are aware of
where the wingman should fly to comply with the considerations above.
9.25. Types of Low-Level Formations:
154 AFMAN11-251V1 17 MARCH 2008

9.25.1. Tactical LAB. When flying over relatively level terrain, LAB formation can work
well. The same parameters described in Chapter 6 should be used, but the wingman should
stack level to slightly high on lead. Low-level flying introduces some additional visual cues
and takes some time to visually calibrate the proper distance.
9.25.2. Wedge. When substantial maneuvering is required or while you are over terrain
with vertical development, wedge formation may be a better choice than LAB tactical. It
gives the wingman the flexibility to alter sides as necessary and may lessen leads saturation
in ensuring the wingman is on the proper side. The parameters described in Chapter 6 should
be used, but the wingman should stack level to slightly high on lead.
9.25.3. Fighting Wing. When a clearing formation is needed or aggressive maneuvering is
required, fighting wing may be flown. The parameters described in Chapter 6 should be used,
but the wingman should stack level to slightly high on lead.
9.26. Departure. In addition to managing normal formation responsibilities, you must navigate
to the start point and accomplish all other low-level entry requirements for the particular MTR.
To enhance clearing and increase the formations maneuverability, spread the wingman to route,
fighting wing, or a tactical formation as soon as possible after takeoff. Unless weather or other
procedures dictate, maintain a clearing formation to the route entry.
9.27. Route Entry. If not already accomplished, lead will put the wingman in fighting wing,
wedge, or another formation suitable for visual lookout and maneuverability prior to route entry.
In a relatively short span of time, lead must call entering the route, locate the entry point,
maneuver the formation as necessary for course alignment, call the time hack over the radio, and
accelerate to the planned airspeed. Prior planning and solid SA are imperative for a smooth entry
into the low-level structure.
9.28. Low-Level Contract and Priorities as Lead:
9.28.1. Do Not Hit the Ground or Anything Attached to It. As much as possible, lead
should position the wingman on the side opposite high terrain features or known obstacles.
Climb the formation in sufficient time to avoid all obstacles within 2 nm of your planned
groundtrack unless you are able to visually acquire and ensure lateral separation from
obstacles along the flightpath of the entire formation. Call out any obstacles (towers, etc.)
that could be a factor to the formation. Direct the wingman to climb if flying lower than he or
she should.
9.28.2. Maintain Excellent Visual Lookout. Find, call out, and avoid any traffic or birds
that could be a factor to the formation. Avoid conflicts and potential midair collision
situations with the wingman. TCAS may help to focus the visual lookout and provide
additional SA on traffic outside the formation.
9.28.3. Communications and Brevity Code. Use standard brevity code in referring to
objects or positions on the ground. Unless lead briefs otherwise, formations use the following
plan to communicate whether or not obstacles are in sight. The flight member sighting the
obstacle transmits his or her call sign and the clock position of the obstacle relative to their
own nose position (for example, Mach 2, tower, 1 oclock 4 miles). The other flight
member acknowledges (for example, Mach 1, contact or Mach 1, negative contact). For
traffic acquired on the TCAS but not visually, transmit the position on the TCAS display (for
AFMAN11-251V1 17 MARCH 2008 155

example, Mach 2, paint, left 11 oclock, 5 miles, 300 feet above, descending) The other
flight member acknowledges (for example, Mach 1, same, no joy or Mach 1, no joy).
9.28.4. Navigate and Lead. Use single-ship, low-level route and timing corrections to fly
the route, identify all turn points, and be in a position to arrive at the target on time. In
addition to single-ship techniques, you will probably need to incorporate formation check
turns, tactical turns, and shackles. Climb the formation for all avoidance areas either you or
your wingman will penetrate. Accomplish all turns as briefed, and, unless called otherwise,
rollout of each turn on the heading for the next leg.
9.28.5. Maintain SA on the Wingman. Stay visual, direct formation adjustments as
necessary, and stay aware of the wingmans fuel state. Initiate ops checks at appropriate
intervals (every 10 minutes or every other leg, as a minimum).
9.29. Low-Level Contract and Priorities for the Wingman:
9.29.1. Do Not Hit the Ground or Anything Attached to It. Climb in sufficient time to
avoid all obstacles within 2 nm of your groundtrack unless you are able to visually acquire
and ensure lateral separation from them. Call out any obstacles (towers, etc.) that could be a
factor to the formation.
9.29.2. Maintain Excellent Visual Lookout. Find, call out, and avoid any traffic or birds
that could be a factor to the formation. Avoid conflicts and potential midair collision
situations with lead and of course, stay visualdont go blind!
9.29.3. Fly the Prebriefed or Directed Formation Position. Always strive for the briefed
formation position unless turn requirements or safety dictate otherwise. In tactical LAB or
wedge formations, stack level to slightly high. At 500 feet AGL, lead will be on the horizon
to very slightly above the horizon when you are stacked level at 6,000 feet laterally.
Whenever a flightpath conflict with lead exists, cross high in relation to lead.
9.29.4. Maintain SA on Navigation, Route, and Timing. Strive to maintain sufficient
positional awareness so you know when to expect key events such as turns, climbs, and
position changes. Unless called otherwise, rollout of each turn on the planned heading for the
next leg. Strive to maintain enough SA to confidently assume the lead if necessary.
9.30. Low-Level Turns as Lead:
9.30.1. Wingman on the Inside of the Turn. Begin your contract turn over the planned
turn point to keep your aircraft on the planned groundtrack. Unless briefed otherwise, the
wingman should climb to deconflict, if necessary.
9.30.2. Wingman on the Outside of the Turn. From tactical LAB, start the wingman
turning early enough to allow you to delay your turn until right over the planned turn point. A
turn of 90 degrees will require a lead point of 1 nm, a turn of 45 degrees will require a lead
point of to nm, and a turn of more than 90 degrees will require a lead point of more than
1 nm. For a 90- or 45-degree turn, use the same references described in Chapter 6 for tactical
turns. For a turn of greater than 90 degrees, turn sooner than the 90-degree turn reference.
9.30.3. Turns of 30 Degrees or Less. Normally, you can simply turn to the new heading; a
delayed turn is not necessary. For a planned check turn into the wingman, brief him or her to
drop back closer to the 30-degree line before the turn. Depending on the formation at the
time, it will always be your option to direct an unplanned check or tactical turn.
156 AFMAN11-251V1 17 MARCH 2008

9.30.4. Misjudging a Tactical Turn. If you misjudge the timing of a tactical turn at a turn
point, the corrective action depends on several factors (threat, positional awareness, width of
corridor, fuel remaining). It may be more important to maintain good formation (threat, fuel,
good positional awareness) or, it may be more important to fly the route (poor positional
awareness, narrow corridor). If maintaining formation parameters is most important and the
lateral limits of the low-level corridor permits, lead may time the turn to complete it with the
formation in the desired position, and then reintercept the planned routing further down the
route. If, however, corridor width will not permit, or if this would excessively degrade your
navigational SA, lead should turn over the planned point and have the wingman regain
formation position as soon as possible.
9.31. Low-Level Turns as the Wingman. Turns during low-level tactical maneuvering will
rarely be exactly 90 or 45 degrees. You must anticipate turns and remain aware of the new
heading at each turn point. Once lead is established on the next leg of the route, expeditiously
correct back to the briefed or directed formation position if out of position.
9.31.1. Wingman on the Inside of the Turn. Delay your turn until lead has turned an
appropriate number of degrees to allow you to complete the turn in the proper tactical
position. For a turn of 90 or 45 degrees, use the same references as a turn in the MOA. For a
turn of greater than 90 degrees, turn sooner than the 90-degree turn reference. If you
misjudge your turn, vary your power and (or) G loading to compensate and regain proper
tactical position. Unless briefed otherwise, climb to deconflict if necessary.
9.31.2. Wingman on the Outside of the Turn. Anticipate the turn and the call or signal
from lead. Have the rollout heading in mind, execute a contract turn, and climb to deconflict
if necessary.
9.32. Low-Level Position Changes. Accomplish position change by following the guidance in
Chapter 6.
9.33. IP-to-Target Run. Lead will designate what specific target point each formation member
will overfly in the target area and the formation position to fly. Lead should brief the wingman
when and how to begin maneuvers to attain the planned formation position for target overflight.
This maneuver can occur at a given distance from the target, over a specific ground reference, or
upon leads direction. If both aircraft overfly the same target point, groundtracks will be
designed to ensure timing deconfliction. Maneuvers can include a check away from lead
followed by a turn toward the target at a given range, or the wingman can deploy to wedge prior
to turning in toward the target. The wingman must remain visual with lead at all times. All
formation members will overfly their designated target point level-straight-through.
9.34. Target Egress. The flight lead should plan and brief a method for achieving a designated
tactical formation (preferably LAB) off the target. An example would be a preplanned turn by
the wingman to the egress heading, and a lead groundtrack to that heading that brings the
wingman forward to LAB.
9.35. Lost-Sight Situations:
9.35.1. When Wingman Loses Sight. During low-level tactical turns, you may
momentarily lose sight of lead. This is acceptable as long as you regain sight of lead at an
appropriate time. However, if you do not regain sight at an appropriate time or if you
unexpectedly lose sight at any other time, transmit your call sign along with blind.
AFMAN11-251V1 17 MARCH 2008 157

Maintain your current heading and climb to 1,000 feet AGL or as briefed to help ensure
deconfliction and terrain clearance while you search for lead. If you regain sight of lead, call
visual and continue the mission. However, if you are unable to regain sight of lead after the
climb, continue to ensure terrain clearance and follow leads instructions.
9.35.2. Lead Actions When Wingman Loses Sight:
9.35.2.1. If the wingman calls blind and you have the wingman in sight, start a climb
to 1,000 feet AGL, and transmit your call sign, the word visual, and your relative
position. If the wingman visually acquires you in the climb, you may descend back to 500
feet AGL.
9.35.2.2. If the wingman is still unable to visually acquire you, direct him or her to
maintain or pick up an appropriate altitude and heading. Consider a moderate, controlled
wing rock, but guard against excessive maneuvering that could lead to disorientation. If
necessary, rejoin on the wingman while talking their eyes onto you. Once the wingman
has you visually, direct him or her to an appropriate formation position and continue the
route if conditions and corridor boundaries allow.
9.35.3. A Double-Blind SituationWingman and Lead Both Lose Sight:
9.35.3.1. If the wingman calls blind and you, as lead, do not have him or her in sight,
maintain your current heading, and direct the wingman to maintain the same heading.
Begin a climb to 1,000 feet AGL, and direct the wingman to climb to 1,500 feet AGL.
9.35.3.2. If both aircraft regain sight of each other in the climb, lead may descend back
to 500 feet AGL and continue the mission. If lead visually acquires the wingman in the
climb, both will follow the procedures in paragraph 9.35.3.1. If neither aircraft regains
sight, both will continue to the next turn point, using landmarks along the route to try to
find each other. When arriving at the next turn point, if still not visually acquired, lead
will be directive. Do not continue the route as a formation.
9.35.3.3. You must be aware of fuel remaining, aircraft scheduled after you on the low-
level, and how much time can be spent attempting to get back together. Relay your
position to the wingman, using a timing reference or landmark along the route.
9.35.3.4. Normally, lead and the wingman will both abort the low-level route. Once they
climb out of route, they do not reenter the MTR. If still unable to regain sight of each
other with altitude deconfliction during the abort, accomplish single-ship recoveries.
During single-ship recoveries, ensure altitude separation from the wingman until
confirming radar contact with a controlling agency.
9.35.3.5. Techniques to help regain sight include: using TCAS, comparing distance to
next EGI turn point, differential airspeeds to create closure, ground references, position
off bullseye, using air-to-air TACAN, holding at the next time point, etc.
9.36. Radio Failure:
9.36.1. Lead Loses Radio. Accomplish all radio failure cockpit and equipment checks. If
radio failure is confirmed or strongly suspected, climb to a minimum of 1,000 feet AGL and
rejoin the wingman. Once rejoined, give the appropriate AFI 11-205 visual signals, and
follow the briefed no radio (NORDO) procedures.
158 AFMAN11-251V1 17 MARCH 2008

9.36.2. Wingman Loses Radio. Accomplish all radio failure cockpit and equipment checks.
If radio failure is confirmed or strongly suspected, climb to a minimum of 1,000 feet AGL
and rock your wings to get leads attention. However, do not sacrifice aircraft control in an
attempt to gain leads attention and do not close to within 500 feet of lead until given the
proper signal. If, as lead, you notice the wingman flying at 1,000 feet AGL or higher and
rocking his or her wings, climb to at least 1,000 feet AGL and have the wingman rejoin.
Once rejoined, give the appropriate AFI 11-205 visual signals for the situation.
9.37. IMC Route Abort:
9.37.1. Lead Actions:
9.37.1.1. When possible, avoid IMC by climbing or turning. Use an in-place turn if
necessary. If IMC penetration is imminent, attempt to rejoin the wingman while
maintaining VMC. If unable to maintain VMC until the wingman is rejoined, ensure the
flight initiates a wings-level climb to RAA minimum with the required altitude
separation. This will allow the wingman to stay above you. RAA deconfliction should be
briefed.
9.37.1.2. Ensure the wingman is paralleling your heading and squawk emergency on
the IFF/SIF as soon as practical. To lessen the chances of a midair collision with the
wingman, do not turn while in IMC.
9.37.1.3. If unable to reach VMC above the RAA, ensure altitude separation with the
wingman and attempt to contact a radar facility. If you are unable to contact a radar
facility, climb to a higher altitude while still ensuring altitude separation with the
wingman. Continue to climb, and squawk emergency until reaching VMC or
contacting a radar facility.
9.37.2. Wingman Actions. When directed, rejoin as expeditiously as possible without
becoming a hazard to the formation. If you are unable to rejoin prior to entering IMC, make a
slight turn away from lead until ensuring altitude separation. Then parallel lead's heading and
follow lead's instructions. Wingman should squawk as briefed as soon as task management
allows so TCAS can confirm separation.
AFMAN11-251V1 17 MARCH 2008 159

Chapter 10

NIGHT FLYING

10.1. Ground Operations:


10.1.1. Mission Briefing. In addition to the normal briefing items, night flying requires
discussing, in detail, the lighting (cockpit, aircraft, airfield, and environment), taxi spacing
and distance, radio procedures, alternate or emergency airfields, and a host of other items
that, during day operations, are simply considered standard. Accomplishing something as
simple as filling out a lineup card in black ink will ease your task requirements for night
flight.
10.1.2. Preflight Power. If external power is available, pilots will use it to thoroughly
check all aircraft lighting (interior and exterior) including the map light. Ensure the
marshaler has two illuminated wands.
10.1.3. Interior Inspection and After Start:
10.1.3.1. During the interior inspection:
10.1.3.1.1. Dim the marker beacon, takeoff trim, and AOA indexer lights.
10.1.3.1.2. Rotate the three lighting rheostats on the right console (instrument, flood,
and console lights) out of the OFF position.
10.1.3.1.3. Set the EED OFF/NIGHT/DAY (OND) power knob to night, and adjust
the EED brightness via the brightness (B) rocker switch.
10.1.3.1.4. Position the instrument panel map lights and the utility light as desired.
Consider selecting the red lens on the utility light and your flashlight.
10.1.3.2. With external power:
10.1.3.2.1. Adjust the lighting on the instrument, flood, and console lights to the
lowest practical setting.
10.1.3.2.2. Dim the warning, caution, and advisory lights to avoid excessive cockpit
reflection or glare.
10.1.3.2.3. On the UFCP, place the NT/AUT/DAY toggle switch to NT for the HUD
night brightness range.
10.1.3.2.4. Adjust the display brightness of the UFCP using the UFCP U BRT rocker
switch on the UFCP. Note: UFCP key illumination is controlled by the instrument
light rheostat.
10.1.3.2.5. Adjust the display brightness of the HUD using the HUD H BRT rocker
switch on the UFCP.
10.1.3.2.6. Set the MFD OND power knob to night, and adjust the MFD display
brightness via the BRT rocker switch.
10.1.3.3. Without external power, check all interior lights mentioned in paragraphs
10.1.3.2 after starting engines.
160 AFMAN11-251V1 17 MARCH 2008

10.1.4. Before Taxi. If adequate airfield lighting exists, delay turning on the landing light
until you are out of the chocks to avoid blinding the crew chiefs. Because the rotating beacon
may hinder maintenance personnel while they are under the aircraft, consider turning it off.
10.1.5. Taxi. Taxi on centerline with a minimum of 300 feet spacing from preceding
aircraft. Taxi speeds should be slower because speed and distance estimation are difficult
during night operations. Solo students should accomplish all checklist items while stopped.
10.2. Single-Ship Takeoff. Line up on the runway centerline, and recheck the EADI and EHSI.
After runup checks and brake release, use the composite method of aircraft control you learned
during day contact flying. Remain oriented to the instrument references as well as outside objects
to minimize the chance of spatial disorientation. Certain weather conditions or a lack of visual
cues may necessitate a complete transition to flight instruments immediately after takeoff. The
rate of transition to instruments should correspond with the rate at which outside references fade.
Ensure the aircraft is safely airborne before raising the landing gear handle, and be aware that the
retracting landing light can give a false sensation of increasing pitch.
10.3. Use of Night Visual References:
10.3.1. Visual references and depth perception change with night operations. To overcome
the decrease in visual cues, use instruments to a greater extent. Throughout the sortie,
continue to adjust cockpit lighting to maximize your night vision, decrease glare, and
minimize reflections.
10.3.2. At night, lighted objects often appear closer than they actually are. Because altitude
and rate of descent are more difficult to judge close to the ground, rely more on the altimeter
and IVV than on visual perception. Cross-check the EADI to determine the proper aircraft
attitude when no definite horizon exists.
10.3.3. Although there is an increased emphasis on flight instruments at night, visual
references are still the primary means of orientation during night VMC operations. However,
if you detect an unusual attitude or feel the effects of spatial disorientation, immediately
make a transition to flight instruments and recover.
10.4. Depth Perception. Use caution when descending for the initial traffic entry at night
because height above the ground is difficult to judge. Check the altimeter closely during night
operations to ensure a proper interpretation.
10.5. Night Optical Illusions. Use caution when flying approaches, especially to a strange
field. Sloping or featureless terrain, sloping runways, varying runway widths, runway lighting
intensity, and (or) weather phenomena can cause visual illusions at night. One of the best
defenses against illusions at a strange field is thorough preparation. Study the airfield and
approach diagrams, and become thoroughly familiar with its lighting and glidepath guidance
systems.
10.6. Visual and Instrument Straight-In Approaches. Whether practicing visual or
instrument straight-in approaches at night, approach control normally provides positive radar
control for pattern spacing and sequencing to final. Do not rely entirely on visual cues. Use
composite flight references, to include glidepath, course, and lighting system guidance.
10.7. Overhead Patterns:
AFMAN11-251V1 17 MARCH 2008 161

10.7.1. Clearing. The night pattern can get very busy so it is critical to clear visually, on the
radios, and on TCAS. It is difficult to tell whether an aircraft is turning crosswind or pulling
closed. Listening carefully to the radio call will help you know aircraft position and intention.
If in doubt, turn crosswind, carry straight through initial, or break out, as applicable.
10.7.2. Pattern Entry and Break. Clear and complete the entry and turn onto initial or
radar initial the same as during daylight operations. Because you may not see the runway
clearly, initiate the break by referring to the ramp or other lighted areas on the field. Initiating
the break with traffic abeam you on closed downwind will ensure 6,000 feet of runway
separation. Continue to use a composite cross-check during the break to maintain aircraft
control.
10.7.3. Final Turn and Final. Fly the turn to final and final approach using a composite
cross-check, because some visual cues will be hard to see (for example, an horizon). A good
technique is to emphasize being on airspeed at desired altitudes for the perch, halfway
through the final turn, and especially rolling out on final.
10.7.4. Transition to Landing and Landing. The references for night landings are the
same as daytime references. The main difference between night landings and day landings is
the lack of peripheral cues to help judge glideslope angle and height above the runway. Long,
fast landings at night are especially dangerous as many of the daytime runways cues may
not be available. As you approach the overrun, the landing light will illuminate the surface of
the overrun and runway, helping with depth perception. Do not use the runway lights as the
only reference to judge height above the runway because they can lead to a high flare and a
dropped-in landing. Plan to land on the runway centerline.
10.8. Night Formation:
10.8.1. Mission Briefing. In addition to normal briefing items, emphasize visual signals,
radio procedures, crew coordination, spatial disorientation, and lost wingman procedures.
10.8.2. Takeoff:
10.8.2.1. Lead. In addition to winds, etc., consider the location of ramp lights when
positioning a wingman for a night takeoff. As you take the runway, dim the position
lights and turn off the rotating beacon. Normally, unless specified in unit standards,
replace the daylight visual signals with radio calls for engine runup, brake release, and
gear retraction. When lighting conditions permit, you may brief visual signals.
10.8.2.2. Wingman. Your position lights should remain bright and your rotating beacon
on.
10.8.3. In Flight:
10.8.3.1. Lead. Based on weather, natural lighting, visible horizon, and available
ground references, use the same wingman considerations during night formation
maneuvering as during day IMC maneuvering. Depending on proficiency, slower roll
rates may be preferred.
10.8.3.2. Wingman. To maintain the normal fingertip position at night, cross-check
references more often than during the day. Do not stare at any one light on leads aircraft
because this may result in a loss of depth perception. When you are in fingertip position,
162 AFMAN11-251V1 17 MARCH 2008

your rotating beacon will reflect off leads aircraft and help your depth perception. If you
fall low, you will lose that effect.
10.8.3.3. Route. Because of reduced visual cues, flying route at two- to three-ship
widths and forward of the wing line will maximize the illumination effect of the rotating
beacon. During turns into the wingman, number 2s beacon will illuminate lead. During
turns away, this effect is lost. Under certain conditions (little moon illumination, poor
horizon, haze), consider reforming number 2 into fingertip before a turnaway.
10.8.3.4. Crossunder. Crossunders may be initiated with a visual signal or radio call.
Make all control inputs smooth and deliberate. Crossunders should take a little longer at
night due to reduced visual cues.
10.8.3.5. Formation Approach. Normally, lead will call gear extension and retraction
over the radio. If the wingmans landing light becomes a distraction, lead should direct
him or her to turn it off. A radio call or zipper may be used to initiate a go-around from
the low approach.
10.8.3.6. Position Change. Night position changes will be made over the radio. The
aircraft assuming the lead should dim the position lights and turn off the beacon. The
aircraft assuming the number 2 position should do the opposite.
10.8.3.7. Night Overhead Traffic Pattern Splitup. As soon as practical after the
splitup, lead will turn on the rotating beacon and return the position lights to the bright
setting. Normally, the wingman should delay the break for about 8 seconds to build 6,000
feet of spacing behind lead.

10.9. Adopted Forms:

DD Form 175, Military Flight Plan


AF Form 847, Recommendation for Change of Publication
AF IMT 70, Pilot's Flight Plan and Flight Log
AFTO Form 781, ARMS Aircrew/Mission Flight Data Document

Phillip M. Breedlove, Lt Gen, USAF


DCS, Operations, Plans and Requirements
AFMAN11-251V1 17 MARCH 2008 163

Attachment 1
GLOSSARY OF REFERENCES AND SUPPORTING INFORMATION

References
FAA Publication 7610.4, Special Military Operations, 30 November 1998
AFI 11-202, Volume 3, General Flight Rules22 Oct 2010
AFPD 11-2, Aircraft Rules and Procedures, 14 January 2005
AFI 11-2T-38, Volume 3, T-38 Operations Procedures, 29 June 2007
AFI 11-205, Aircraft Cockpit and Formation Flight Signals, 19 May 1994
AFI 11-214, Air Operations Rules and Procedures, 22 December 2005
AFI 11-218, Aircraft Operations and Movement on the Ground, 11 May 2005
AFMAN 11-217, Volume 1, Instrument Flight Procedures, 22 October 2010
AFMAN 11-217, Volume 2, Instrument Flight Procedures, 6 August 1998
AFMAN 11-217, Volume 3, Supplemental Flight Information, 23 February 2009
AFMAN 33-363, Management of Records, 1 March 2008
AFMAN 37-123 - DELETED
AETC TRSS Handout 11-1, Navigation for Pilot Training
TO 1T-38C-1, Flight Manual, USAF Series T-38C Aircraft (referred to as the flight manual), 1
April 2001

Abbreviations and Acronyms


A/Aair-to-air
AAaspect angle
A/Gair-to-ground
adminadministrative
AGLabove ground level
AGSManti-G straining maneuver
AHASavian hazard advisory system
AOAangle of attack
ARTCCair route traffic control center
ATCair traffic control
ATISautomated terminal information service
AWOSAutomated Weather Observation System
BDbattle damage
164 AFMAN11-251V1 17 MARCH 2008

BFMbasic fighter maneuvers


CAScalibrated airspeed
CDIcourse deviation indicator
CDMclimb dive marker
CHUMchart update manual
commcommunication
CRNchronometer
CSWcourse select window
DESTdestination
DHdecision height
DLOdesired learning objectives
DMEdistance measuring equipment
DRdead reckoning
DTCdata transfer cartridge
EADIelectronic attitude director indicator
EEDelectronic engine display
EGIembedded global positioning and inertial navigation system
EGTexhaust gas temperature
EHSIelectronic horizontal situation indicator
ENDRendurance
ENJJPTEuro-NATO Joint Jet Pilot Training
EORend of runway
ETextended trail
FAAFederal Aviation Administration
FAFfinal approach fix
FBOfixed base operator
FBYflyby
FCPfront cockpit
FDflight director
FENCEfire control, emitters, NAVAIDs, communications, and electronic countermeasures
(as in FENCE check)
FLflight level
FLIPFlight Information Publications
AFMAN11-251V1 17 MARCH 2008 165

FMfluid maneuvering
FODforeign object damage
FOVfield of view
FPLflight plan
fpmfeet per minute
FPMflightpath marker
FSSflight service station
GPSglobal positioning system
GSgroundspeed
HATheight above touchdown
HCAheading crossing angle
HOTAShands on throttle and stick
HSDhorizontal situation display
HSIhorizontal situation indicator
HUDheads up display
IAFinitial approach fix
IAWin accordance with
ICAO International Civil Aviation Organization
IFF/SIFidentification, friend or foe/selective identification feature
IFRinstrument flight rules
ILSinstrument landing system
IMCinstrument meteorological conditions
IMNindicated mach number
INSinertial navigation system
IPinstructor pilot, initial point
IRinstrument route
ITOinstrument takeoff
IVVinstantaneous vertical velocity
JOGjoint operational graphic
KCASknots calibrated airspeed
KIOknock-it-off
ktsknots
166 AFMAN11-251V1 17 MARCH 2008

LABline abreast
LCOSlead computing optical sight
LOSline of sight
LVlift vector
MAJCOMmajor command
MAXmaximum afterburner/maximum power
MDAminimum descent altitude
MDPmission display processor
MFDmulti-function display
MILmilitary (power)
MIL-STDmilitary standard
milmilliradian
MMmillimeter
MMSmaster mode switch
MOAmilitary operations area
MSLmean sea level
MTRmilitary training route
NAVnavigation
NAVAIDnavigational aid
nmnautical mile
NOTAMnotice to airman
ONCoperational navigation chart
ONDOFF/NIGHT/DAY
OVRflyover
PAPIprecision approach path indicator
PARprecision approach radar
PIOpilot induced oscillation
PIREPpilot report
PITPilot Instructor Training
PMSVpilot to metro service
PNSprimary navigation source
POMplane of motion
AFMAN11-251V1 17 MARCH 2008 167

PPpresent position
pphpounds per hour
RAAroute abort altitude
RAIMreceiver autonomous integrity monitoring
RALTradar altimeter
RNAVarea navigation
ROErules of engagement
rpmrevolutions per minute
RSUrunway supervisory unit
RTBreturn to base
RVSMreduced visual separation measure
SAsituational awareness
SOFsupervisor of flying
SPINSspecial instructions
SRslow route
STARstandard terminal arrival route
SUPTSpecialized Undergraduate Pilot Training
TAtransition altitude
TACANtactical air navigation
TCturn circle
TCAStraffic collision avoidance system
TODtime of day
TOFtime of flight
TOLDtakeoff and landing data
TOTtime over target
TPCtactical pilotage chart
TRtraining rule
UFCPup front control panel
UHFultra high frequency
UFT undergraduate flying training
VASIvisual approach slope indicator
VDPvisual descent point
168 AFMAN11-251V1 17 MARCH 2008

VFRvisual flight rules


VHFvery high frequency
VMCvisual meteorological conditions
VORvery high frequency omni-directional receiver
VORTACvery high frequency omni-directional receiver/tactical air navigation
VRvisual route
VTRvideotape recorder
WEZweapons employment zone
WITwitness
WPNweapon
WSSPweapon system support pod

Terms
3/9 LineAn imaginary line extending through the 3- and 9-oclock positions of an aircraft
(also known as the pitch or lateral axis).
AbortDirective to cease the action, attack, event, or mission.
Acceleration maneuverA maneuver flown to increase airspeed. Zero G is optimum.
Admin leadUsed to pass lead responsibilities to another member of the flight. The
administrative (admin) lead is expected to run all aspects of the profile to include navigating,
managing the radios, and making changes to the profile if external conditions dictate (for
example, changing the bingo fuel with a change in the alternate). With an admin lead change, the
call signs within the flight are administratively renumbered to match the position being flown.
Lead still retains ultimate authority for the formation.
Angle-offThe angle formed by the extension of the longitudinal axes of two aircraft; the
difference in headings. Also called the heading crossing angle (HCA).
Aspect angleThe angle measured from the tail or longitudinal axis of one aircraft to another
aircrafts position. For example, 0 degrees aspect angle is directly behind and 180 degrees aspect
angle is directly in front. The aspect angle is independent of the other aircrafts heading.
BingoA prebriefed fuel state needed for recovery using prebriefed parameters.
BlindNo visual contact with friendly aircraft; the opposite of visual.
Break (Up, Down, Right, or Left)To perform an immediate maximum performance turn in
the indicated direction. Assumes a defensive situation.
ClearedRequested action is authorized.
ClosureOvertake created by airspeed advantage and (or) angles. The rate at which range
decreases (also known as VC: closure velocity V-sub-C). Closure can be positive (getting
closer) or negative (getting farther away).
Cross turnA 180-degree heading reversal by a flight where aircraft turn into each other.
AFMAN11-251V1 17 MARCH 2008 169

DivertProceed to alternate mission or base.


Element leadThe pilot responsible for the conduct of a two-ship element. In a two-ship
formation, the element lead is the flight lead (see definition). Number 3 is the element lead in a
four-ship formation. (Normally, one wingman should not fly formation off of another wingman.)
Extension or acceleration maneuverAn unloaded maneuver, almost always at a high-power
setting, to gain airspeed and either generate closure (decrease distance) or increase opening
velocity (separation).
FENCEThe boundary separating hostile and friendly areas. Entering or exiting designated
area.
FENCE checkSet cockpit switches as appropriate.
Flight leadAlthough perhaps not the most experienced pilot in the flight, the flight lead
(referred to as lead) is charged with the safe and successful completion of the mission.
Wingmen may lead portions of the mission, but the designated flight lead does not change.
High sixA position physically above and behind an aircraft regardless of heading or bank
angle.
JokerFuel state above bingo at which separation, bug out, or event termination should begin
and proceed with the remainder of the mission.
Knock-it-offTraining term used to stop maneuvers in progress for safety of flight issues.
Lag pursuitManeuvering to control closure, range, and (or) aspect angle by positioning the
lift vector (or flightpath) toward the outside of another aircrafts turn circle. Lag pursuit usually
decreases aspect angle.
Lag repositionAn out-of-plane maneuver performed to control overtake, decrease aspect
angle, and (or) prevent an overshoot by using vertical turning room above and behind another
aircrafts plane of motion.
Lead pursuitManeuvering to control closure, range, and (or) aspect angle by positioning the
lift vector (or flightpath) toward the inside of another aircrafts turn circle. Lead pursuit usually
increases or maintains aspect angle.
Lead repositionAn out-of-plane maneuver generally performed to increase overtake and
aspect angle and (or) decrease range by using vertical turning room below another aircrafts
plane of motion.
Lift vectorAn imaginary plane going vertically through the top of the aircraft, representing the
plane of motion in a straight pull. Set the lift vector means to roll the aircraft to set the point
you want to pull to at your 12 oclock high.
Line abreastTwo groups, contacts, formations, or aircraft side by side.
Line of sight (LOS)A direct line between two aircraft.
LOS rateSpeed of apparent drift of one aircraft in relation to another, speed of angular change
of LOS.
170 AFMAN11-251V1 17 MARCH 2008

Nav leadMay be used when lead wants the wingman to navigate and clear. Lead will fly the
wingman position, deconflict within the flight, and keep the radios; for example, battle damage
(BD) check.
Ops checkPeriodic check of aircraft systems performed by the aircrew (including fuel) for
safety of flight.
Overshoot (flightpath)Results in one aircraft crossing through or behind the flightpath of the
other aircraft, but not necessarily in front of the other aircrafts 3/9 line.
Overshoot (3/9 line)Results in the aft aircraft flushing forward of the other aircrafts 3/9 line.
PerchA position behind and to the side of an aircraft used to define a starting point for follow-
on maneuvering.
Plane of motionA plane extending from the flightpath of an aircraft to the center of its turn
radius.
Pure pursuitAn aircraft with its nose pointing at another aircraft is in pure pursuit.
PushChange frequency without acknowledgment.
Quarter planeA last-ditch maneuver used to prevent a 3/9 overshoot or to preserve 3/9 line
at closer ranges and higher LOS rates.
Radial GThe vector sum of the aircraft's lift vector and gravity when turning in a vertical
POM; that is, the G effectively turning the aircraft.
SquawkOperate IFF as indicated or IFF is operating as indicated.
Tactical leadMay be used when lead needs the wingman to lead an event (for example,
extended trail) or a segment of the flight. In this case, the wingman will pick up tactical,
navigation, and radio responsibilities but not the overall flight lead responsibility. Individual call
signs do not change.
TerminateTraining term used to stop maneuvers in progress for nonsafety of flight issues.
Turn circleThe flightpath described by an aircraft in a turn.
Turn radiusThe distance between an aircrafts flightpath and the center of the turn circle.
Turn rateDegrees per second an aircraft turns.
Turning roomVolume of airspace in the vertical, horizontal, or both, which can be used to
execute a desired maneuver.
VisualSighting of a friendly aircraft or ground position; the opposite of blind.
ZipperA double-click of the microphone button used to attract the attention of another pilot in
the formation without compromising mission information (for example, call signs or flight
composition) or cluttering the frequency.
AFMAN11-251V1 17 MARCH 2008 171

Attachment 2
STADIAMETRIC RANGING

A2.1. Stadiametric Ranging. Stadiametric ranging (mil sizing) is a crude method for
estimating target ranges. It uses the relationship between angles and the arcs they subtend over a
given distance to help determine the distance to a target. A radian is the angular measurement in
a circle where the arc length (radian) is equal to the radius length. One milliradian (mil) is an
angular measure. Further explanation on calculations follows:
A2.1.1. One radian = 57.3 degrees (approximately)
A2.1.2. One mil = radian 1,000 = 0.057 degrees
A2.1.3. One degree = 17.45 mils
A2.1.4. One mil = arc length range
A2.1.5. Range can be any unit: foot, meter, etc.
A2.1.6. Example: 1 mil = 3 feet at 3,000 feet or 3 meters at 3,000 meters
A2.2. Range and Mils:
A2.2.1. Range and mils have the following relationship:
A2.2.1.1. Range = Wingspan / mils X 1,000
A2.2.1.2. Mils = Wingspan / Range X 1,000
A2.2.2. Since the size of the T-38 is known, mil sizing can be used to determine range from
the other aircraft or predict aircraft size at a given range. Table A2.1 shows T-38 mil sizes at
0 AA (T-38 wingspan = 25 ft 3 in) and at 90 AA (T-38 length = 46 ft 4 in) using
stadiametric ranging.
A2.3. General Procedures and Examples. Since ET is flown at low AAs, these examples use
wingspan as the known distance in examples for 0 AA.
A2.3.1. To determine range from another aircraft, divide wingspan in feet by apparent size
in mils and multiply by 1,000. For example, a T-38 (25 foot wingspan) at 0 AA is 25 mils
wingtip to wingtip in your HUD. Your range is 25 feet divided 25 mils multiplied by 1,000 =
1,000 feet.
A2.3.2. To predict size (in mils) of another aircraft at a defined range, divide wingspan in
feet by the desired range and multiply by 1,000. For example, at 6,000 feet and 0 AA, a T-
38 will be 25 feet divided by 6,000 feet multiplied by 1,000 = 4.1 mils.

Table A2.1. T-38 Mil Sizes at Various Ranges.


I A B C D E F G H
T RANGE (feet)
E AA
M (degrees) 6,000 5,000 4,000 3,000 2,000 1,000 500
1 0 4 mils 5 mils 6 mils 8 mils 13 mils 25 mils 50 mils
2 90 8 mils 9 mils 12 mils 15 mils 23 mils 46 mils 92 mils
172 AFMAN11-251V1 17 MARCH 2008

A2.3.3. In general, mil sizing could be adjusted when you are not approaching your target on
an exact aspect. However, you may consider the 0 AA number suitable for perch entries to
ET.
A2.4. HUD Symbol References. Once you know what size, in mils, an aircraft should be at
different ranges, you can use symbol references available to you on the HUD to determine your
range from the aircraft. Dimensions of the HUD boresight cross/gun cross are illustrated in
Figure A2.1, dimensions for the MIL-STD HUD aircraft waterline are illustrated in Figure A2.2,
and dimensions for the F-16 HUD FPM are illustrated in Figure A2.3. The following examples
show how mil sizing can be used during UFT formation flying when you are approaching an
aircraft at low aspect; for example, as wing during a straight-ahead rejoin or during the perch
entry to ET:
A2.4.1. At 6,000 feet, lead is approximately 4 mils which equates to slightly less than the
width of a single horizontal line on the gun cross.
A2.4.2. At 5,000 feet, lead is approximately 5 mils which equates to the width of a single
horizontal line on the gun cross.
A2.4.3. At 4,000 feet, lead is approximately 6 mils, approximately half the width of the
entire gun cross.
A2.4.4. At 3,000 feet, lead is approximately 8 mils, approximately the width of the gun cross
minus one of its horizontal lines.
A2.4.5. At 2,000 feet, lead is approximately 13 mils, the width of the gun cross.
A2.4.6. At 1,000 feet, lead is approximately 25 mils, approximately twice the width of the
gun cross.
A2.4.7. At 500 feet (inside the cone), lead is approximately 50 mils, approximately 4 times
the width of the gun cross.

Figure A2.1. HUD Boresight Cross/Gun Cross Mil Dimensions.


AFMAN11-251V1 17 MARCH 2008 173

Figure A2.2. MIL-STD HUD Aircraft Waterline Mil Dimensions.

Figure A2.3. F-16 HUD FPM Mil Dimensions.


174 AFMAN11-251V1 17 MARCH 2008

Attachment 3
GUNS-TRACKING EXERCISE AND HEAT-TO-GUNS EXERCISE (80TH
OPERATIONS GROUP ONLY)

A3.1. Purpose. The purpose for the guns-tracking and heat-to-guns exercises is to build on the
fundamentals learned in FM to place the aircraft in a position to employ weapons. The objectives
are the same as those for FM (paragraph 6.46) but also include:
A3.1.1. Introduce and practice using HUD air-to-air symbology.
A3.1.2. Introduce simulated infrared missile and gun employment from a stabilized WEZ.
A3.2. The WEZ. The WEZ is an area in relation to another aircraft from which valid weapons
may be employed with the greatest probability of achieving desired results. The WEZ is different
for each type of weapon. The exercises in this attachment will simulate the use of the AIM-9P
air-to-air missile and the 20 millimeter (MM) cannon.
A3.2.1. The WEZ for the 20MM cannon during the guns-tracking exercise is a range
between 2,500 feet and 1,000 feet and an AA <135 degrees. Desired aspect angle for gun
employment is 20 to 50 degrees. Offenders must cease weapons employment with enough
time and range to avoid a 1,000foot training bubble.
A3.2.2. The WEZ for the AIM-9P during the heat-to-guns exercise is a range between 9,000
and 2,000 feet and AA <45 degrees.
A3.3. The Control Zone. The control zone (Figures A3.1 and A3.2) is generally defined as
2,500 to 4,500 feet behind the training aircrafts 3/9 line where range divided by 100, AA, and
angle off nose are all roughly the same number, and when the maneuvering aircraft is on or near
the training aircrafts turn circle. The control zone allows the maneuvering aircraft to control
the training aircrafts actions by forcing it to keep turning for survival or immediately allow for a
potential AIM-9P or gun WEZ entry. It is a position that also makes the training aircraft
predictable prior to pulling lead pursuit or setting pure pursuit for weapons employment. The
back of the control zone represents a pressure limit, forcing the training aircraft to turn to stay
alive. The front of the control zone represents a reaction limit, generally forcing the
maneuvering aircraft to reposition if closure or AA increases by even a small amount. In order to
transition to a stable WEZ, it is critical to maintain energy while in the control zone. As a rule of
thumb, the heart of the control zone is between 3,000 and 3,500 feet with an aspect of 30 to 40
degrees from the training aircraft. From this position, the maneuvering aircraft can transition to
an AIM9P or 20MM gun WEZ with enough time to employ valid ordnance and then reposition
in a timely manner (if required).
AFMAN11-251V1 17 MARCH 2008 175

Figure A3.1. The Control Zone.

Figure A3.2. Control Zone Canopy Bow References.

A3.4. Shot Validity. Valid gun and missile shots must be taken from within the WEZ for the
weapon and must meet either of the criteria in paragraph A3.4.1 or paragraph A3.4.2 for sighting
and time of flight (TOF). A snap is any valid gunshot less than 15 frames. A track is any
combination of valid guns shots equaling 15 frames. The T-38C VTR records 30 frames per
second.
176 AFMAN11-251V1 17 MARCH 2008

A3.4.1. Gunshots Using the Enhanced Envelope Gunsight (EEGS) Funnel. Use the
firing evaluation display system (FEDS) developed at trigger pull to determine TOF and
valid frames. Any part of the center of the FEDS touching the target at the correct range
(matching the width of the FEDS dots) counts as a valid frame.
A3.4.2. Gunshots Using the Lead Computing Optical Sight (LCOS). Use one frame per
100 feet (range to training aircraft) to assess TOF. A frame is assessed as valid if the two mil
pipper is touching the target inside 2,500 feet after the TOF requirement is satisfied.
A3.4.3. AIM-9P Shot Validity. A valid uncage consists of the targets heat source in the
17.5 mil seeker reference circle (caged FOV) during the transition to the 30-mil (uncaged)
circle. Once uncaged, the target must remain in the HUD FOV until pickle. The sun in the
HUD FOV at pickle will invalidate the shot.
A3.5. Guns-Tracking Exercise:
A3.5.1. DLO. The DLO is a valid guns track. This exercise can be flown in conjunction
with the heatto-guns exercise.
A3.5.2. Guns-Tracking Exercise Setup and Special Instructions (SPINS) (Figure
A3. 3):
A3.5.2.1. Altitude block15,000 to 17,000 feet MSL (or as briefed). Aircraft will be
coaltitude (+500 feet) before beginning the exercise.
A3.5.2.2. Airspeed350 (+10) KCAS.
A3.5.2.3. Range6,000 feet line abreast.
A3.5.2.4. Minimum Range. The minimum range between aircraft at all times is 1,000
feet.
AFMAN11-251V1 17 MARCH 2008 177

Figure A3.3. Guns-Tracking Exercise.

A3.5.3. Avionics. When the flight lead initiates the next set call, ensure air-to-air master
mode is selected, and cycle the master arm and CMD switches as required to reset the
weapons.
A3.5.4. Communication. When both aircraft are ready, lead will initiate a check 45
left/right away from the maneuvering aircraft. When the maneuvering aircraft reaches 3,000
feet with a 30- to 40degree aspect, the maneuvering aircraft will make a C/S, fights on
call. Refer to unit standards for specific communications guidance.
A3.5.5. Training Aircraft. After the check left/right is initiated, the training aircraft will
select MIL power and initiate a level turn away from the maneuvering aircraft while
maintaining 350 KCAS. After 45 degrees of turn, roll out and regain the visual of the
maneuvering aircraft. Once the maneuvering aircraft reaches pure pursuit, reverse the
direction of turn and use G as required to ensure a 30- to 40degree AA is set for the
maneuvering aircraft. This picture equates to roughly one fist width above the canopy bow
(Figure A3.4 [Note: Bandit not to scale]). At the fights on call, pull 4 Gs with MIL power
in a level turn, allowing airspeed to slow toward 300 KCAS. Continue flying a level to
slightly descending constant airspeed turn at MIL power (usually no slower than 300 KCAS).
178 AFMAN11-251V1 17 MARCH 2008

Figure A3.4. Setting the Fights On AA.

A3.5.6. Maneuvering Aircraft. After the check left/right is initiated, select MIL power and
make a level turn toward the training aircraft while maintaining 350 KCAS. Pull the nose of
the aircraft until just prior to achieving pure pursuit then reverse direction to maintain pure
pursuit. At a range of 3,000 feet and a 30- to 40-degree AA, make the fights on call. The
maneuvering aircraft is in the heart of the control zone.
A3.5.6.1. Transitioning from the Control Zone to the Gun WEZ. Align POM with
the training aircraft and pull lead to place the training aircraft inside of the gunsight.
When transitioning from the control zone to a WEZ, the maneuvering aircraft is building
geometric closure as it cuts to the inside of the training aircrafts turn circle. Be aware
that the training aircraft will be cooperative and will not maneuver to present additional
closure and POM problems for the maneuvering aircraft. Expect initially to maintain the
fights on power setting until established in the heart of the WEZ, followed by power
modulation to sustain the WEZ. To control closure, reduce power as required once lead is
assured. Generally, lead is assured if pulling the training aircraft into the HUD creates
little to no buffet. With a good airspeed advantage, power can be pulled to idle as early as
when the training aircraft reaches the canopy bow. The faster the training aircraft reaches
the HUD, the earlier the power needs to be pulled back. Contrarily, if barely able to get
the training aircraft to the HUD due to moderate buffet, lead may not be attained or
maintained without an increased power setting, to include the use of afterburner.
A3.5.6.2. In Range. While maneuvering from the control zone to the WEZ, expect the
training aircraft to be within range by the time lead and POM are solved; however, use
mil sizing to ensure employment inside MAX range (2,500 feet).
A3.5.6.2.1. Funnel. The training aircraft is in range when the wings fill the width of
the funnel at the middle pipper (2,500 feet). The minimum range of 1,000 feet is
AFMAN11-251V1 17 MARCH 2008 179

achieved with the training aircrafts wings reaching the edge of the funnel at the top
dot.
A3.5.6.2.2. LCOS. The training aircraft is in range when the wings fill the width of
the inner circle of the LCOS sight. The minimum range of 1,000 feet is achieved
when the training aircrafts wings are at the edges of the outer circle of the LCOS
sight.
A3.5.6.3. POM. The funnel and the gun-sight depression line connecting the LCOS
pipper to the gun cross show the maneuvering aircrafts POM, making the POM solution
intuitive. Nonetheless, pulling the gun cross in front of the training aircraft to its
predicted flightpath before attempting to align the POM will mitigate overcontrolling
inputs and aid in stabilizing the gunshot.
A3.5.6.4. Lead. With the funnel, a good technique of ensuring lead prior to weapons
employment is to pull until the target aircrafts wings are just slightly overlapping the
funnel at the 2,500-foot reference, then gently relax backstick pressure allowing the
aircrafts wingspan to match the outside of the funnel edges. With the LCOS, pull lead to
position the pipper on the training aircrafts nose, then gently relax backstick pressure
allowing the aircraft to fly through the pipper.
A3.5.6.5. Gun Employment. Prior to opening fire, ensure feet are on the floor or
exerting symmetric pressure on the rudder pedals. Unintentional yaw inputs will case
POM errors. Using fine muscle movements, stabilize the aiming reference on the center
of the target aircraft. Adjust power as required based on closure, aircraft buffet cues, and
LOS rate. Small adjustments in back-stick pressure and lateral stick displacement will be
required to refine aiming based on continuously changing range and POM. Adjust for
POM error using lateral stick pressure by attempting to adjust for one-half the distance of
FEDS or LCOS pipper displacement. A controlled gunshot could be considered a 2- to 3-
second lethal burst. This time may be shortened based on range, closure, and significant
aiming errors. Consider it a waste of bullets to attempt a gunshot for longer than 3
seconds. Marksmanship is critical. At 60 rounds per second, 450 rounds of simulated
bullets will be depleted in approximately 7 seconds. Expect approximately 90 to 120
degrees of turn to obtain a valid track prior to terminating the exercise. Be aware of the
potential to fly through the target aircrafts jetwash.
A3.6. Heat-to-Guns Exercise:
A3.6.1. DLOs. The DLOs are achieved by employing a valid Fox 2, executing an effective
turn circle entry, and achieving a valid guns track. A common termination point for the
exercise occurs at the completion of a valid gun attempt or if the student fails to achieve a
valid gun solution on the initial attempt.
A3.6.2. Heat-to-Guns Exercise Setup and Special Instructions (SPINS) (Reference
Figure A3. 5):
A3.6.2.1. Altitude block15,000 to 17,000 feet MSL (This may be adjusted). Aircraft
will be coaltitude (+500 feet) before beginning the exercise.
A3.6.2.2. Airspeed410 +10.
A3.6.2.3. Range6,000 feet line abreast.
180 AFMAN11-251V1 17 MARCH 2008

A3.6.2.4. Minimum Range. The minimum range between aircraft at all times is 1,000
feet.

Figure A3.5. Heat-to-Guns Exercise.

A3.6.3. Avionics. Ensure air-to-air master mode is selected, and cycle the master arm and
CMD switches as required to reset weapons.
A3.6.4. Communication. Refer to specific communications guidance in unit standards. See
Figure A3.5 for a communications example. Lead will initiate an ops check then inform the
wingman of the next setup (i.e., C/S, next set will be a heat-to-guns exercise for #2.). Two
will acknowledge with position number. While in tactical formation, lead will then give a
C/S, push-it-up call, with a reference heading if required. After reaching briefed starting
parameters, lead will initiate a ready call. When both aircraft are ready, lead will call C/S,
fights on.
A3.6.5. Training Aircraft. At the fights on call, the training aircraft will initiate a MIL
power, 4-G level turn away from the maneuvering aircraft. At 90 degrees of turn, roll out and
modulate power not to exceed 410 KCAS. As soon as aFOX 2 is called by the
maneuvering aircraft, the training aircraft will either immediately reverse the turn (if still
checking away) or begin a turn in either direction and maintain 3 to 4 Gs while slowing to
350 KCAS and MIL power. Continue flying a level to slightly descending constant airspeed
turn at MIL power.
A3.6.6. Maneuvering Aircraft. At the fights on call, select MAX afterburner, set the
LV on the training aircraft, start the AGSM, and pull using light buffet (4 to 5 Gs). As the
training aircraft enters the HUD FOV, simultaneously relax the G, reduce the throttles to
AFMAN11-251V1 17 MARCH 2008 181

maintain 410 +10 KCAS, and attempt a valid AIM-9 shot. Call FOX 2, and prepare to
enter the training aircrafts turn circle.
A3.6.6.1. AIM-9 Employment. When pulling the training aircraft into the HUD,
consider a slight relax of G as required to slow the training aircrafts LOS rate to the
missile seeker FOV. With the targets heat source in the missile FOV, uncage the missile.
Attempting to hold or freeze the target aircraft in the center of the seeker FOV for too
long can result in a significant closure problem and decrease the time available to prepare
for follow-on maneuvers. After employing the AIM-9, call Vega 2, Fox 2, roll out, and
begin a slight climb (normally FPM 3 to 5 degrees above the horizon) to avoid the
training aircrafts jetwash. Modulate power to accelerate back to or maintain 410 KIAS
while approaching the target aircrafts point of return.
A3.6.6.2. Turn Circle (TC) Entry Recognition Cues. Recognizing the proper TC
entry cues proves vital to successfully entering the control zone. The maneuvering
aircraft is on the TC when an increase in the aft LOS rate of the training aircraft occurs.
Another recognizable cue happens when the rotational motion of the training aircraft
turns into aft translational motion (AA stops increasing). Due to the low turn rates of the
T-38, this increase in LOS rate is relatively subtle. The most common visual crutch is to
begin maneuvering once the training aircraft reaches a point just outside the canopy bow.
A3.6.6.3. Assessing a WEZ. At the turn circle entry, select G and power as appropriate
(usually MIL), begin the AGSM, set the LV near the training aircraft, and start a light to
moderate buffet pull. Be aware of the potential to fly through the training aircrafts
jetwash. As the training aircraft approaches the canopy bow, assess range, aspect, and
closure. The area within one to two fists of the canopy bow is referred to as the
assessment window. Commonly briefed cues to search for during this assessment
include 3,000 feet of range, 30 to 45 degrees of aspect, and steady, controllable closure
(referred to sometimes as the rule of threes). Details on the training aircrafts jet
provide the most accurate method to determine range. At 3,000 feet, the training aircraft
has a clearly visible canopy and canopy bows, distinct lines where the wings and tail
meet the fuselage, and clear lines where the colors on the paint scheme change. To
determine 30 to 45 degrees of aspect, refer to the wingspan versus length relationship. To
determine acceptable closure, the training aircrafts jet should slowly grow larger. If the
jet is rapidly growing larger or smaller, improper closure exists. During the heat-to-guns
exercise, range and aspect should look appropriate for transition to the gun WEZ. If all
three cues from the training aircraft exist at the canopy bow assessment window, continue
to pull the training aircraft into the HUD and employ ordnance. If one or more of the cues
are not met, execute an ease reposition as described in paragraph A3.6.6.4. An ease
reposition will help to solve range and aspect by realigning turn circles.
A3.6.6.4. Ease Reposition. If the range, aspect, and closure cues are not met at the
canopy bow assessment window, execute an ease reposition to drive the range and aspect
lower. An ease reposition drives the maneuvering aircraft back toward the training
aircrafts turn circle, reducing closure and aspect in the process. Execute an ease
reposition by relaxing backstick pressure to reduce G. Modulate power as required to
maintain the desired rate fight airspeed. When reducing G, the fighter will see aft LOS
from the training aircraft (away from the canopy bow) as well as a reduction in aspect.
Expect LOS to be immediate, although the amount of time required during the ease will
182 AFMAN11-251V1 17 MARCH 2008

vary based on the range, angles, and closure presented by the training aircraft at the time
of the ease. Select MAX afterburner; reset the LV for best rate; and blend the G back in.
Maintain the best rate until the training aircraft again enters the canopy bow assessment
window. Assess and either execute another ease reposition or pull G as required to enter
the AIM-9/gun WEZ.
A3.6.6.5. Gun Employment. Once committed to transitioning from the control zone to
the gun WEZ, pull lead and establish POM while controlling closure. For mechanics,
refer to gun employment in paragraph A3.5.6.5. While employing the gun, the
maneuvering aircraft may need to reposition. The reposition is a calculated bid to lag,
using the vertical and induced drag to solve range, aspect, and closure problems. The
maneuvering aircraft should reposition for either frag created from the valid gun kill or
range and closure problems created during the gun attempt. Always reposition the aircraft
before entering the 1,000-foot bubble around the training aircraft.
A3.6.6.6. Reposition Mechanics. Rotate the LV away from the training aircraft; power
placement, degree of LV change, G, and AOA used will depend on the severity of the
BFM problem the maneuvering aircraft is trying to solve. If unsure, a good default is to
use idle, set the LV 60 to 90 degrees above the training aircraft (typically, perpendicular
to the horizon), and use a smooth but deliberate pull to the moderate buffet. Once arriving
on or near the training aircrafts turn circle, begin pull back towards the training aircraft
to reduce HCA and begin the reassessment. Throttle position will depend on LOS and
range cues from the training aircraft. Recommit as required for an AIM-9 opportunity on
the way back to the gun WEZ. Be aware of position relative to the training floor during
the recommit.

You might also like